1
|
Lipkin E, Strillacci MG, Cohen-Zinder M, Eitam H, Yishay M, Soller M, Ferrari C, Bagnato A, Shabtay A. Mapping genomic regions affecting sensitivity to bovine respiratory disease on chromosome X using selective DNA pooling. Sci Rep 2025; 15:4556. [PMID: 39915572 PMCID: PMC11802930 DOI: 10.1038/s41598-025-89020-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 02/03/2025] [Indexed: 02/09/2025] Open
Abstract
Bovine respiratory disease is a leading health problem in feedlot cattle. Identification of affecting genes is essential for selection for decrease sensitivity. Chromosome X is a special attractive target for gene mapping in light of reports on both sexual dimorphism in immunity and higher susceptibility of males to this disease. However, diagnosis is challenging and clinical signs often go undetected. Kosher scoring of lung adhesions was used as a cost-effective proxy diagnosis. Selective DNA pooling was applied for cost-effective mapping of regions associated with sensitivity to the disease on chromosome X in Israeli Holstein male calves. A total of 9 regions were found, more than twice of any of the autosomes. All regions overlapped or were very close to previously reported regions. Bioinformatics survey found candidate-by-location genes in these regions. Functional analyses identified candidates-by-function among these genes. Network analyses connected the genes and found possible relations of the genes and the networks with morbidity, and specifically with sensitivity to bovine respiratory disease. The relatively large number of affecting regions and the candidate genes on the sex chromosome may explain part of the higher susceptibility of males and provide genomic and management targets for mitigating this disease.
Collapse
Affiliation(s)
- Ehud Lipkin
- Department of Genetics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel.
| | - Maria Giuseppina Strillacci
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Miri Cohen-Zinder
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
- Helmsley Model Farm for Sustainable Agriculture, Newe Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Harel Eitam
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Moran Yishay
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel
| | - Morris Soller
- Department of Genetics, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Carlotta Ferrari
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Alessandro Bagnato
- Department of Veterinary Medicine and Animal Sciences, Università degli Studi di Milano, 26900, Milan, Italy
| | - Ariel Shabtay
- Sustainable Ruminants Production Lab, Newe-Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel.
- Helmsley Model Farm for Sustainable Agriculture, Newe Ya'ar Research Center, Agricultural Research Organization, 30095, Ramat Yishai, Israel.
| |
Collapse
|
2
|
Saini BL, Kumar A, Ahmad SF, Mehrotra A, Sachan S, Singh R, Prakash J, Chauhan A, Dutt T, Kumar P. Expression profile analysis of estrous-phased ovarian tissue of high and low prolific lines of inbred Swiss albino mice. Mol Biol Rep 2025; 52:167. [PMID: 39873827 DOI: 10.1007/s11033-025-10233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
BACKGROUND Litter size in mice is an important fitness and economic feature that is controlled by several genes and influenced by non-genetic factors too. High positive selection pressure in each generation for Litter size at birth (LSB), resulted in the development of high and low prolific lines of inbred Swiss albino mice (SAM). Despite uniform management conditions, these lines showed variability in LSB across the generation. METHODS AND RESULTS Variation in estrous-phased ovarian gene expression between high (LSB ≥ 12) and low prolific lines (LSB ≤ 3) of F4 inbred SAM, was explored using RNA-Seq. Estrous phase assessment was done using vaginal cytology. A total of 870 differentially expressed genes (DEGs) were identified; among which, 287 genes were significantly up-regulated while 583 genes were down-regulated in HLS as compared to the LLS group. DEGs were assigned to 166 Gene Ontology (GO) terms and KEGG pathways. In HLS, the significantly up-regulated DEGs were involved in ovarian cell-cell signaling, regulation of biological activity and ovarian metabolic-associated pathways. Most down-regulated DEGs were expressed in immune-related pathways, indicating that immunological dampening is associated with a high ovulation rate and higher level of progesterone concentration leading to physiological changes responsible for higher fecundity. CONCLUSIONS The present study, based on bulk RNA-seq analysis reflects the aggregate gene expression of the whole ovarian tissue, and reveals 24 DEGs that could be used as candidates for litter size attributes in future polymorphism and functional studies to gain further insights into the mechanisms underlying litter size variations in animals.
