1
|
Scarpa A, Pianezza R, Gellert HR, Haider A, Kim BY, Lai EC, Kofler R, Signor S. Double trouble: two retrotransposons triggered a cascade of invasions in Drosophila species within the last 50 years. Nat Commun 2025; 16:516. [PMID: 39788974 PMCID: PMC11718211 DOI: 10.1038/s41467-024-55779-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
Horizontal transfer of genetic material in eukaryotes has rarely been documented over short evolutionary timescales. Here, we show that two retrotransposons, Shellder and Spoink, invaded the genomes of multiple species of the melanogaster subgroup within the last 50 years. Through horizontal transfer, Spoink spread in D. melanogaster during the 1980s, while both Shellder and Spoink invaded D. simulans in the 1990s. Possibly following hybridization, D. simulans infected the island endemic species D. mauritiana (Mauritius) and D. sechellia (Seychelles) with both TEs after 1995. In the same approximate time-frame, Shellder also invaded D. teissieri, a species confined to sub-Saharan Africa. We find that the donors of Shellder and Spoink are likely American Drosophila species from the willistoni, cardini, and repleta groups. Thus, the described cascade of TE invasions could only become feasible after D. melanogaster and D. simulans extended their distributions into the Americas 200 years ago, likely aided by human activity. Our work reveals that cascades of TE invasions, likely initiated by human-mediated range expansions, could have an impact on the genomic and phenotypic evolution of geographically dispersed species. Within a few decades, TEs could invade many species, including island endemics, with distributions very distant from the donor of the TE.
Collapse
Affiliation(s)
- Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Hannah R Gellert
- Department of Biology, Stanford University, Stanford, California, USA
| | - Anna Haider
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| | - Bernard Y Kim
- Department of Biology, Stanford University, Stanford, California, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan-Kettering Institute, New York, New York, USA
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria.
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, USA.
| |
Collapse
|
2
|
Pianezza R, Haider A, Kofler R. GenomeDelta: detecting recent transposable element invasions without repeat library. Genome Biol 2024; 25:315. [PMID: 39696539 PMCID: PMC11656972 DOI: 10.1186/s13059-024-03459-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024] Open
Abstract
We present GenomeDelta, a novel tool for identifying sample-specific sequences, such as recent transposable element (TE) invasions, without requiring a repeat library. GenomeDelta compares high-quality assemblies with short-read data to detect sequences absent from the short reads. It is applicable to both model and non-model organisms and can identify recent TE invasions, spatially heterogeneous sequences, viral insertions, and hotizontal gene transfers. GenomeDelta was validated with simulated and real data and used to discover three recent TE invasions in Drosophila melanogaster and a novel TE with geographic variation in Zymoseptoria tritici.
Collapse
Affiliation(s)
- Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Anna Haider
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
3
|
Hassan NT, Galbraith JD, Adelson DL. Multiple horizontal transfer events of a DNA transposon into turtles, fishes, and a frog. Mob DNA 2024; 15:7. [PMID: 38605364 PMCID: PMC11008031 DOI: 10.1186/s13100-024-00318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Horizontal transfer of transposable elements (HTT) has been reported across many species and the impact of such events on genome structure and function has been well described. However, few studies have focused on reptilian genomes, especially HTT events in Testudines (turtles). Here, as a consequence of investigating the repetitive content of Malaclemys terrapin terrapin (Diamondback turtle) we found a high similarity DNA transposon, annotated in RepBase as hAT-6_XT, shared between other turtle species, ray-finned fishes, and a frog. hAT-6_XT was notably absent in reptilian taxa closely related to turtles, such as crocodiles and birds. Successful invasion of DNA transposons into new genomes requires the conservation of specific residues in the encoded transposase, and through structural analysis, these residues were identified indicating some retention of functional transposition activity. We document six recent independent HTT events of a DNA transposon in turtles, which are known to have a low genomic evolutionary rate and ancient repeats.
