1
|
Roy A, Ghosh A. Epigenetic Restriction Factors (eRFs) in Virus Infection. Viruses 2024; 16:183. [PMID: 38399958 PMCID: PMC10892949 DOI: 10.3390/v16020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The ongoing arms race between viruses and their hosts is constantly evolving. One of the ways in which cells defend themselves against invading viruses is by using restriction factors (RFs), which are cell-intrinsic antiviral mechanisms that block viral replication and transcription. Recent research has identified a specific group of RFs that belong to the cellular epigenetic machinery and are able to restrict the gene expression of certain viruses. These RFs can be referred to as epigenetic restriction factors or eRFs. In this review, eRFs have been classified into two categories. The first category includes eRFs that target viral chromatin. So far, the identified eRFs in this category include the PML-NBs, the KRAB/KAP1 complex, IFI16, and the HUSH complex. The second category includes eRFs that target viral RNA or, more specifically, the viral epitranscriptome. These epitranscriptomic eRFs have been further classified into two types: those that edit RNA bases-adenosine deaminase acting on RNA (ADAR) and pseudouridine synthases (PUS), and those that covalently modify viral RNA-the N6-methyladenosine (m6A) writers, readers, and erasers. We delve into the molecular machinery of eRFs, their role in limiting various viruses, and the mechanisms by which viruses have evolved to counteract them. We also examine the crosstalk between different eRFs, including the common effectors that connect them. Finally, we explore the potential for new discoveries in the realm of epigenetic networks that restrict viral gene expression, as well as the future research directions in this area.
Collapse
Affiliation(s)
- Arunava Roy
- Department of Molecular Medicine, University of South Florida, Tampa, FL 33612, USA;
| | | |
Collapse
|
2
|
Jackson-Jones KA, McKnight Á, Sloan RD. The innate immune factor RPRD2/REAF and its role in the Lv2 restriction of HIV. mBio 2023; 14:e0257221. [PMID: 37882563 PMCID: PMC10746242 DOI: 10.1128/mbio.02572-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023] Open
Abstract
Intracellular innate immunity involves co-evolved antiviral restriction factors that specifically inhibit infecting viruses. Studying these restrictions has increased our understanding of viral replication, host-pathogen interactions, and pathogenesis, and represent potential targets for novel antiviral therapies. Lentiviral restriction 2 (Lv2) was identified as an unmapped early-phase restriction of HIV-2 and later shown to also restrict HIV-1 and simian immunodeficiency virus. The viral determinants of Lv2 susceptibility have been mapped to the envelope and capsid proteins in both HIV-1 and HIV-2, and also viral protein R (Vpr) in HIV-1, and appears dependent on cellular entry mechanism. A genome-wide screen identified several likely contributing host factors including members of the polymerase-associated factor 1 (PAF1) and human silencing hub (HUSH) complexes, and the newly characterized regulation of nuclear pre-mRNA domain containing 2 (RPRD2). Subsequently, RPRD2 (or RNA-associated early-stage antiviral factor) has been shown to be upregulated upon T cell activation, is highly expressed in myeloid cells, binds viral reverse transcripts, and potently restricts HIV-1 infection. RPRD2 is also bound by HIV-1 Vpr and targeted for degradation by the proteasome upon reverse transcription, suggesting RPRD2 impedes reverse transcription and Vpr targeting overcomes this block. RPRD2 is mainly localized to the nucleus and binds RNA, DNA, and DNA:RNA hybrids. More recently, RPRD2 has been shown to negatively regulate genome-wide transcription and interact with the HUSH and PAF1 complexes which repress HIV transcription and are implicated in maintenance of HIV latency. In this review, we examine Lv2 restriction and the antiviral role of RPRD2 and consider potential mechanism(s) of action.
Collapse
Affiliation(s)
- Kathryn A. Jackson-Jones
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
- Division of Infectious Diseases & Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Áine McKnight
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Richard D. Sloan
- Centre for Inflammation Research, Institute of Regeneration and Repair, The University of Edinburgh, Edinburgh, United Kingdom
- ZJU-UoE Institute, Zhejiang University, Haining, China
| |
Collapse
|
3
|
Jeong BR, Jang J, Jin E. Genome engineering via gene editing technologies in microalgae. BIORESOURCE TECHNOLOGY 2023; 373:128701. [PMID: 36746216 DOI: 10.1016/j.biortech.2023.128701] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
CRISPR-Cas has revolutionized genetic modification with its comparative simplicity and accuracy, and it can be used even at the genomic level. Microalgae are excellent feedstocks for biofuels and nutraceuticals because they contain high levels of fatty acids, carotenoids, and other metabolites; however, genome engineering for microalgae is not yet as developed as for other model organisms. Microalgal engineering at the genetic and metabolic levels is relatively well established, and a few genomic resources are available. Their genomic information was used for a "safe harbor" site for stable transgene expression in microalgae. This review proposes further genome engineering schemes including the construction of sgRNA libraries, pan-genomic and epigenomic resources, and mini-genomes, which can together be developed into synthetic biology for carbon-based engineering in microalgae. Acetyl-CoA is at the center of carbon metabolic pathways and is further reviewed for the production of molecules including terpenoids in microalgae.
Collapse
Affiliation(s)
- Byeong-Ryool Jeong
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - Junhwan Jang
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea.
| |
Collapse
|
4
|
Seczynska M, Lehner PJ. The sound of silence: mechanisms and implications of HUSH complex function. Trends Genet 2023; 39:251-267. [PMID: 36754727 DOI: 10.1016/j.tig.2022.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/14/2022] [Accepted: 12/30/2022] [Indexed: 02/08/2023]
Abstract
The vertebrate genome is under constant threat of invasion by genetic parasites. Whether the host can immediately recognize and respond to invading elements has been unclear. The discovery of the human silencing hub (HUSH) complex, and the finding that it provides immediate protection from genome invasion by silencing products of reverse transcription, have important implications for mammalian genome evolution. In this review, we summarize recent insights into HUSH function and describe how cellular introns provide a novel means of self-nonself discrimination, allowing HUSH to recognize and transcriptionally repress a broad range of intronless genetic elements. We discuss how HUSH contributes to genome evolution, and highlight studies reporting the critical role of HUSH in development and implicating HUSH in the control of immune signaling and cancer progression.