Collapse
Affiliation(s)
- Babu Lal Saini
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Arnav Mehrotra
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
- Animal Genomics, ETH Zürich, Zurich, Switzerland
| | - Shweta Sachan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Rohit Singh
- Physiological Sciences, Oklahoma State University, Norman, USA
| | - Jai Prakash
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Anuj Chauhan
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Pushpendra Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
| |
Collapse
|
3
|
Khashei Varnamkhasti K, Khashei Varnamkhasti S, Bahraini N, Davoodi M, Sadeghian M, Khavanin M, Naeimi R, Naeimi S. Multi-locus high-risk alleles association from interleukin's genes with female infertility and certain comorbidities. BMC Res Notes 2024; 17:344. [PMID: 39580416 PMCID: PMC11585211 DOI: 10.1186/s13104-024-06988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/28/2024] [Indexed: 11/25/2024] Open
Abstract
Objective There is evidence that cytokine genes' single nucleotide polymorphisms could be the reasons behind female infertility. This study aimed to identify the role for Interleukin33 rs1048274 (G > A) and rs16924243 (T > C), Interleukin22 rs1397852121 (C > T), rs1295978671 (C > T) and rs2227483 (A > T), Interleukin17A rs2275913 (G > A,C) and Interleukin17F rs763780 (T > C), Interleukin13 1512 (A > C) and IL13 2044 (G > A), and Interleukin4 rs2243250 (C > T) and rs2070874 (C > T) gene polymorphisms in female infertility to gain a richly more detailed understanding of its genetic predisposition. Five distinct groups, each comprising 200 infertile women and 200 age-matched fertile controls, were recruited to each Interleukins (33, 22, 17, 13 and 4) in this case-control study and were genotyped by using an amplification refractory mutation system. Statistical analysis is conducted by SPSS software V. 22 and using Chi-square (χ2) and logistic regression tests. Strength of association was estimated by multiple-comparison correction, population structure test and Haplotype analysis. The study was approved by the Academic Ethics Committee and each enrolled patient signed an informed consent.Results Our statistical results revealed risk alleles in all of the substitution lines for women infertility. Current findings provided evidence that in the presence of Interleukin33 Ap-value rs1048274 = 0.002 and Cp-value rs16924243 < 0.0001, Interleukin 22Tp-value rs1397852121 < 0.0001 and Tp-value rs2227483 = 0.000, Interleukin17A Ap-value rs2275913 = 0.003 and Interleukin17F Cp-value rs763780 = 0.000 and Interleukin13 Cp-value 1512 = 0.000 and Ap-value 2044 = 0.003, Interleukin4 Tp-value rs2243250 = 0.001 and Tp-value rs2070874 = 0.009 risk alleles, risk genotype also were significantly associated with increased chances of developing infertility. The relationship between risk genotypes and several well-established infertility risk factors including, polycystic ovary syndrome, premature ovarian failure, oophorectomy, diminished ovarian reserve, endometriosis, uterine fibroids, ovarian cysts, uterine polyps, fallopian tube blockage and thyroid dysfunction, also exhibited. This study suggests the significant role of interleukin gene polymorphisms in human reproductive success.
Collapse
Affiliation(s)
- Khalil Khashei Varnamkhasti
- Department of Medical Laboratory Sciences, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Samire Khashei Varnamkhasti
- Department of Medical Laboratory Sciences, Faculty of Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Najmeh Bahraini
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mohaddeseh Davoodi
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Mahsa Sadeghian
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Massomeh Khavanin
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Raana Naeimi
- Department of Genetics, College of Science, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Sirous Naeimi
- Department of Biology, Zand Institute of Higher Education, Shiraz, Iran.
| |
Collapse
|
4
|
Szukiewicz D. Insights into Reproductive Immunology and Placental Pathology. Int J Mol Sci 2024; 25:12135. [PMID: 39596208 PMCID: PMC11594814 DOI: 10.3390/ijms252212135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/09/2024] [Accepted: 11/10/2024] [Indexed: 11/28/2024] Open
Abstract
The formation of a daughter organism as a result of the fusion of an egg and a sperm cell, followed by the implantation of the embryo, the formation of the placenta, and the further growth of the embryo and then fetus until delivery, poses particular challenges for the immune system [...].