Collapse
Affiliation(s)
- Nozhat T Hassan
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - James D Galbraith
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, UK
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Adelaide, Australia.
| |
Collapse
|
4
|
Pianezza R, Scarpa A, Narayanan P, Signor S, Kofler R. Spoink, a LTR retrotransposon, invaded D. melanogaster populations in the 1990s. PLoS Genet 2024; 20:e1011201. [PMID: 38530818 PMCID: PMC10965091 DOI: 10.1371/journal.pgen.1011201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/27/2024] [Indexed: 03/28/2024] Open
Abstract
During the last few centuries D. melanogaster populations were invaded by several transposable elements, the most recent of which was thought to be the P-element between 1950 and 1980. Here we describe a novel TE, which we named Spoink, that has invaded D. melanogaster. It is a 5216nt LTR retrotransposon of the Ty3/gypsy superfamily. Relying on strains sampled at different times during the last century we show that Spoink invaded worldwide D. melanogaster populations after the P-element between 1983 and 1993. This invasion was likely triggered by a horizontal transfer from the D. willistoni group, much as the P-element. Spoink is probably silenced by the piRNA pathway in natural populations and about 1/3 of the examined strains have an insertion into a canonical piRNA cluster such as 42AB. Given the degree of genetic investigation of D. melanogaster it is perhaps surprising that Spoink was able to invade unnoticed.
Collapse
Affiliation(s)
- Riccardo Pianezza
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Almorò Scarpa
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
- Vienna Graduate School of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | - Prakash Narayanan
- Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Sarah Signor
- Biological Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Robert Kofler
- Institut für Populationsgenetik, Vetmeduni Vienna, Vienna, Austria
| |
Collapse
|
5
|
Chen J, Garfinkel DJ, Bergman CM. Horizontal transfer and recombination fuel Ty4 retrotransposon evolution in Saccharomyces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572574. [PMID: 38187645 PMCID: PMC10769310 DOI: 10.1101/2023.12.20.572574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Horizontal transposon transfer (HTT) plays an important role in the evolution of eukaryotic genomes, however the detailed evolutionary history and impact of most HTT events remain to be elucidated. To better understand the process of HTT in closely-related microbial eukaryotes, we studied Ty4 retrotransposon subfamily content and sequence evolution across the genus Saccharomyces using short- and long-read whole genome sequence data, including new PacBio genome assemblies for two S. mikatae strains. We find evidence for multiple independent HTT events introducing the Tsu4 subfamily into specific lineages of S. paradoxus, S. cerevisiae, S. eubayanus, S. kudriavzevii and the ancestor of the S. mikatae/S. jurei species pair. In both S. mikatae and S. kudriavzevii, we identified novel Ty4 clades that were independently generated through recombination between resident and horizontally-transferred subfamilies. Our results reveal that recurrent HTT and lineage-specific extinction events lead to a complex pattern of Ty4 subfamily content across the genus Saccharomyces. Moreover, our results demonstrate how HTT can lead to coexistence of related retrotransposon subfamilies in the same genome that can fuel evolution of new retrotransposon clades via recombination.
Collapse
Affiliation(s)
- Jingxuan Chen
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Casey M. Bergman
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Xu Y, Tang Y, Feng W, Yang Y, Cui Z. Comparative Analysis of Transposable Elements Reveals the Diversity of Transposable Elements in Decapoda and Their Effects on Genomic Evolution. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1136-1146. [PMID: 37923816 DOI: 10.1007/s10126-023-10265-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/17/2023] [Indexed: 11/06/2023]
Abstract
Transposable elements (TEs) are mobile genetic elements that exist in the host genome and exert considerable influence on the evolution of the host genome. Since crustaceans, including decapoda, are considered ideal models for studying the relationship between adaptive evolution and TEs, TEs were identified and classified in the genomes of eight decapoda species and one diplostraca species (as the outgroup) using two strategies, namely homology-based annotation and de novo annotation. The statistics and classification of TEs showed that their proportion in the genome and their taxonomic composition in decapoda were different. Moreover, correlation analysis and transcriptome data demonstrated that there were more PIF-Harbinger TEs in the genomes of Eriocheir sinensis and Scylla paramamosain, and the expression patterns of PIF-Harbingers were significantly altered under air exposure stress conditions. These results signaled that PIF-Harbingers expanded in the genome of E. sinensis and S. paramamosain and might be related to their air exposure tolerance levels. Meanwhile, sequence alignment revealed that some Jockey-like sequences (JLSs) with high similarity to specific regions of the White spot syndrome virus (WSSV) genome existed in all eight decapod species. At the same time, phylogenetic comparison exposed that the phylogenetic tree constructed by JLSs was not in agreement with that of the species tree, and the distribution of each branch was significantly different. The abovementioned results signaled that these WSSV-specific JLSs might transfer horizontally and contribute to the emergence of WSSV. This study accumulated data for expanding research on TEs in decapod species and also provided new insights and future direction for the breeding of stress-resistant and disease-resistant crab breeds.