Collapse
Affiliation(s)
- Marta Seczynska
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Paul J Lehner
- Cambridge Institute for Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0AW, UK.
| |
Collapse
|
5
|
Yang CH, Fagnocchi L, Apostle S, Wegert V, Casaní-Galdón S, Landgraf K, Panzeri I, Dror E, Heyne S, Wörpel T, Chandler DP, Lu D, Yang T, Gibbons E, Guerreiro R, Bras J, Thomasen M, Grunnet LG, Vaag AA, Gillberg L, Grundberg E, Conesa A, Körner A, Pospisilik JA. Independent phenotypic plasticity axes define distinct obesity sub-types. Nat Metab 2022; 4:1150-1165. [PMID: 36097183 PMCID: PMC9499872 DOI: 10.1038/s42255-022-00629-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/29/2022] [Indexed: 01/04/2023]
Abstract
Studies in genetically 'identical' individuals indicate that as much as 50% of complex trait variation cannot be traced to genetics or to the environment. The mechanisms that generate this 'unexplained' phenotypic variation (UPV) remain largely unknown. Here, we identify neuronatin (NNAT) as a conserved factor that buffers against UPV. We find that Nnat deficiency in isogenic mice triggers the emergence of a bi-stable polyphenism, where littermates emerge into adulthood either 'normal' or 'overgrown'. Mechanistically, this is mediated by an insulin-dependent overgrowth that arises from histone deacetylase (HDAC)-dependent β-cell hyperproliferation. A multi-dimensional analysis of monozygotic twin discordance reveals the existence of two patterns of human UPV, one of which (Type B) phenocopies the NNAT-buffered polyphenism identified in mice. Specifically, Type-B monozygotic co-twins exhibit coordinated increases in fat and lean mass across the body; decreased NNAT expression; increased HDAC-responsive gene signatures; and clinical outcomes linked to insulinemia. Critically, the Type-B UPV signature stratifies both childhood and adult cohorts into four metabolic states, including two phenotypically and molecularly distinct types of obesity.
Collapse
Affiliation(s)
- Chih-Hsiang Yang
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | | - Vanessa Wegert
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Kathrin Landgraf
- Medical Faculty, University of Leipzig, University Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, Leipzig, Germany
| | - Ilaria Panzeri
- Van Andel Institute, Grand Rapids, MI, USA
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Erez Dror
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Steffen Heyne
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Roche Diagnostics Deutschland, Mannheim, Germany
| | - Till Wörpel
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Di Lu
- Van Andel Institute, Grand Rapids, MI, USA
| | - Tao Yang
- Van Andel Institute, Grand Rapids, MI, USA
| | - Elizabeth Gibbons
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Martin Thomasen
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
| | - Louise G Grunnet
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Allan A Vaag
- Department of Endocrinology, Rigshospitalet, Copenhagen, Denmark
- Steno Diabetes Center Copenhagen, Herlev, Denmark
- Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Linn Gillberg
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elin Grundberg
- Genomic Medicine Center, Children's Mercy Research Institute, Children's Mercy Kansas City, MO, USA
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council (CSIC), Paterna, Valencia, Spain
- Microbiology and Cell Science Department, University of Florida, Gainesville, FL, USA
| | - Antje Körner
- Medical Faculty, University of Leipzig, University Hospital for Children & Adolescents, Center for Pediatric Research Leipzig, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - J Andrew Pospisilik
- Van Andel Institute, Grand Rapids, MI, USA.
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
| |
Collapse
|
6
|
Fueyo R, Judd J, Feschotte C, Wysocka J. Roles of transposable elements in the regulation of mammalian transcription. Nat Rev Mol Cell Biol 2022; 23:481-497. [PMID: 35228718 PMCID: PMC10470143 DOI: 10.1038/s41580-022-00457-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2022] [Indexed: 12/16/2022]
Abstract
Transposable elements (TEs) comprise about half of the mammalian genome. TEs often contain sequences capable of recruiting the host transcription machinery, which they use to express their own products and promote transposition. However, the regulatory sequences carried by TEs may affect host transcription long after the TEs have lost the ability to transpose. Recent advances in genome analysis and engineering have facilitated systematic interrogation of the regulatory activities of TEs. In this Review, we discuss diverse mechanisms by which TEs contribute to transcription regulation. Notably, TEs can donate enhancer and promoter sequences that influence the expression of host genes, modify 3D chromatin architecture and give rise to novel regulatory genes, including non-coding RNAs and transcription factors. We discuss how TEs spur regulatory evolution and facilitate the emergence of genetic novelties in mammalian physiology and development. By virtue of their repetitive and interspersed nature, TEs offer unique opportunities to dissect the effects of mutation and genomic context on the function and evolution of cis-regulatory elements. We argue that TE-centric studies hold the key to unlocking general principles of transcription regulation and evolution.
Collapse
Affiliation(s)
- Raquel Fueyo
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julius Judd
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Boldyreva LV, Andreyeva EN, Pindyurin AV. Position Effect Variegation: Role of the Local Chromatin Context in Gene Expression Regulation. Mol Biol 2022. [DOI: 10.1134/s0026893322030049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol 2022; 23:623-640. [PMID: 35562425 PMCID: PMC9099300 DOI: 10.1038/s41580-022-00483-w] [Citation(s) in RCA: 236] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
Heterochromatin is characterized by dimethylated or trimethylated histone H3 Lys9 (H3K9me2 or H3K9me3, respectively) and is found at transposable elements, satellite repeats and genes, where it ensures their transcriptional silencing. The histone methyltransferases (HMTs) that methylate H3K9 — in mammals Suppressor of variegation 3–9 homologue 1 (SUV39H1), SUV39H2, SET domain bifurcated 1 (SETDB1), SETDB2, G9A and G9A-like protein (GLP) — and the ‘readers’ of H3K9me2 or H3K9me3 are highly conserved and show considerable redundancy. Despite their redundancy, genetic ablation or mistargeting of an individual H3K9 methyltransferase can correlate with impaired cell differentiation, loss of tissue identity, premature aging and/or cancer. In this Review, we discuss recent advances in understanding the roles of the known H3K9-specific HMTs in ensuring transcriptional homeostasis during tissue differentiation in mammals. We examine the effects of H3K9-methylation-dependent gene repression in haematopoiesis, muscle differentiation and neurogenesis in mammals, and compare them with mechanistic insights obtained from the study of model organisms, notably Caenorhabditis elegans and Drosophila melanogaster. In all these organisms, H3K9-specific HMTs have both unique and redundant roles that ensure the maintenance of tissue integrity by restricting the binding of transcription factors to lineage-specific promoters and enhancer elements. Histone H3 Lys9 (H3K9)-methylated heterochromatin ensures transcriptional silencing of repetitive elements and genes, and its deregulation leads to impaired cell and tissue identity, premature aging and cancer. Recent studies in mammals clarified the roles H3K9-specific histone methyltransferases in ensuring transcriptional homeostasis during tissue differentiation.