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
5
|
Augustyniak M, Coticchio G, Esteves SC, Kupka MS, Hong C, Fincham A, Lazure P, Péloquin S. A multi-faceted exploration of unmet needs in the continuing improvement and development of fertility care amidst a pandemic. Int Braz J Urol 2024; 50:631-650. [PMID: 39059016 PMCID: PMC11446562 DOI: 10.1590/s1677-5538.ibju.2024.9915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
PURPOSE The continuous improvement and development of fertility care, internationally, requires ongoing monitoring of current delivery processes and outcomes in clinical practice. This descriptive and exploratory mixed-methods study was conducted in eight countries (Brazil, China, France, Germany, Italy, Mexico, Spain and the United Kingdom) to assess the unmet needs of fertility patients (male and female), and existing challenges, barriers and educational gaps of physicians and laboratory specialists involved in human fertility care during the COVID-19 pandemic. MATERIALS AND METHODS The study was deployed sequentially in two phases: 1) in-depth 45-minute semi-structured interviews (n=76), transcribed, coded and thematically analysed using an inductive reasoning approach, 2) an online survey (n=303) informed by the findings of the qualitative interviews, face validated by experts in reproductive medicine, and analysed using descriptive and inferential statistical methods. RESULTS The integrated results of both phases indicated numerous areas of challenges, including: 1) investigating male-related infertility; 2) deciding appropriate treatment for men and selective use of assisted reproductive technology; and 3) maintaining access to high-quality fertility care during a pandemic. CONCLUSIONS The paper presents a reflective piece on knowledge and skills that warrant ongoing monitoring and improvement amongst reproductive medicine healthcare professionals amidst future pandemics and unanticipated health system disruptions. Moreover, these findings suggest that there is an additional need to better understand the required changes in policies and organizational processes that would facilitate access to andrology services for male infertility and specialized care, as needed.
Collapse
Affiliation(s)
| | - Giovanni Coticchio
- IVIRMA Global Research AllianceBolognaItalyIVIRMA Global Research Alliance, 9.baby, Bologna, Italy
| | - Sandro C. Esteves
- ANDROFERTClínica de Andrologia e Reprodução HumanaCampinasSPBrasilANDROFERT, Clínica de Andrologia e Reprodução Humana, Campinas, SP, Brasil
- Universidade Estadual de CampinasDivisão de UrologiaDepartamento de CirurgiaCampinasSPBrasilDepartamento de Cirurgia, Divisão de Urologia, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brasil
- Aarhus UniversityFaculty of HealthAarhusDenmarkFaculty of Health, Aarhus University, Aarhus, Denmark
| | - Markus S. Kupka
- Ludwig-Maximilians -UniversityMunichGermanyLudwig-Maximilians -University, Munich, Germany
| | - Chen Hong
- Shanghai First Maternity and Infant HospitalShanghaiChinaShanghai First Maternity and Infant Hospital, Shanghai, China
| | - Anita Fincham
- Fertility EuropeBrusselsBelgiumFertility Europe, Brussels, Belgium
| | - Patrice Lazure
- AXDEV Group Inc.BrossardQCCanadaAXDEV Group Inc., Brossard, QC, Canada
| | - Sophie Péloquin
- AXDEV Group Inc.BrossardQCCanadaAXDEV Group Inc., Brossard, QC, Canada
| |
Collapse
|
6
|
Quevarec L, Morran LT, Dufourcq-Sekatcheff E, Armant O, Adam-Guillermin C, Bonzom JM, Réale D. Host defense alteration in Caenorhabditis elegans after evolution under ionizing radiation. BMC Ecol Evol 2024; 24:95. [PMID: 38982371 PMCID: PMC11234525 DOI: 10.1186/s12862-024-02282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Adaptation to a stressor can lead to costs on other traits. These costs play an unavoidable role on fitness and influence the evolutionary trajectory of a population. Host defense seems highly subject to these costs, possibly because its maintenance is energetically costly but essential to the survival. When assessing the ecological risk related to pollution, it is therefore relevant to consider these costs to evaluate the evolutionary consequences of stressors on populations. However, to the best of our knowledge, the effects of evolution in irradiate environment on host defense have never been studied. Using an experimental evolution approach, we analyzed fitness across 20 transfers (about 20 generations) in Caenorhabditis elegans populations exposed to 0, 1.4, and 50.0 mGy.h- 1 of 137Cs gamma radiation. Then, populations from transfer 17 were placed in the same environmental conditions without irradiation (i.e., common garden) for about 10 generations before being exposed to the bacterial parasite Serratia marcescens and their survival was estimated to study host defense. Finally, we studied the presence of an evolutionary trade-off between fitness of irradiated populations and host defense. RESULTS We found a lower fitness in both irradiated