Collapse
Affiliation(s)
- Yuanfeng Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yongkai Tang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wenrong Feng
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Yanan Yang
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China.
| | - Zhaoxia Cui
- School of Marine Sciences, Ningbo University, Ningbo, 315020, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| |
Collapse
|
7
|
Zhang C, Wang L, Dou L, Yue B, Xing J, Li J. Transposable Elements Shape the Genome Diversity and the Evolution of Noctuidae Species. Genes (Basel) 2023; 14:1244. [PMID: 37372423 DOI: 10.3390/genes14061244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Noctuidae is known to have high species diversity, although the genomic diversity of Noctuidae species has yet to be studied extensively. Investigation of transposable elements (TEs) in this family can improve our understanding of the genomic diversity of Noctuidae. In this study, we annotated and characterized genome-wide TEs in ten noctuid species belonging to seven genera. With multiple annotation pipelines, we constructed a consensus sequence library containing 1038-2826 TE consensus. The genome content of TEs showed high variation in the ten Noctuidae genomes, ranging from 11.3% to 45.0%. The relatedness analysis indicated that the TE content, especially the content of LINEs and DNA transposons, is positively correlated with the genome size (r = 0.86, p-value = 0.001). We identified SINE/B2 as a lineage-specific subfamily in Trichoplusia ni, a species-specific expansion of the LTR/Gypsy subfamily in Spodoptera exigua, and a recent expansion of SINE/5S subfamily in Busseola fusca. We further revealed that of the four TE classes, only LINEs showed phylogenetic signals with high confidence. We also examined how the expansion of TEs contributed to the evolution of noctuid genomes. Moreover, we identified 56 horizontal transfer TE (HTT) events among the ten noctuid species and at least three HTT events between the nine Noctuidae species and 11 non-noctuid arthropods. One of the HTT events of a Gypsy transposon might have caused the recent expansion of the Gypsy subfamily in the S. exigua genome. By determining the TE content, dynamics, and HTT events in the Noctuidae genomes, our study emphasized that TE activities and HTT events substantially impacted the Noctuidae genome evolution.
Collapse
Affiliation(s)
- Chunhui Zhang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lei Wang
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Liang Dou
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Bisong Yue
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Remnants of SIRE1 retrotransposons in human genome? J Genet 2022. [DOI: 10.1007/s12041-022-01398-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Myriapod genomes reveal ancestral horizontal gene transfer and hormonal gene loss in millipedes. Nat Commun 2022; 13:3010. [PMID: 35637228 PMCID: PMC9151784 DOI: 10.1038/s41467-022-30690-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/12/2022] [Indexed: 01/08/2023] Open
Abstract
Animals display a fascinating diversity of body plans. Correspondingly, genomic analyses have revealed dynamic evolution of gene gains and losses among animal lineages. Here we sequence six new myriapod genomes (three millipedes, three centipedes) at key phylogenetic positions within this major but understudied arthropod lineage. We combine these with existing genomic resources to conduct a comparative analysis across all available myriapod genomes. We find that millipedes generally have considerably smaller genomes than centipedes, with the repeatome being a major contributor to genome size, driven by independent large gains of transposons in three centipede species. In contrast to millipedes, centipedes gained a large number of gene families after the subphyla diverged, with gains contributing to sensory and locomotory adaptations that facilitated their ecological shift to predation. We identify distinct horizontal gene transfer (HGT) events from bacteria to millipedes and centipedes, with no identifiable HGTs shared among all myriapods. Loss of juvenile hormone O-methyltransferase, a key enzyme in catalysing sesquiterpenoid hormone production in arthropods, was also revealed in all millipede lineages. Our findings suggest that the rapid evolution of distinct genomic pathways in centipede and millipede lineages following their divergence from the myriapod ancestor, was shaped by differing ecological pressures. Myriapods play an important ecological role in soil and forest ecosystems. Here the authors analyse nine myriapod genomes, showing rapid evolution of distinct genomic pathways in centipede and millipede lineages, shaped by differing ecological pressures.
