1
|
Dong TR, Li YJ, Jin SY, Yang FL, Xiong RX, Dai YQ, Song XZ, Guan CP. Progress on mitochondria and hair follicle development in androgenetic alopecia: relationships and therapeutic perspectives. Stem Cell Res Ther 2025; 16:44. [PMID: 39901201 PMCID: PMC11792644 DOI: 10.1186/s13287-025-04182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/23/2025] [Indexed: 02/05/2025] Open
Abstract
Hair loss has long been a significant concern for many individuals. Recent studies have indicated that mitochondria play a more crucial role in hair loss than previously recognized. This review summarizes the connection between mitochondrial dysfunction and hair follicle development, outlines the links between diseases related to mitochondrial disorders and hair issues, and highlights the influence of mitochondrial dysfunction on androgenetic alopecia. We discuss the cellular and signaling mechanisms associated with hair loss and examine how mitochondrial dysfunction, such as insufficient energy supply, signaling irregularities, protein/gene abnormalities, and programmed cell death, can hinder the normal proliferation, differentiation, and growth of hair follicle cells. Furthermore, we discuss current treatment approaches and potential innovative therapies, including mitochondrion-targeting drugs and advanced techniques that directly target hair follicle cells, providing fresh insights into the crucial role of mitochondria in maintaining hair follicle health and managing hair disorders. Furthermore, this review explores future therapeutic strategies and proposes that mitochondrial research could lead to groundbreaking treatments for hair loss, thus providing optimism and new avenues for the treatment of individuals experiencing hair loss. This review not only underscores the central importance of mitochondria in hair health but also emphasizes the importance of advancing research and treatment in this field.
Collapse
Affiliation(s)
- Ting-Ru Dong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Yu-Jie Li
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Shi-Yu Jin
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Feng-Lan Yang
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Ren-Xue Xiong
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Ye-Qin Dai
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Xiu-Zu Song
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China
| | - Cui-Ping Guan
- Department of Dermatology, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, No 38 Xihu Rd, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Cheng YY, Worley BL, Javed Z, Elhaw AT, Tang PW, Al-Saad S, Kamlapurkar S, White S, Uboveja A, Mythreye K, Aird KM, Czyzyk TA, Hempel N. Loss of the predicted cell adhesion molecule MPZL3 promotes EMT and chemoresistance in ovarian cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.14.623672. [PMID: 39605523 PMCID: PMC11601277 DOI: 10.1101/2024.11.14.623672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Myelin protein zero-like 3 (MPZL3) is an Immunoglobulin-containing transmembrane protein with predicted cell adhesion molecule function. Loss of 11q23, where the MPZL3 gene resides, is frequently observed in cancer, and MPZL3 copy number alterations are frequently detected in tumor specimens. Yet the role and consequences of altered MPZL3 expression have not been explored in tumor development and progression. We addressed this in ovarian cancer, where both MPZL3 amplification and deletions are observed in respective subsets of high-grade serous specimens. While high and low MPZL3 expressing populations were similarly observed in primary ovarian tumors from an independent patient cohort, metastatic omental tumors largely displayed decreased MPZL3 expression, suggesting that MPZL3 loss is associated with metastatic progression. MPZL3 knock-down leads to strong upregulation of vimentin and an EMT gene signature that is associated with poor patient outcomes. Moreover, MPZL3 is necessary for homotypic cancer cell adhesion, and decreasing MPZL3 expression enhances invasion and clearance of mesothelial cell monolayers. In addition, MPZL3 loss abrogated cell cycle progression and proliferation. This was associated with increased resistance to Cisplatin and Olaparib and reduced DNA damage and apoptosis in response to these agents. Enhanced Cisplatin resistance was further validated in vivo . These data demonstrate for the first time that MPZL3 acts as an adhesion molecule and that MPZL3 loss results in EMT, decreased proliferation, and drug resistance in ovarian cancer. Our study suggests that decreased MPZL3 expression is a phenotype of ovarian cancer tumor progression and metastasis and may contribute to treatment failure in advanced-stage patients.