treatments compared to the control ones, but fitness increased over time in the 50.0 mGy.h- 1, suggesting a local adaptation of the populations. Then, the survival rate of C. elegans to S. marcescens was lower for common garden populations that had previously evolved under both irradiation treatments, indicating that evolution in gamma-irradiated environment had a cost on host defense of C. elegans. Furthermore, we showed a trade-off between standardized fitness at the end of the multigenerational experiment and survival of C. elegans to S. marcescens in the control treatment, but a positive correlation between the two traits for the two irradiated treatments. These results indicate that among irradiated populations, those most sensitive to ionizing radiation are also the most susceptible to the pathogen. On the other hand, other irradiated populations appear to have evolved cross-resistance to both stress factors. CONCLUSIONS Our study shows that adaptation to an environmental stressor can be associated with an evolutionary cost when a new stressor appears, even several generations after the end of the first stressor. Among irradiated populations, we observed an evolution of resistance to ionizing radiation, which also appeared to provide an advantage against the pathogen. On the other hand, some of the irradiated populations seemed to accumulate sensitivities to stressors. This work provides a new argument to show the importance of considering evolutionary changes in ecotoxicology and for ecological risk assessment.
Collapse
Affiliation(s)
- Loïc Quevarec
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France.
| | - Levi T Morran
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Elizabeth Dufourcq-Sekatcheff
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Olivier Armant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Christelle Adam-Guillermin
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LMDN, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Jean-Marc Bonzom
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, Saint Paul Lez Durance, 13115, France
| | - Denis Réale
- Département des sciences biologiques, Université du Québec à Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Fleming DS, Liu F, Li RW. Differential Correlation of Transcriptome Data Reveals Gene Pairs and Pathways Involved in Treatment of Citrobacter rodentium Infection with Bioactive Punicalagin. Molecules 2023; 28:7369. [PMID: 37959788 PMCID: PMC10650703 DOI: 10.3390/molecules28217369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
This study is part of the work investigating bioactive fruit enzymes as sustainable alternatives to parasite anthelmintics that can help reverse the trend of lost efficacy. The study looked to define biological and molecular interactions that demonstrate the ability of the pomegranate extract punicalagin against intracellular parasites. The study compared transcriptomic reads of two distinct conditions. Condition A was treated with punicalagin (PA) and challenged with Citrobacter rodentium, while condition B (CM) consisted of a group that was challenged and given mock treatment of PBS. To understand the effect of punicalagin on transcriptomic changes between conditions, a differential correlation analysis was conducted. The analysis examined the regulatory connections of genes expressed between different treatment conditions by statistically querying the relationship between correlated gene pairs and modules in differing conditions. The results indicated that punicalagin treatment had strong positive correlations with the over-enriched gene ontology (GO) terms related to oxidoreductase activity and lipid metabolism. However, the GO terms for immune and cytokine responses were strongly correlated with no punicalagin treatment. The results matched previous studies that showed punicalagin to have potent antioxidant and antiparasitic effects when used to treat parasitic infections in mice and livestock. Overall, the results indicated that punicalagin enhanced the effect of tissue-resident genes.
Collapse
Affiliation(s)
- Damarius S. Fleming
- USDA-ARS, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA;
| | - Fang Liu
- Zhengzhou University, Zhengzhou 450001, China;
| | - Robert W. Li
- USDA-ARS, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA;
| |
Collapse
|
8
|
Alvergne A. Why we must fight ignorance about COVID-19 vaccines and menstrual cycles. Trends Mol Med 2023; 29:678-680. [PMID: 37429799 PMCID: PMC10285200 DOI: 10.1016/j.molmed.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/12/2023]
Abstract
The COVID-19 pandemic has revealed a critical gap in female health science, fueling anxiety, polarized views, and vaccine hesitancy. Although menstrual cycles feel like a niche topic for some, efforts to augment knowledge on the 'fifth vital sign' experienced by more than 300 million people on any given day worldwide are crucial to promote gender equity in health.