Collapse
|
10
|
Loiseau V, Peccoud J, Bouzar C, Guillier S, Fan J, Alletti GG, Meignin C, Herniou EA, Federici BA, Wennmann JT, Jehle JA, Cordaux R, Gilbert C. Monitoring insect transposable elements in large double-stranded DNA viruses reveals host-to-virus and virus-to-virus transposition. Mol Biol Evol 2021; 38:3512-3530. [PMID: 34191026 PMCID: PMC8383894 DOI: 10.1093/molbev/msab198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The mechanisms by which transposable elements (TEs) can be horizontally transferred between animals are unknown, but viruses are possible candidate vectors. Here, we surveyed the presence of host-derived TEs in viral genomes in 35 deep sequencing data sets produced from 11 host–virus systems, encompassing nine arthropod host species (five lepidopterans, two dipterans, and two crustaceans) and six different double-stranded (ds) DNA viruses (four baculoviruses and two iridoviruses). We found evidence of viral-borne TEs in 14 data sets, with frequencies of viral genomes carrying a TE ranging from 0.01% to 26.33% for baculoviruses and from 0.45% to 7.36% for iridoviruses. The analysis of viral populations separated by a single replication cycle revealed that viral-borne TEs originating from an initial host species can be retrieved after viral replication in another host species, sometimes at higher frequencies. Furthermore, we detected a strong increase in the number of integrations in a viral population for a TE absent from the hosts’ genomes, indicating that this TE has undergone intense transposition within the viral population. Finally, we provide evidence that many TEs found integrated in viral genomes (15/41) have been horizontally transferred in insects. Altogether, our results indicate that multiple large dsDNA viruses have the capacity to shuttle TEs in insects and they underline the potential of viruses to act as vectors of horizontal transfer of TEs. Furthermore, the finding that TEs can transpose between viral genomes of a viral species sets viruses as possible new niches in which TEs can persist and evolve.
Collapse
Affiliation(s)
- Vincent Loiseau
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jean Peccoud
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Clémence Bouzar
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Sandra Guillier
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| | - Jiangbin Fan
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | | | - Carine Meignin
- Modèles Insectes d'Immunité antivirale (M3i), Université de Strasbourg, IBMC CNRS-UPR9022, F-67000, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261 CNRS - Université de Tours, 37200 Tours, France
| | - Brian A Federici
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Jörg T Wennmann
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | - Johannes A Jehle
- Institute for Biological Control, Julius Kühn-Institut, Darmstadt, Germany
| | - Richard Cordaux
- Université de Poitiers, Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, 5 Rue Albert Turpain, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Clément Gilbert
- Université Paris-Saclay, CNRS, IRD, UMR Évolution, Génomes, Comportement et Écologie, 91198 Gif-sur-Yvette, France
| |
Collapse
|
11
|
Giraud D, Lima O, Huteau V, Coriton O, Boutte J, Kovarik A, Leitch AR, Leitch IJ, Aïnouche M, Salmon A. Evolutionary dynamics of transposable elements and satellite DNAs in polyploid Spartina species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 302:110671. [PMID: 33288000 DOI: 10.1016/j.plantsci.2020.110671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/31/2020] [Accepted: 09/06/2020] [Indexed: 06/12/2023]
Abstract
Repeated sequences and polyploidy play a central role in plant genome dynamics. Here, we analyze the evolutionary dynamics of repeats in tetraploid and hexaploid Spartina species that diverged during the last 10 million years within the Chloridoideae, one of the poorest investigated grass lineages. From high-throughput genome sequencing, we annotated Spartina repeats and determined what sequence types account for the genome size variation among species. We examined whether differential genome size evolution correlated with ploidy levels and phylogenetic relationships. We also examined the tempo of repeat sequence dynamics associated with allopatric speciation over the last 3-6 million years between hexaploid species that diverged on the American and European Atlantic coasts and tetraploid species from North and South America. The tetraploid S. spartinae, whose phylogenetic placement has been debated, exhibits a similar repeat content as hexaploid species, suggesting common ancestry. Genome expansion or contraction resulting from repeat dynamics seems to be explained mostly by the contrasting divergence times between species, rather than by genome changes triggered by ploidy level change per se. One 370 bp satellite may be exhibiting 'meiotic drive' and driving chromosome evolution in S. alterniflora. Our results provide crucial insights for investigating the genetic and epigenetic consequences of such differential repeat dynamics on the ecology and distribution of the meso- and neopolyploid Spartina species.