Collapse
|
9
|
Kabi M, Filion GJ. Chromatin and viral integration in immunity: The challenge of silencing non-self genes. Trends Immunol 2022; 43:449-458. [PMID: 35490134 DOI: 10.1016/j.it.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022]
Abstract
Several viruses hide in the genome of their host. To complete their replication cycle, they need to integrate in the form of a provirus and express their genes. In vertebrates, integrated viruses can be silenced by chromatin, implying that some specific mechanisms exist to detect non-self genes. The known mechanisms depend on sequence features of retroelements, but the fluctuations of virus expression suggest that other determinants also exist. Here we review the mechanisms allowing chromatin to silence integrated viruses and propose that DNA repair may help flag them as 'non-self' shortly after their genomic insertion.
Collapse
Affiliation(s)
- Manisha Kabi
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON, Canada
| | - Guillaume J Filion
- Department of Biological Sciences, University of Toronto Scarborough, Scarborough, ON, Canada.
| |
Collapse
|
10
|
Barral A, Pozo G, Ducrot L, Papadopoulos GL, Sauzet S, Oldfield AJ, Cavalli G, Déjardin J. SETDB1/NSD-dependent H3K9me3/H3K36me3 dual heterochromatin maintains gene expression profiles by bookmarking poised enhancers. Mol Cell 2022; 82:816-832.e12. [PMID: 35081363 PMCID: PMC8860380 DOI: 10.1016/j.molcel.2021.12.037] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022]
Abstract
Gene silencing by heterochromatin plays a crucial role in cell identity. Here, we characterize the localization, the biogenesis, and the function of an atypical heterochromatin, which is simultaneously enriched in the typical H3K9me3 mark and in H3K36me3, a histone mark usually associated with gene expression. We identified thousands of dual regions in mouse embryonic stem (ES) cells that rely on the histone methyltransferases SET domain bifurcated 1 (SETDB1) and nuclear set domain (NSD)-containing proteins to generate H3K9me3 and H3K36me3, respectively. Upon SETDB1 removal, dual domains lose both marks, gain signatures of active enhancers, and come into contact with upregulated genes, suggesting that it might be an important pathway by which genes are controlled by heterochromatin. In differentiated tissues, a subset of these dual domains is destabilized and becomes enriched in active enhancer marks, providing a mechanistic insight into the involvement of heterochromatin in the maintenance of cell identity. H3K9me3 and H3K36me3 dual domains form on thousands of regions in ES cells Dual domains depend on SETDB1 and NSD enzymes Most upregulated genes in Setdb1 KO cells are not normally heterochromatinized Dual domains become enhancers for these genes upon Setdb1 loss
Collapse
|
11
|
Voortman L, Johnston RJ. Transcriptional repression in stochastic gene expression, patterning, and cell fate specification. Dev Biol 2022; 481:129-138. [PMID: 34688689 PMCID: PMC8665150 DOI: 10.1016/j.ydbio.2021.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 01/03/2023]
Abstract
Development is often driven by signaling and lineage-specific cues, yielding highly uniform and reproducible outcomes. Development also involves mechanisms that generate noise in gene expression and random patterns across tissues. Cells sometimes randomly choose between two or more cell fates in a mechanism called stochastic cell fate specification. This process diversifies cell types in otherwise homogenous tissues. Stochastic mechanisms have been extensively studied in prokaryotes where noisy gene activation plays a pivotal role in controlling cell fates. In eukaryotes, transcriptional repression stochastically limits gene expression to generate random patterns and specify cell fates. Here, we review our current understanding of repressive mechanisms that produce random patterns of gene expression and cell fates in flies, plants, mice, and humans.
Collapse
Affiliation(s)
- Lukas Voortman
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
12
|
Sertkaya H, Hidalgo L, Ficarelli M, Kmiec D, Signell AW, Ali S, Parker H, Wilson H, Neil SJ, Malim MH, Vink CA, Swanson CM. Minimal impact of ZAP on lentiviral vector production and transduction efficiency. Mol Ther Methods Clin Dev 2021; 23:147-157. [PMID: 34703838 PMCID: PMC8517000 DOI: 10.1016/j.omtm.2021.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 08/24/2021] [Indexed: 11/29/2022]
Abstract
The antiviral protein ZAP binds CpG dinucleotides in viral RNA to inhibit replication. This has likely led to the CpG suppression observed in many RNA viruses, including retroviruses. Sequences added to retroviral vector genomes, such as internal promoters, transgenes, or regulatory elements, substantially increase CpG abundance. Because these CpGs could allow retroviral vector RNA to be targeted by ZAP, we analyzed whether it restricts vector production, transduction efficiency, and transgene expression. Surprisingly, even though CpG-high HIV-1 was efficiently inhibited by ZAP in HEK293T cells, depleting ZAP did not substantially increase lentiviral vector titer using several packaging and genome plasmids. ZAP overexpression also did not inhibit lentiviral vector titer. In addition, decreasing CpG abundance in a lentiviral vector genome did not increase its titer, and a gammaretroviral vector derived from murine leukemia virus was not substantially restricted by ZAP. Overall, we show that the increased CpG abundance in retroviral vectors relative to the wild-type retroviruses they are derived from does not intrinsically sensitize them to ZAP. Further understanding of how ZAP specifically targets transcripts to inhibit their expression may allow the development of CpG sequence contexts that efficiently recruit or evade this antiviral system.