Collapse
|
9
|
Wallace KME, Hart DW, Venter F, van Vuuren AKJ, Bennett NC. The best of both worlds: no apparent trade-off between immunity and reproduction in two group-living African mole-rat species. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220310. [PMID: 37381852 PMCID: PMC10291439 DOI: 10.1098/rstb.2022.0310] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/22/2023] [Indexed: 06/30/2023] Open
Abstract
Co-operatively breeding mammals often exhibit a female reproductive skew and suppression of the subordinate non-breeding group members. According to evolutionary theory and the immunity-fertility axis, an inverse relationship between reproductive investment and survival (through immunocompetence) is expected. As such, this study investigated if a trade-off between immunocompetence and reproduction arises in two co-operatively breeding African mole-rat species, namely the Damaraland mole-rat (Fukomys damarensis) and common mole-rat (Cryptomys hottentotus hottentotus), which possess female reproductive division of labour. This study also attempted to investigate the relationship between the immune and endocrine systems in Damaraland mole-rats. There was no trade-off between reproduction and immunocompetence in co-operatively breeding African mole-rat species, and in the case of the Damaraland mole-rats, breeding females (BFs) possessed increased immunocompetence compared with non-breeding females (NBFs). Furthermore, the increased levels of progesterone possessed by Damaraland mole-rat BFs compared with NBFs appear to be correlated to increased immunocompetence. In comparison, BF and NBF common mole-rats possess similar immunocompetence. The species-specific differences in the immunity-fertility axis may be due to variations in the strengths of reproductive suppression in each species. This article is part of the theme issue 'Evolutionary ecology of inequality'.
Collapse
Affiliation(s)
- K. M. E. Wallace
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - Daniel W. Hart
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - F. Venter
- Department of Biochemistry, Genetics and Microbiology and Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - A. K. Janse van Vuuren
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| | - N. C. Bennett
- Department of Zoology and Entomology, University of Pretoria, Private Bag X20, Hatfield 0028, South Africa
| |
Collapse
|
10
|
Abeysinghe P, Turner N, Mosaad E, Logan J, Mitchell MD. Dynamics of inflammatory cytokine expression in bovine endometrial cells exposed to cow blood plasma small extracellular vesicles (sEV) may reflect high fertility. Sci Rep 2023; 13:5425. [PMID: 37012302 PMCID: PMC10070242 DOI: 10.1038/s41598-023-32045-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
Aberrant inflammation in the endometrium impairs reproduction and leads to poor fertility. Small extracellular vesicles (sEV) are nanoparticles 30-200 nm in-size and contain transferable bioactive molecules that reflect the parent cell. Holstein-Friesian dairy cows with divergent genetic merit, high- (n = 10) and low-fertile (n = 10), were identified based on fertility breeding value (FBV), cow ovulation synchronization and postpartum anovulatory intervals (PPAI). In this study, we evaluated the effects of sEVs enriched from plasma of high-fertile (HF-EXO) and low-fertile (LF-EXO) dairy cows on inflammatory mediator expression by bovine endometrial epithelial (bEEL) and stromal (bCSC) cells. Exposure to HF-EXO in bCSC and bEEL cells yielded lower expression of PTGS1 and PTGS2 compared to the control. In bCSC cells exposed to HF-EXO, pro-inflammatory cytokine IL1-α was downregulated compared to the untreated control, IL-12α and IL-8 were downregulated compared to the LF-EXO treatment. Our findings demonstrate that sEVs interact with both endometrial epithelial and stromal cells to initiate differential gene expression, specifically genes relate to inflammation. Therefore, even subtle changes on the inflammatory gene cascade in the endometrium via sEV may affect reproductive performance and/or outcomes. Further, sEV from high-fertile animals acts in a unique direction to deactivate prostaglandin synthases in both bCSC and bEEL cells and deactivate pro-inflammatory cytokines in the endometrial stroma. The results suggest that circulating sEV may serve as a potential biomarker of fertility.