Collapse
Affiliation(s)
- Delphine Giraud
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Oscar Lima
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Virginie Huteau
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Olivier Coriton
- Plateforme de cytogénétique moléculaire végétale, INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Julien Boutte
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France; INRAE, Université de Rennes 1, Agrocampus Ouest, IGEPP, F-35650, Le Rheu, France.
| | - Ales Kovarik
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61265, Czech Republic.
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK.
| | - Ilia J Leitch
- Department of Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, TW9 3DS, UK.
| | - Malika Aïnouche
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| | - Armel Salmon
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, F-35042, Rennes Cedex, France.
| |
Collapse
|
12
|
de Melo ES, Wallau GL. Mosquito genomes are frequently invaded by transposable elements through horizontal transfer. PLoS Genet 2020; 16:e1008946. [PMID: 33253164 PMCID: PMC7728395 DOI: 10.1371/journal.pgen.1008946] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/10/2020] [Accepted: 10/19/2020] [Indexed: 12/28/2022] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that parasitize basically all eukaryotic species genomes. Due to their complexity, an in-depth TE characterization is only available for a handful of model organisms. In the present study, we performed a de novo and homology-based characterization of TEs in the genomes of 24 mosquito species and investigated their mode of inheritance. More than 40% of the genome of Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus is composed of TEs, while it varied substantially among Anopheles species (0.13%-19.55%). Class I TEs are the most abundant among mosquitoes and at least 24 TE superfamilies were found. Interestingly, TEs have been extensively exchanged by horizontal transfer (172 TE families of 16 different superfamilies) among mosquitoes in the last 30 million years. Horizontally transferred TEs represents around 7% of the genome in Aedes species and a small fraction in Anopheles genomes. Most of these horizontally transferred TEs are from the three ubiquitous LTR superfamilies: Gypsy, Bel-Pao and Copia. Searching more than 32,000 genomes, we also uncovered transfers between mosquitoes and two different Phyla-Cnidaria and Nematoda-and two subphyla-Chelicerata and Crustacea, identifying a vector, the worm Wuchereria bancrofti, that enabled the horizontal spread of a Tc1-mariner element among various Anopheles species. These data also allowed us to reconstruct the horizontal transfer network of this TE involving more than 40 species. In summary, our results suggest that TEs are frequently exchanged by horizontal transfers among mosquitoes, influencing mosquito's genome size and variability.
Collapse
Affiliation(s)
- Elverson Soares de Melo
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| | - Gabriel Luz Wallau
- Department of Entomology, Aggeu Magalhães Institute–Oswaldo Cruz Foundation (Fiocruz), Recife, Pernambuco, Brazil
| |
Collapse
|
13
|
Galbraith JD, Ludington AJ, Suh A, Sanders KL, Adelson DL. New Environment, New Invaders-Repeated Horizontal Transfer of LINEs to Sea Snakes. Genome Biol Evol 2020; 12:2370-2383. [PMID: 33022046 PMCID: PMC7846101 DOI: 10.1093/gbe/evaa208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 12/12/2022] Open
Abstract
Although numerous studies have found horizontal transposon transfer (HTT) to be widespread across metazoans, few have focused on HTT in marine ecosystems. To investigate potential recent HTTs into marine species, we searched for novel repetitive elements in sea snakes, a group of elapids which transitioned to a marine habitat at most 18 Ma. Our analysis uncovered repeated HTTs into sea snakes following their marine transition. The seven subfamilies of horizontally transferred LINE retrotransposons we identified in the olive sea snake (Aipysurus laevis) are transcribed, and hence are likely still active and expanding across the genome. A search of 600 metazoan genomes found all seven were absent from other amniotes, including terrestrial elapids, with the most similar LINEs present in fish and marine invertebrates. The one exception was a similar LINE found in sea kraits, a lineage of amphibious elapids which independently transitioned to a marine environment 25 Ma. Our finding of repeated horizontal transfer events into marine snakes greatly expands past findings that the marine environment promotes the transfer of transposons. Transposons are drivers of evolution as sources of genomic sequence and hence genomic novelty. We identified 13 candidate genes for HTT-induced adaptive change based on internal or neighboring HTT LINE insertions. One of these, ADCY4, is of particular interest as a part of the KEGG adaptation pathway “Circadian Entrainment.” This provides evidence of the ecological interactions between species influencing evolution of metazoans not only through specific selection pressures, but also by contributing novel genomic material.