Collapse
Affiliation(s)
- Helin Sertkaya
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Laura Hidalgo
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Mattia Ficarelli
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Dorota Kmiec
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Adrian W. Signell
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Sadfer Ali
- Cell & Gene Therapy Platform, Medicinal Science and Technology, GSK, Stevenage SG1 2NY, UK
| | - Hannah Parker
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Harry Wilson
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Stuart J.D. Neil
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Michael H. Malim
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| | - Conrad A. Vink
- Cell & Gene Therapy Platform, Medicinal Science and Technology, GSK, Stevenage SG1 2NY, UK
| | - Chad M. Swanson
- Department of Infectious Diseases, King’s College London, London SE1 9RT, UK
| |
Collapse
|
13
|
Ryu AJ, Jeong BR, Kang NK, Jeon S, Sohn MG, Yun HJ, Lim JM, Jeong SW, Park YI, Jeong WJ, Park S, Chang YK, Jeong KJ. Safe-Harboring based novel genetic toolkit for Nannochloropsis salina CCMP1776: Efficient overexpression of transgene via CRISPR/Cas9-Mediated Knock-in at the transcriptional hotspot. BIORESOURCE TECHNOLOGY 2021; 340:125676. [PMID: 34365302 DOI: 10.1016/j.biortech.2021.125676] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Transgene expression in microalgae can be hampered by transgene silencing and unstable expression due to position effects. To overcome this, "safe harboring" transgene expression system was established for Nannochloropsis. Initially, transformants were obtained expressing a sfGFP reporter, followed by screening for high expression of sfGFP with fluorescence-activated cell sorter (FACS). 'T1' transcriptional hotspot was identified from a mutant showing best expression of sfGFP, but did not affect growth or lipid contents. By using a Cas9 editor strain, FAD12 gene, encoding Δ12-fatty acid desaturase (FAD12), was successfully knocked-in at the T1 locus, resulting in significantly higher expression of FAD12 than those of random integration. Importantly, the "safe harbored" FAD12 transformants showed four-fold higher production of linoleic acid (LA), the product of FAD12, leading to 1.5-fold increase in eicosapentaenoic acid (EPA). This safe harboring principle provide excellent proof of the concept for successful genetic/metabolic engineering of microalgae and other organisms.
Collapse
Affiliation(s)
- Ae Jin Ryu
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Byeong-Ryool Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology, Qingdao, Shandong 266101, China
| | - Nam Kyu Kang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Carl. R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min Gi Sohn
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hyo Jin Yun
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Jong Min Lim
- Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seok Won Jeong
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Won Joong Jeong
- Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea; Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| |
Collapse
|
14
|
Brackley CA, Gilbert N, Michieletto D, Papantonis A, Pereira MCF, Cook PR, Marenduzzo D. Complex small-world regulatory networks emerge from the 3D organisation of the human genome. Nat Commun 2021; 12:5756. [PMID: 34599163 PMCID: PMC8486811 DOI: 10.1038/s41467-021-25875-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 01/01/2023] Open
Abstract
The discovery that overexpressing one or a few critical transcription factors can switch cell state suggests that gene regulatory networks are relatively simple. In contrast, genome-wide association studies (GWAS) point to complex phenotypes being determined by hundreds of loci that rarely encode transcription factors and which individually have small effects. Here, we use computer simulations and a simple fitting-free polymer model of chromosomes to show that spatial correlations arising from 3D genome organisation naturally lead to stochastic and bursty transcription as well as complex small-world regulatory networks (where the transcriptional activity of each genomic region subtly affects almost all others). These effects require factors to be present at sub-saturating levels; increasing levels dramatically simplifies networks as more transcription units are pressed into use. Consequently, results from GWAS can be reconciled with those involving overexpression. We apply this pan-genomic model to predict patterns of transcriptional activity in whole human chromosomes, and, as an example, the effects of the deletion causing the diGeorge syndrome.
Collapse
Affiliation(s)
- C A Brackley
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - N Gilbert
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - D Michieletto
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
- MRC Human Genetics Unit, MRC Institute of Genetics & Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh, EH4 2XU, UK
| | - A Papantonis
- Institute of Pathology, University Medical Center, Georg-August University of Göttingen, 37075, Göttingen, Germany
| | - M C F Pereira
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| | - P R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - D Marenduzzo
- SUPA, School of Physics and Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| |
Collapse
|
15
|
Gu Z, Liu Y, Zhang Y, Cao H, Lyu J, Wang X, Wylie A, Newkirk SJ, Jones AE, Lee M, Botten GA, Deng M, Dickerson KE, Zhang CC, An W, Abrams JM, Xu J. Silencing of LINE-1 retrotransposons is a selective dependency of myeloid leukemia. Nat Genet 2021; 53:672-682. [PMID: 33833453 PMCID: PMC8270111 DOI: 10.1038/s41588-021-00829-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 02/26/2021] [Indexed: 02/07/2023]
Abstract
Transposable elements or transposons are major players in genetic variability and genome evolution. Aberrant activation of long interspersed element-1 (LINE-1 or L1) retrotransposons is common in human cancers, yet their tumor-type-specific functions are poorly characterized. We identified MPHOSPH8/MPP8, a component of the human silencing hub (HUSH) complex, as an acute myeloid leukemia (AML)-selective dependency by epigenetic regulator-focused CRISPR screening. Although MPP8 is dispensable for steady-state hematopoiesis, MPP8 loss inhibits AML development by reactivating L1s to induce the DNA damage response and cell cycle exit. Activation of endogenous or ectopic L1s mimics the phenotype of MPP8 loss, whereas blocking retrotransposition abrogates MPP8-deficiency-induced phenotypes. Expression of AML oncogenic mutations promotes L1 suppression, and enhanced L1 silencing is associated with poor prognosis in human AML. Hence, while retrotransposons are commonly recognized for their cancer-promoting functions, we describe a tumor-suppressive role for L1 retrotransposons in myeloid leukemia.