Collapse
Affiliation(s)
- Pevindu Abeysinghe
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, QLD, 4029, Australia.
| | - Natalie Turner
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, QLD, 4029, Australia
| | - Eman Mosaad
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, QLD, 4029, Australia
| | - Jayden Logan
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, QLD, 4029, Australia
| | - Murray D Mitchell
- School of Biomedical Sciences, Faculty of Health, Centre for Children's Health Research, Queensland University of Technology, Brisbane, QLD, 4029, Australia.
| |
Collapse
|
11
|
Chen M, Guo J, Lin Y, Xu J, Hu Y, Yang L, Xu X, Zhu L, Zhou J, Zhang Z, Li H, Lin S, Wu S. Life-course fertility and multimorbidity among middle-aged and elderly women in China: Evidence from China health and retirement longitudinal study. Front Public Health 2023; 11:1090549. [PMID: 36891346 PMCID: PMC9986627 DOI: 10.3389/fpubh.2023.1090549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023] Open
Abstract
Background Multimorbidity has become an important public health problem in China, especially among middle-aged and elderly women. Few studies have been reported on the association between multimorbidity and female fertility, which is an important stage in the life course. This study aimed to explore the association between multimorbidity and fertility history among middle-aged and elderly women in China. Methods Data from 10,182 middle-aged and elderly female participants in the China Health and Retirement Longitudinal Study (CHARLS) in 2018 were used in this study. Multimorbidity was defined as the presence of at least two or more chronic conditions. Logistic regression analysis, negative binomial regression analysis, and restrictive cubic splines (RCSs) were used to analyze the relationship between female fertility history and multimorbidity or the number of chronic conditions. Multivariable linear regression was used to analyze the relationship between female fertility history and multimorbidity pattern factor scores. Results The results of this study showed that high parity and early childbearing were significantly associated with an increased risk of multimorbidity and an increased number of chronic conditions among middle-aged and elderly women in China. Late childbearing was significantly associated with reduced risk of multimorbidity and lessened diseases. Parity and age of first childbirth were significantly correlated with the odds of multimorbidity. The association between fertility history and multimorbidity was found to be influenced by age and urban-rural dual structure. Women with high parity tend to have higher factor scores of cardiac-metabolic, visceral-arthritic, and respiratory-psychiatric patterns. Women with early childbearing tended to have higher factor scores of the visceral-arthritic pattern and those with late childbearing tended to have lower factor scores of the cardiac-metabolic pattern. Conclusion Fertility history has a significant effect on multimorbidity in the middle and later lives of Chinese women. This study is of great importance for reducing the prevalence of multimorbidity among Chinese women through their life course and promoting health during their middle and later lives.
Collapse
Affiliation(s)
- Mingjun Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jianhui Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yawen Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jialiang Xu
- School of Public Health, Fujian Medical University, Fuzhou, China
| | - Yuduan Hu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Le Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Xingyan Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Li Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Jungu Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Zhiyu Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Shaowei Lin
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Siying Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Mitchell E, Graham AL, Úbeda F, Wild G. On maternity and the stronger immune response in women. Nat Commun 2022; 13:4858. [PMID: 35982048 PMCID: PMC9386672 DOI: 10.1038/s41467-022-32569-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Medical research reports that women often exhibit stronger immune responses than men, while pathogens tend to be more virulent in men. Current explanations cannot account for this pattern, creating an obstacle for our understanding of infectious-disease outcomes and the incidence of autoimmune diseases. We offer an alternative explanation that relies on a fundamental difference between the sexes: maternity and the opportunities it creates for transmission of pathogens from mother to child (vertical transmission). Our explanation relies on a mathematical model of the co-evolution of host immunocompetence and pathogen virulence. Here, we show that when there is sufficient vertical transmission co-evolution leads women to defend strongly against temperate pathogens and men to defend weakly against aggressive pathogens, in keeping with medical observations. From a more applied perspective, we argue that limiting vertical transmission of infections would alleviate the disproportionate incidence of autoimmune diseases in women over evolutionary time.
Collapse
Affiliation(s)
- Evan Mitchell
- Department of Mathematics, Western University, London, ON, N6A 5B7, Canada
| | - Andrea L Graham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Francisco Úbeda
- Department of Biological Sciences, Royal Holloway, University of London Egham, Surrey, TW20 0EX, United Kingdom.
| | - Geoff Wild
- Department of Mathematics, Western University, London, ON, N6A 5B7, Canada.