Collapse
Affiliation(s)
| | | | - Alexander Suh
- Department of Ecology and Genetics-Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Sweden.,Department of Organismal Biology-Systematic Biology, Evolutionary Biology Centre, Uppsala University, Sweden.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Kate L Sanders
- School of Biological Sciences, University of Adelaide, Australia
| | - David L Adelson
- School of Biological Sciences, University of Adelaide, Australia
| |
Collapse
|
14
|
Zhang HH, Peccoud J, Xu MRX, Zhang XG, Gilbert C. Horizontal transfer and evolution of transposable elements in vertebrates. Nat Commun 2020; 11:1362. [PMID: 32170101 PMCID: PMC7070016 DOI: 10.1038/s41467-020-15149-4] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 02/20/2020] [Indexed: 11/13/2022] Open
Abstract
Horizontal transfer of transposable elements (HTT) is an important process shaping eukaryote genomes, yet very few studies have quantified this phenomenon on a large scale or have evaluated the selective constraints acting on transposable elements (TEs) during vertical and horizontal transmission. Here we screen 307 vertebrate genomes and infer a minimum of 975 independent HTT events between lineages that diverged more than 120 million years ago. HTT distribution greatly differs from null expectations, with 93.7% of these transfers involving ray-finned fishes and less than 3% involving mammals and birds. HTT incurs purifying selection (conserved protein evolution) on all TEs, confirming that producing functional transposition proteins is required for a TE to invade new genomes. In the absence of HTT, DNA transposons appear to evolve neutrally within genomes, unlike most retrotransposons, which evolve under purifying selection. This selection regime indicates that proteins of most retrotransposon families tend to process their own encoding RNA (cis-preference), which helps retrotransposons to persist within host lineages over long time periods. Horizontal transfer (HT) and evolution of transposable elements (TEs) has rarely been quantified on a large scale. Here, the authors screen 307 vertebrate genomes and infer 975 HT events (93% in ray-finned fishes); all TEs involved in HT evolve within genomes under purifying selection, as do most retrotransposons.
Collapse
Affiliation(s)
- Hua-Hao Zhang
- College of Pharmacy and Life Science, Jiujiang University, 332000, Jiujiang, China
| | - Jean Peccoud
- UMR CNRS 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, 86073, Poitiers, France
| | - Min-Rui-Xuan Xu
- College of Pharmacy and Life Science, Jiujiang University, 332000, Jiujiang, China
| | - Xiao-Gu Zhang
- College of Pharmacy and Life Science, Jiujiang University, 332000, Jiujiang, China.
| | - Clément Gilbert
- Laboratoire Evolution, Génomes, Comportement, Écologie, UMR 9191 CNRS, UMR 247 IRD, Université Paris-Saclay, 91198, Gif-sur-Yvette, France.
| |
Collapse
|
15
|
Tambones IL, Haudry A, Simão MC, Carareto CMA. High frequency of horizontal transfer in Jockey families (LINE order) of drosophilids. Mob DNA 2019; 10:43. [PMID: 31709017 PMCID: PMC6829985 DOI: 10.1186/s13100-019-0184-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/09/2019] [Indexed: 11/30/2022] Open
Abstract
Background The use of large-scale genomic analyses has resulted in an improvement of transposable element sampling and a significant increase in the number of reported HTT (horizontal transfer of transposable elements) events by expanding the sampling of transposable element sequences in general and of specific families of these elements in particular, which were previously poorly sampled. In this study, we investigated the occurrence of HTT events in a group of elements that, until recently, were uncommon among the HTT records in Drosophila – the Jockey elements, members of the LINE (long interspersed nuclear element) order of non-LTR (long terminal repeat) retrotransposons. The sequences of 111 Jockey families deposited in Repbase that met the criteria of the analysis were used to identify Jockey sequences in 48 genomes of Drosophilidae (genus Drosophila, subgenus Sophophora: melanogaster, obscura and willistoni groups; subgenus Drosophila: immigrans, melanica, repleta, robusta, virilis and grimshawi groups; subgenus Dorsilopha: busckii group; genus/subgenus Zaprionus and genus Scaptodrosophila). Results Phylogenetic analyses revealed 72 Jockey families in 41 genomes. Combined analyses revealed 15 potential HTT events between species belonging to different genera and species groups of Drosophilidae, providing evidence for the flow of genetic material favoured by the spatio-temporal sharing of these species present in the Palaeartic or Afrotropical region. Conclusions Our results provide phylogenetic, biogeographic and temporal evidence of horizontal transfers of the Jockey elements, increase the number of rare records of HTT in specific families of LINE elements, increase the number of known occurrences of these events, and enable a broad understanding of the evolutionary dynamics of these elements and the host species.