Collapse
Affiliation(s)
- Zhimin Gu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxuan Liu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuannyu Zhang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hui Cao
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Junhua Lyu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xun Wang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Annika Wylie
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Simon J Newkirk
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Amanda E Jones
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Lee
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Giovanni A Botten
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mi Deng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kathryn E Dickerson
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jian Xu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Pediatrics, Harold C. Simmons Comprehensive Cancer Center and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
16
|
Zhao Z, Fan R, Xu W, Kou Y, Wang Y, Ma X, Du Z. Single-cell dynamics of chromatin activity during cell lineage differentiation in Caenorhabditis elegans embryos. Mol Syst Biol 2021; 17:e10075. [PMID: 33900055 PMCID: PMC8073016 DOI: 10.15252/msb.202010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/09/2022] Open
Abstract
Elucidating the chromatin dynamics that orchestrate embryogenesis is a fundamental question in developmental biology. Here, we exploit position effects on expression as an indicator of chromatin activity and infer the chromatin activity landscape in every lineaged cell during Caenorhabditis elegans early embryogenesis. Systems-level analyses reveal that chromatin activity distinguishes cellular states and correlates with fate patterning in the early embryos. As cell lineage unfolds, chromatin activity diversifies in a lineage-dependent manner, with switch-like changes accompanying anterior-posterior fate asymmetry and characteristic landscapes being established in different cell lineages. Upon tissue differentiation, cellular chromatin from distinct lineages converges according to tissue types but retains stable memories of lineage history, contributing to intra-tissue cell heterogeneity. However, the chromatin landscapes of cells organized in a left-right symmetric pattern are predetermined to be analogous in early progenitors so as to pre-set equivalent states. Finally, genome-wide analysis identifies many regions exhibiting concordant chromatin activity changes that mediate the co-regulation of functionally related genes during differentiation. Collectively, our study reveals the developmental and genomic dynamics of chromatin activity at the single-cell level.
Collapse
Affiliation(s)
- Zhiguang Zhao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Rong Fan
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Weina Xu
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yahui Kou
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yangyang Wang
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Xuehua Ma
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Zhuo Du
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
17
|
Kaginkar S, Priya S, Sharma U, D'Souza JS, Sen S. A potential screening method for epigenetic drugs: uncovering stress-induced gene silencing in Chlamydomonas. Free Radic Res 2021; 55:533-546. [PMID: 33455485 DOI: 10.1080/10715762.2021.1876231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Histone modifications and DNA methylation together govern promoter availability, thereby influencing gene expression. This study queries the unicellular chlorophyte, Chlamydomonas reinhardtii using a three step "epigenetic assay" design to phenotypically track the variegation of a randomly integrated Paromomycin resistance transgene(s) (PmR). Based on its position of integration, the PmR gene expression hinged on two epigenetic hallmarks: the spreading of heterochromatin, and the transmissible memory of epigenetic states across generations. Using a spot-dilution analysis, the loss of antibiotic resistance phenotype was scored from 0 to 4, four being maximally silenced. Appropriate construct designs were used to demonstrate that the cis-spread of heterochromatin could be interfered with a stronger euchromatic barrier (TUB2 promoter). When assayed for metal ion stress, a combination of Mn deficiency with excess Cu or Zn stress was shown to induce gene silencing in Chlamydomonas. Cu stress resulted in the accumulation of intracellular ROS, while Zn stress elevated the sensitivity to ROS. As proof of functional conservation, mammalian epigenetic drugs demonstrably interfered with stress-induced gene silencing. Finally, a selected group of transgenic clones responsive to HDACi sodium butyrate, when tested in a gradient plate format showed similarity in phenotype to the plant-derived compound cinnamic acid. This indicated a possible commonality in their mode of action, unlike curcumin which might have a different mechanism. Thus, using binned libraries, based on a common set of responses to known drugs, a cost-effective high-throughput screening strategy for epigenetically active compounds from plants or other sources is described.
Collapse
Affiliation(s)
- Snehal Kaginkar
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Srishti Priya
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Upnishad Sharma
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Jacinta S D'Souza
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| | - Subhojit Sen
- UM-DAE Centre for Excellence in Basic Sciences, University of Mumbai, Mumbai, India
| |
Collapse
|
18
|
Rodden LN, Chutake YK, Gilliam K, Lam C, Soragni E, Hauser L, Gilliam M, Wiley G, Anderson MP, Gottesfeld JM, Lynch DR, Bidichandani SI. Methylated and unmethylated epialleles support variegated epigenetic silencing in Friedreich ataxia. Hum Mol Genet 2021; 29:3818-3829. [PMID: 33432325 PMCID: PMC7861014 DOI: 10.1093/hmg/ddaa267] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/01/2020] [Accepted: 12/09/2020] [Indexed: 12/20/2022] Open
Abstract
Friedreich ataxia (FRDA) is typically caused by homozygosity for an expanded GAA triplet-repeat in intron 1 of the FXN gene, which results in transcriptional deficiency via epigenetic silencing. Most patients are homozygous for alleles containing > 500 triplets, but a subset (~20%) have at least one expanded allele with < 500 triplets and a distinctly milder phenotype. We show that in FRDA DNA methylation spreads upstream from the expanded repeat, further than previously recognized, and establishes an FRDA-specific region of hypermethylation in intron 1 (~90% in FRDA versus < 10% in non-FRDA) as a novel epigenetic signature. The hypermethylation of this differentially methylated region (FRDA-DMR) was observed in a variety of patient-derived cells; it significantly correlated with FXN transcriptional deficiency and age of onset, and it reverted to the non-disease state in isogenically corrected induced pluripotent stem cell (iPSC)-derived neurons. Bisulfite deep sequencing of the FRDA-DMR in peripheral blood mononuclear cells from 73 FRDA patients revealed considerable intra-individual epiallelic variability, including fully methylated, partially methylated, and unmethylated epialleles. Although unmethylated epialleles were rare (median = 0.33%) in typical patients homozygous for long GAA alleles with > 500 triplets, a significantly higher prevalence of unmethylated epialleles (median = 9.8%) was observed in patients with at least one allele containing < 500 triplets, less severe FXN deficiency (>20%) and later onset (>15 years). The higher prevalence in mild FRDA of somatic FXN epialleles devoid of DNA methylation is consistent with variegated epigenetic silencing mediated by expanded triplet-repeats. The proportion of unsilenced somatic FXN genes is an unrecognized phenotypic determinant in FRDA and has implications for the deployment of effective therapies.