| |
Collapse
|
13
|
Rodrigues MA, Merckelbach A, Durmaz E, Kerdaffrec E, Flatt T. Transcriptomic evidence for a trade-off between germline proliferation and immunity in Drosophila. Evol Lett 2021; 5:644-656. [PMID: 34917403 PMCID: PMC8645197 DOI: 10.1002/evl3.261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/07/2021] [Accepted: 09/12/2021] [Indexed: 11/08/2022] Open
Abstract
Life-history theory posits that investment into reproduction might occur at the expense of investment into somatic maintenance, including immune function. If so, reduced or curtailed reproductive effort might be expected to increase immunity. In support of this notion, work in Caenorhabditis elegans has shown that worms lacking a germline exhibit improved immunity, but whether the antagonistic relation between germline proliferation and immunity also holds for other organisms is less well understood. Here, we report that transgenic ablation of germ cells in late development or early adulthood in Drosophila melanogaster causes elevated baseline expression and increased induction of Toll and Imd immune genes upon bacterial infection, as compared to fertile flies with an intact germline. We also identify immune genes whose expression after infection differs between fertile and germline-less flies in a manner that is conditional on their mating status. We conclude that germline activity strongly impedes the expression and inducibility of immune genes and that this physiological trade-off might be evolutionarily conserved.
Collapse
Affiliation(s)
| | | | - Esra Durmaz
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| | - Envel Kerdaffrec
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| | - Thomas Flatt
- Department of BiologyUniversity of FribourgCH‐1700 FribourgSwitzerland
| |
Collapse
|
14
|
Bagchi B, Corbel Q, Khan I, Payne E, Banerji D, Liljestrand-Rönn J, Martinossi-Allibert I, Baur J, Sayadi A, Immonen E, Arnqvist G, Söderhäll I, Berger D. Sexual conflict drives micro- and macroevolution of sexual dimorphism in immunity. BMC Biol 2021; 19:114. [PMID: 34078377 PMCID: PMC8170964 DOI: 10.1186/s12915-021-01049-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Sexual dimorphism in immunity is believed to reflect sex differences in reproductive strategies and trade-offs between competing life history demands. Sexual selection can have major effects on mating rates and sex-specific costs of mating and may thereby influence sex differences in immunity as well as associated host-pathogen dynamics. Yet, experimental evidence linking the mating system to evolved sexual dimorphism in immunity are scarce and the direct effects of mating rate on immunity are not well established. Here, we use transcriptomic analyses, experimental evolution and phylogenetic comparative methods to study the association between the mating system and sexual dimorphism in immunity in seed beetles, where mating causes internal injuries in females. RESULTS We demonstrate that female phenoloxidase (PO) activity, involved in wound healing and defence against parasitic infections, is elevated relative to males. This difference is accompanied by concomitant sex differences in the expression of genes in the prophenoloxidase activating cascade. We document substantial phenotypic plasticity in female PO activity in response to mating and show that experimental evolution under enforced monogamy (resulting in low remating rates and reduced sexual conflict relative to natural polygamy) rapidly decreases female (but not male) PO activity. Moreover, monogamous females had evolved increased tolerance to bacterial infection unrelated to mating, implying that female responses to costly mating may trade off with other aspects of immune defence, an hypothesis which broadly accords with the documented sex differences in gene expression. Finally, female (but not male) PO activity shows correlated evolution with the perceived harmfulness of male genitalia across 12 species of seed beetles, suggesting that sexual conflict has a significant influence on sexual dimorphisms in immunity in this group of insects. CONCLUSIONS Our study provides insights into the links between sexual conflict and sexual dimorphism in immunity and suggests that selection pressures moulded by mating interactions can lead to a sex-specific mosaic of immune responses with important implications for host-pathogen dynamics in sexually reproducing organisms.
Collapse
Affiliation(s)
- Basabi Bagchi
- Department of Biology, Ashoka University, Sonipat, India
| | - Quentin Corbel
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Cavanilles Institute of Biodiversity and Evolutionary Biology, University of Valencia, Valencia, Spain
| | - Imroze Khan
- Department of Biology, Ashoka University, Sonipat, India
| | - Ellen Payne
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | | | - Johanna Liljestrand-Rönn
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Ivain Martinossi-Allibert
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Organismal Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Julian Baur
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Ahmed Sayadi
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
- Department of Chemistry, Biochemistry, Uppsala University, Uppsala, Sweden
| | - Elina Immonen
- Department of Ecology and Genetics, Program of Evolutionary Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Göran Arnqvist
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden
| | - Irene Söderhäll
- Department of Organismal Biology, Program of Comparative Physiology, Uppsala University, Uppsala, Sweden
| | - David Berger
- Department of Ecology and Genetics, Program of Animal Ecology, Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
| |
Collapse
|