Collapse
Affiliation(s)
- Izabella L Tambones
- 1Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), UNESP - São Paulo State University, Campus São José do Rio Preto, São Paulo, SP 15054-000 Brazil
| | - Annabelle Haudry
- 2Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, F-69622 Villeurbanne, France
| | - Maryanna C Simão
- 1Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), UNESP - São Paulo State University, Campus São José do Rio Preto, São Paulo, SP 15054-000 Brazil
| | - Claudia M A Carareto
- 1Department of Biology, Institute of Biosciences, Humanities and Exact Sciences (IBILCE), UNESP - São Paulo State University, Campus São José do Rio Preto, São Paulo, SP 15054-000 Brazil
| |
Collapse
|
16
|
Global survey of mobile DNA horizontal transfer in arthropods reveals Lepidoptera as a prime hotspot. PLoS Genet 2019; 15:e1007965. [PMID: 30707693 PMCID: PMC6373975 DOI: 10.1371/journal.pgen.1007965] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/13/2019] [Accepted: 01/16/2019] [Indexed: 12/24/2022] Open
Abstract
More than any other genome components, Transposable Elements (TEs) have the capacity to move across species barriers through Horizontal Transfer (HT), with substantial evolutionary consequences. Previous large-scale surveys, based on full-genomes comparisons, have revealed the transposition mode as an important predictor of HT rates variation across TE superfamilies. However, host biology could represent another major explanatory factor, one that needs to be investigated through extensive taxonomic sampling. Here we test this hypothesis using a field collection of 460 arthropod species from Tahiti and surrounding islands. Through targeted massive parallel sequencing, we uncover patterns of HT in three widely-distributed TE superfamilies with contrasted modes of transposition. In line with earlier findings, the DNA transposons under study (TC1-Mariner) were found to transfer horizontally at the highest frequency, closely followed by the LTR superfamily (Copia), in contrast with the non-LTR superfamily (Jockey), that mostly diversifies through vertical inheritance and persists longer within genomes. Strikingly, across all superfamilies, we observe a marked excess of HTs in Lepidoptera, an insect order that also commonly hosts baculoviruses, known for their ability to transport host TEs. These results turn the spotlight on baculoviruses as major potential vectors of TEs in arthropods, and further emphasize the importance of non-vertical TE inheritance in genome evolution. Transposable elements are chunks of DNA that can produce copies of themselves. New copies usually insert in the genome of their carrier but are occasionally subject to horizontal transmission between organisms, sometimes belonging to evolutionarily-distant lineages. Previous surveys have established that the probability of such events is largely conditioned by the transposition mechanism. For example, elements with an RNA intermediate tend to be less frequently involved in horizontal transfers. Here we investigate host taxa as another potential explanatory factor of variation in horizontal transfer rates. Using targeted sequencing in hundreds of insects and other arthropod species collected in South Pacific islands, we found that butterflies and moths (Lepidoptera) show an abnormally elevated rate of horizontal transfers. Previous studies have established that Lepidoptera are also commonly attacked by baculoviruses, large viruses that can transport host DNA. Taken together, these findings point to baculoviruses as a major suspect for transposable elements transfers across arthropod species.