Collapse
Affiliation(s)
- Layne N Rodden
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yogesh K Chutake
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kaitlyn Gilliam
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Christina Lam
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Elisabetta Soragni
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Lauren Hauser
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew Gilliam
- Department of Electrical and Computer Engineering, University of Oklahoma, Norman, OK, USA
| | - Graham Wiley
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael P Anderson
- Department of Biostatistics and Epidemiology, Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Joel M Gottesfeld
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - David R Lynch
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sanjay I Bidichandani
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
19
|
DasGupta A, Lee TL, Li C, Saltzman AL. Emerging Roles for Chromo Domain Proteins in Genome Organization and Cell Fate in C. elegans. Front Cell Dev Biol 2020; 8:590195. [PMID: 33195254 PMCID: PMC7649781 DOI: 10.3389/fcell.2020.590195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/08/2020] [Indexed: 11/28/2022] Open
Abstract
In most eukaryotes, the genome is packaged with histones and other proteins to form chromatin. One of the major mechanisms for chromatin regulation is through post-translational modification of histone proteins. Recognition of these modifications by effector proteins, often dubbed histone “readers,” provides a link between the chromatin landscape and gene regulation. The diversity of histone reader proteins for each modification provides an added layer of regulatory complexity. In this review, we will focus on the roles of chromatin organization modifier (chromo) domain containing proteins in the model nematode, Caenorhabditis elegans. An amenability to genetic and cell biological approaches, well-studied development and a short life cycle make C. elegans a powerful system to investigate the diversity of chromo domain protein functions in metazoans. We will highlight recent insights into the roles of chromo domain proteins in the regulation of heterochromatin and the spatial conformation of the genome as well as their functions in cell fate, fertility, small RNA pathways and transgenerational epigenetic inheritance. The spectrum of different chromatin readers may represent a layer of regulation that integrates chromatin landscape, genome organization and gene expression.
Collapse
Affiliation(s)
- Abhimanyu DasGupta
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tammy L Lee
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Chengyin Li
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Arneet L Saltzman
- Department of Cell & Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
20
|
Fitz-James MH, Tong P, Pidoux AL, Ozadam H, Yang L, White SA, Dekker J, Allshire RC. Large domains of heterochromatin direct the formation of short mitotic chromosome loops. eLife 2020; 9:e57212. [PMID: 32915140 PMCID: PMC7515631 DOI: 10.7554/elife.57212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 09/10/2020] [Indexed: 12/31/2022] Open
Abstract
During mitosis chromosomes reorganise into highly compact, rod-shaped forms, thought to consist of consecutive chromatin loops around a central protein scaffold. Condensin complexes are involved in chromatin compaction, but the contribution of other chromatin proteins, DNA sequence and histone modifications is less understood. A large region of fission yeast DNA inserted into a mouse chromosome was previously observed to adopt a mitotic organisation distinct from that of surrounding mouse DNA. Here, we show that a similar distinct structure is common to a large subset of insertion events in both mouse and human cells and is coincident with the presence of high levels of heterochromatic H3 lysine nine trimethylation (H3K9me3). Hi-C and microscopy indicate that the heterochromatinised fission yeast DNA is organised into smaller chromatin loops than flanking euchromatic mouse chromatin. We conclude that heterochromatin alters chromatin loop size, thus contributing to the distinct appearance of heterochromatin on mitotic chromosomes.
Collapse
Affiliation(s)
- Maximilian H Fitz-James
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pin Tong
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison L Pidoux
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Hakan Ozadam
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Liyan Yang
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
| | - Sharon A White
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Job Dekker
- Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, United States
- Howard Hughes Medical Institute, Chevy Chase, United States
| | - Robin C Allshire
- Wellcome Centre for Cell Biology and Institute of Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Corless S, Höcker S, Erhardt S. Centromeric RNA and Its Function at and Beyond Centromeric Chromatin. J Mol Biol 2020; 432:4257-4269. [DOI: 10.1016/j.jmb.2020.03.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
|
22
|
Fukuda K, Shinkai Y. SETDB1-Mediated Silencing of Retroelements. Viruses 2020; 12:E596. [PMID: 32486217 PMCID: PMC7354471 DOI: 10.3390/v12060596] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a protein lysine methyltransferase and methylates histone H3 at lysine 9 (H3K9). Among other H3K9 methyltransferases, SETDB1 and SETDB1-mediated H3K9 trimethylation (H3K9me3) play pivotal roles for silencing of endogenous and exogenous retroelements, thus contributing to genome stability against retroelement transposition. Furthermore, SETDB1 is highly upregulated in various tumor cells. In this article, we describe recent advances about how SETDB1 activity is regulated, how SETDB1 represses various types of retroelements such as L1 and class I, II, and III endogenous retroviruses (ERVs) in concert with other epigenetic factors such as KAP1 and the HUSH complex and how SETDB1-mediated H3K9 methylation can be maintained during replication.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
23
|
Saravanan K, Kumar H, Chhotaray S, Preethi AL, Talokar AJ, Natarajan A, Parida S, Bhushan B, Panigrahi M. Drosophila melanogaster: a promising model system for epigenetic research. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2019.1685216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- K.A. Saravanan
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Harshit Kumar
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Supriya Chhotaray
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - A. Latha Preethi
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Amol J. Talokar
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - A. Natarajan
- Division of Animal Nutrition, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Bharat Bhushan
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| | - Manjit Panigrahi
- Division of Animal Genetics and Breeding, ICAR - Indian Veterinary Research Institute, Bareilly, India
| |
Collapse
|
24
|
The H3K9 Methylation Writer SETDB1 and its Reader MPP8 Cooperate to Silence Satellite DNA Repeats in Mouse Embryonic Stem Cells. Genes (Basel) 2019; 10:genes10100750. [PMID: 31557926 PMCID: PMC6826936 DOI: 10.3390/genes10100750] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/15/2019] [Accepted: 09/24/2019] [Indexed: 12/28/2022] Open
Abstract
SETDB1 (SET Domain Bifurcated histone lysine methyltransferase 1) is a key lysine methyltransferase (KMT) required in embryonic stem cells (ESCs), where it silences transposable elements and DNA repeats via histone H3 lysine 9 tri-methylation (H3K9me3), independently of DNA methylation. The H3K9 methylation reader M-Phase Phosphoprotein 8 (MPP8) is highly expressed in ESCs and germline cells. Although evidence of a cooperation between H3K9 KMTs and MPP8 in committed cells has emerged, the interplay between H3K9 methylation writers and MPP8 in ESCs remains elusive. Here, we show that MPP8 interacts physically and functionally with SETDB1 in ESCs. Indeed, combining biochemical, transcriptomic and genomic analyses, we found that MPP8 and SETDB1 co-regulate a significant number of common genomic targets, especially the DNA satellite repeats. Together, our data point to a model in which the silencing of a class of repeated sequences in ESCs involves the cooperation between the H3K9 methylation writer SETDB1 and its reader MPP8.
Collapse
|
25
|
Vu AL, Leesutthiphonchai W, Ah-Fong AMV, Judelson HS. Defining Transgene Insertion Sites and Off-Target Effects of Homology-Based Gene Silencing Informs the Application of Functional Genomics Tools in Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:915-927. [PMID: 30811313 DOI: 10.1094/mpmi-09-18-0265-ta] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
DNA transformation and homology-based transcriptional silencing are frequently used to assess gene function in Phytophthora spp. Since unplanned side-effects of these tools are not well-characterized, we used P. infestans to study plasmid integration sites and whether knockdowns caused by homology-dependent silencing spread to other genes. Insertions occurred both in gene-dense and gene-sparse regions but disproportionately near the 5' ends of genes, which disrupted native coding sequences. Microhomology at the recombination site between plasmid and chromosome was common. Studies of transformants silenced for 12 different gene targets indicated that neighbors within 500 nt were often cosilenced, regardless of whether hairpin or sense constructs were employed and the direction of transcription of the target. However, this cis spreading of silencing did not occur in all transformants obtained with the same plasmid. Genome-wide studies indicated that unlinked genes with partial complementarity with the silencing-inducing transgene were not usually down-regulated. We learned that hairpin or sense transgenes were not cosilenced with the target in all transformants, which informs how screens for silencing should be performed. We conclude that transformation and gene silencing can be reliable tools for functional genomics in Phytophthora spp. but must be used carefully, especially by testing for the spread of silencing to genes flanking the target.
Collapse
Affiliation(s)
- Andrea L Vu
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | | | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA 92521, U.S.A
| |
Collapse
|
26
|
Differential viral accessibility (DIVA) identifies alterations in chromatin architecture through large-scale mapping of lentiviral integration sites. Nat Protoc 2019; 14:153-170. [PMID: 30518911 DOI: 10.1038/s41596-018-0087-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alterations in chromatin structure play a major role in the epigenetic regulation of gene expression. Here, we describe a step-by-step protocol for differential viral accessibility (DIVA), a method for identifying changes in chromatin accessibility genome-wide. Commonly used methods for mapping accessible genomic loci have strong preferences toward detecting 'open' chromatin found at regulatory regions but are not well suited to studying chromatin accessibility in gene bodies and intergenic regions. DIVA overcomes this limitation, enabling a broader range of sites to be interrogated. Conceptually, DIVA is similar to ATAC-seq in that it relies on the integration of exogenous DNA into the genome to map accessible chromatin, except that chromatin architecture is probed through mapping integration sites of exogenous lentiviruses. An isogenic pair of cell lines are transduced with a lentiviral vector, followed by PCR amplification and Illumina sequencing of virus-genome junctions; the resulting sequences define a set of unique lentiviral integration sites, which are compared to determine whether genomic loci exhibit significantly altered accessibility between experimental and control cells. Experienced researchers will take 6 d to generate lentiviral stocks and transduce the target cells, a further 5 d to prepare the Illumina sequencing libraries and a few hours to perform the bioinformatic analysis.
Collapse
|
27
|
Same-Sex Twin Pair Phenotypic Correlations are Consistent with Human Y Chromosome Promoting Phenotypic Heterogeneity. Evol Biol 2018. [DOI: 10.1007/s11692-018-9454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
28
|
Abstract
Heterochromatin is a key architectural feature of eukaryotic chromosomes, which endows particular genomic domains with specific functional properties. The capacity of heterochromatin to restrain the activity of mobile elements, isolate DNA repair in repetitive regions and ensure accurate chromosome segregation is crucial for maintaining genomic stability. Nucleosomes at heterochromatin regions display histone post-translational modifications that contribute to developmental regulation by restricting lineage-specific gene expression. The mechanisms of heterochromatin establishment and of heterochromatin maintenance are separable and involve the ability of sequence-specific factors bound to nascent transcripts to recruit chromatin-modifying enzymes. Heterochromatin can spread along the chromatin from nucleation sites. The propensity of heterochromatin to promote its own spreading and inheritance is counteracted by inhibitory factors. Because of its importance for chromosome function, heterochromatin has key roles in the pathogenesis of various human diseases. In this Review, we discuss conserved principles of heterochromatin formation and function using selected examples from studies of a range of eukaryotes, from yeast to human, with an emphasis on insights obtained from unicellular model organisms.