Collapse
|
17
|
Guio L, González J. New Insights on the Evolution of Genome Content: Population Dynamics of Transposable Elements in Flies and Humans. Methods Mol Biol 2019; 1910:505-530. [PMID: 31278675 DOI: 10.1007/978-1-4939-9074-0_16] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Understanding the abundance, diversity, and distribution of TEs in genomes is crucial to understand genome structure, function, and evolution. Advances in whole-genome sequencing techniques, as well as in bioinformatics tools, have increased our ability to detect and analyze the transposable element content in genomes. In addition to reference genomes, we now have access to population datasets in which multiple individuals within a species are sequenced. In this chapter, we highlight the recent advances in the study of TE population dynamics focusing on fruit flies and humans, which represent two extremes in terms of TE abundance, diversity, and activity. We review the most recent methodological approaches applied to the study of TE dynamics as well as the new knowledge on host factors involved in the regulation of TE activity. In addition to transposition rates, we also focus on TE deletion rates and on the selective forces that affect the dynamics of TEs in genomes.
Collapse
Affiliation(s)
- Lain Guio
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| |
Collapse
|
18
|
Schrader L, Schmitz J. The impact of transposable elements in adaptive evolution. Mol Ecol 2018; 28:1537-1549. [PMID: 30003608 DOI: 10.1111/mec.14794] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/06/2018] [Indexed: 12/16/2022]
Abstract
The growing knowledge about the influence of transposable elements (TEs) on (a) long-term genome and transcriptome evolution; (b) genomic, transcriptomic and epigenetic variation within populations; and (c) patterns of somatic genetic differences in individuals continues to spur the interest of evolutionary biologists in the role of TEs in adaptive evolution. As TEs can trigger a broad range of molecular variation in a population with potentially severe fitness and phenotypic consequences for individuals, different mechanisms evolved to keep TE activity in check, allowing for a dynamic interplay between the host, its TEs and the environment in evolution. Here, we review evidence for adaptive phenotypic changes associated with TEs and the basic molecular mechanisms by which the underlying genetic changes arise: (a) domestication, (b) exaptation, (c) host gene regulation, (d) TE-mediated formation of intronless gene copies-so-called retrogenes and (e) overall increased genome plasticity. Furthermore, we review and discuss how the stress-dependent incapacitation of defence mechanisms against the activity of TEs might facilitate adaptive responses to environmental challenges and how such mechanisms might be particularly relevant in species frequently facing novel environments, such as invasive, pathogenic or parasitic species.
Collapse
Affiliation(s)
- Lukas Schrader
- Institute for Evolution and Biodiversity (IEB), University of Münster, Münster, Germany
| | - Jürgen Schmitz
- Institute of Experimental Pathology, University of Münster, Münster, Germany
| |
Collapse
|
19
|
Wallau GL, Vieira C, Loreto ÉLS. Genetic exchange in eukaryotes through horizontal transfer: connected by the mobilome. Mob DNA 2018; 9:6. [PMID: 29422954 PMCID: PMC5791352 DOI: 10.1186/s13100-018-0112-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Background All living species contain genetic information that was once shared by their common ancestor. DNA is being inherited through generations by vertical transmission (VT) from parents to offspring and from ancestor to descendant species. This process was considered the sole pathway by which biological entities exchange inheritable information. However, Horizontal Transfer (HT), the exchange of genetic information by other means than parents to offspring, was discovered in prokaryotes along with strong evidence showing that it is a very important process by which prokaryotes acquire new genes. Main body For some time now, it has been a scientific consensus that HT events were rare and non-relevant for evolution of eukaryotic species, but there is growing evidence supporting that HT is an important and frequent phenomenon in eukaryotes as well. Conclusion Here, we will discuss the latest findings regarding HT among eukaryotes, mainly HT of transposons (HTT), establishing HTT once and for all as an important phenomenon that should be taken into consideration to fully understand eukaryotes genome evolution. In addition, we will discuss the latest development methods to detect such events in a broader scale and highlight the new approaches which should be pursued by researchers to fill the knowledge gaps regarding HTT among eukaryotes.
Collapse
Affiliation(s)
- Gabriel Luz Wallau
- 1Entomology Department, Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, PE Brazil
| | - Cristina Vieira
- 2Université de Lyon, Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive, UMR5558, F-69622 Villeurbanne, France
| | - Élgion Lúcio Silva Loreto
- 3Department of Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, RS Brazil
| |
Collapse
|