Collapse
|
29
|
Duronio RJ, O'Farrell PH, Sluder G, Su TT. Sophisticated lessons from simple organisms: appreciating the value of curiosity-driven research. Dis Model Mech 2017; 10:1381-1389. [PMID: 29259023 PMCID: PMC5769611 DOI: 10.1242/dmm.031203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
For hundreds of years, biologists have studied accessible organisms such as garden peas, sea urchins collected at low tide, newt eggs, and flies circling rotten fruit. These organisms help us to understand the world around us, attracting and inspiring each new generation of biologists with the promise of mystery and discovery. Time and time again, what we learn from such simple organisms has emphasized our common biological origins by proving to be applicable to more complex organisms, including humans. Yet, biologists are increasingly being tasked with developing applications from the known, rather than being allowed to follow a path to discovery of the as yet unknown. Here, we provide examples of important lessons learned from research using selected non-vertebrate organisms. We argue that, for the purpose of understanding human disease, simple organisms cannot and should not be replaced solely by human cell-based culture systems. Rather, these organisms serve as powerful discovery tools for new knowledge that could subsequently be tested for conservation in human cell-based culture systems. In this way, curiosity-driven biological research in simple organisms has and will continue to pay huge dividends in both the short and long run for improving the human condition.
Collapse
Affiliation(s)
- Robert J Duronio
- Departments of Biology and Genetics, Integrative Program for Biological and Genome Sciences, and Lineberger Comprehensive Cancer Center, UNC Chapel Hill, NC 27599-3280, USA
| | - Patrick H O'Farrell
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158-2517, USA
| | - Greenfield Sluder
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Tin Tin Su
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA
| |
Collapse
|
30
|
Cooperative Control of Ecdysone Biosynthesis in Drosophila by Transcription Factors Séance, Ouija Board, and Molting Defective. Genetics 2017; 208:605-622. [PMID: 29187506 PMCID: PMC5788525 DOI: 10.1534/genetics.117.300268] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids are steroid hormones that control many aspects of development and physiology. During larval development, ecdysone is synthesized in an endocrine organ called the prothoracic gland through a series of ecdysteroidogenic enzymes encoded by the Halloween genes. The expression of the Halloween genes is highly restricted and dynamic, indicating that their spatiotemporal regulation is mediated by their tight transcriptional control. In this study, we report that three zinc finger-associated domain (ZAD)-C2H2 zinc finger transcription factors—Séance (Séan), Ouija board (Ouib), and Molting defective (Mld)—cooperatively control ecdysone biosynthesis in the fruit fly Drosophila melanogaster. Séan and Ouib act in cooperation with Mld to positively regulate the transcription of neverland and spookier, respectively, two Halloween genes. Remarkably, loss-of-function mutations in séan, ouib, or mld can be rescued by the expression of neverland, spookier, or both, respectively. These results suggest that the three transcription factors have distinct roles in coordinating the expression of just two genes in Drosophila. Given that neverland and spookier are located in constitutive heterochromatin, Séan, Ouib, and Mld represent the first example of a transcription factor subset that regulates genes located in constitutive heterochromatin.
Collapse
|
31
|
Bhargava S, Cox B, Polydorou C, Gresakova V, Korinek V, Strnad H, Sedlacek R, Epp TA, Chawengsaksophak K. The epigenetic modifier Fam208a is required to maintain epiblast cell fitness. Sci Rep 2017; 7:9322. [PMID: 28839193 PMCID: PMC5570896 DOI: 10.1038/s41598-017-09490-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Gastrulation initiates with the formation of the primitive streak, during which, cells of the epiblast delaminate to form the mesoderm and definitive endoderm. At this stage, the pluripotent cell population of the epiblast undergoes very rapid proliferation and extensive epigenetic programming. Here we show that Fam208a, a new epigenetic modifier, is essential for early post-implantation development. We show that Fam208a mutation leads to impaired primitive streak elongation and delayed epithelial-to-mesenchymal transition. Fam208a mutant epiblasts had increased expression of p53 pathway genes as well as several pluripotency-associated long non-coding RNAs. Fam208a mutants exhibited an increase in p53-driven apoptosis and complete removal of p53 could partially rescue their gastrulation block. This data demonstrates a new in vivo function of Fam208a in maintaining epiblast fitness, establishing it as an important factor at the onset of gastrulation when cells are exiting pluripotency.
Collapse
Affiliation(s)
- Shohag Bhargava
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Brian Cox
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Christiana Polydorou
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Veronika Gresakova
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the CAS, v.v.i., Krc, Czech Republic
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the CAS, v.v.i., Krc, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Trevor Allan Epp
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic. .,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.
| | - Kallayanee Chawengsaksophak
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic. .,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.
| |
Collapse
|
32
|
Lomonte P. Herpesvirus Latency: On the Importance of Positioning Oneself. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2017; 223:95-117. [PMID: 28528441 DOI: 10.1007/978-3-319-53168-7_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nucleus is composed of multiple compartments and domains, which directly or indirectly influence many cellular processes including gene expression, RNA splicing and maturation, protein post-translational modifications, and chromosome segregation. Nuclear-replicating viruses, especially herpesviruses, have co-evolved with the cell, adopting strategies to counteract and eventually hijack this hostile environment for their own benefit. This allows them to persist in the host for the entire life of an individual and to ensure their maintenance in the target species. Herpesviruses establish latency in dividing or postmitotic cells from which they can efficiently reactivate after sometimes years of a seemingly dormant state. Therefore, herpesviruses circumvent the threat of permanent silencing by reactivating their dormant genomes just enough to escape extinction, but not too much to avoid life-threatening damage to the host. In addition, herpesviruses that establish latency in dividing cells must adopt strategies to maintain their genomes in the daughter cells to avoid extinction by dilution of their genomes following multiple cell divisions. From a biochemical point of view, reactivation and maintenance of viral genomes in dividing cells occur successfully because the viral genomes interact with the nuclear architecture in a way that allows the genomes to be transmitted faithfully and to benefit from the nuclear micro-environments that allow reactivation following specific stimuli. Therefore, spatial positioning of the viral genomes within the nucleus is likely to be essential for the success of the latent infection and, beyond that, for the maintenance of herpesviruses in their respective hosts.
Collapse
Affiliation(s)
- Patrick Lomonte
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR-5310, INSERM U-1217, LabEx DEVweCAN, Institut NeuroMyoGène (INMG), team Chromatin Assembly, Nuclear Domains, Virus, 69008, Lyon, France.
| |
Collapse
|