Collapse
|
3
|
Guo Q, Fan YN, Xie M, Wang QN, Li J, Liu S, Wang X, Yu D, Zou Z, Gao G, Zhang Q, Hao F, Feng J, Yang R, Wang M, Fu H, Bao X, Duan L. Exploring the transcriptomic landscape of moyamoya disease and systemic lupus erythematosus: insights into crosstalk genes and immune relationships. Front Immunol 2024; 15:1456392. [PMID: 39290707 PMCID: PMC11405312 DOI: 10.3389/fimmu.2024.1456392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
Background Systemic Lupus Erythematosus (SLE) is acknowledged for its significant influence on systemic health. This study sought to explore potential crosstalk genes, pathways, and immune cells in the relationship between SLE and moyamoya disease (MMD). Methods We obtained data on SLE and MMD from the Gene Expression Omnibus (GEO) database. Differential expression analysis and weighted gene co-expression network analysis (WGCNA) were conducted to identify common genes. Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on these shared genes. Hub genes were further selected through the least absolute shrinkage and selection operator (LASSO) regression, and a receiver operating characteristic (ROC) curve was generated based on the results of this selection. Finally, single-sample Gene Set Enrichment Analysis (ssGSEA) was utilized to assess the infiltration levels of 28 immune cells in the expression profile and their association with the identified hub genes. Results By intersecting the important module genes from WGCNA with the DEGs, the study highlighted CAMP, CFD, MYO1F, CTSS, DEFA3, NLRP12, MAN2B1, NMI, QPCT, KCNJ2, JAML, MPZL3, NDC80, FRAT2, THEMIS2, CCL4, FCER1A, EVI2B, CD74, HLA-DRB5, TOR4A, GAPT, CXCR1, LAG3, CD68, NCKAP1L, TMEM33, and S100P as key crosstalk genes linking SLE and MMD. GO analysis indicated that these shared genes were predominantly enriched in immune system process and immune response. LASSO analysis identified MPZL3 as the optimal shared diagnostic biomarkers for both SLE and MMD. Additionally, the analysis of immune cell infiltration revealed the significant involvement of activation of T and monocytes cells in the pathogenesis of SLE and MMD. Conclusion This study is pioneering in its use of bioinformatics tools to explore the close genetic relationship between MMD and SLE. The genes CAMP, CFD, MYO1F, CTSS, DEFA3, NLRP12, MAN2B1, NMI, QPCT, KCNJ2, JAML, MPZL3, NDC80, FRAT2, THEMIS2, CCL4, FCER1A, EVI2B, CD74, HLA-DRB5, TOR4A, GAPT, CXCR1, LAG3, CD68, NCKAP1L, TMEM33, and S100P have been identified as key crosstalk genes that connect MMD and SLE. Activation of T and monocytes cells-mediated immune responses are proposed to play a significant role in the association between MMD and SLE.
Collapse
Affiliation(s)
- Qingbao Guo
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yan-Na Fan
- Department of Radiation Oncology, Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Manli Xie
- Department of Occupational Diseases, Xi'an Central Hospital, Xi'an, Shanxi, China
| | - Qian-Nan Wang
- Department of Neurosurgery, The Eighth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jingjie Li
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Simeng Liu
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiaopeng Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Dan Yu
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhengxing Zou
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Gan Gao
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Qian Zhang
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Fangbin Hao
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jie Feng
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Rimiao Yang
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Minjie Wang
- Medical School of Chinese PLA, Beijing, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Heguan Fu
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Xiangyang Bao
- Department of Neurosurgery, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Lian Duan
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Zhou Y, Sun W, Tang Q, Lu Y, Li M, Wang J, Han X, Wu D, Wu W. Effect of prenatal perfluoroheptanoic acid exposure on spermatogenesis in offspring mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115072. [PMID: 37262965 DOI: 10.1016/j.ecoenv.2023.115072] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/13/2023] [Accepted: 05/24/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Perfluoroheptanoic acid (PFHpA), a persistent organic pollutant widespread in the environment, is suspected as an environmental endocrine disruptor for its disturbance effect on hormone homeostasis and reproductive development. Whereas the effect of intrauterine PFHpA exposure during gestation on spermatogenesis of male offspring mice is still unknown. OBJECTIVE This study aimed to explore the effect of prenatal PFHpA exposure on the reproductive development of male offspring mice and the role of N6-methyladenosine (m6A) during the process. METHODS Fifty-six C57BL/6 pregnant mice were randomly divided into 4 groups. During the gestation period, the pregnant mice were exposed to 0, 0.0015, 0.015, and 0.15 mg/kg bw/d PFHpA from gestational day 1 (GD1) to GD16 by oral gavage. The male offspring mice were sacrificed by spinal dislocation at 7 weeks old. The body weight, testicular weight, and brain weight were weighed, and the intra-testicular testosterone was detected. The sperm qualities were analyzed with computer-aided sperm analysis (CASA). The testicular tissues were taken to analyze the pathological changes and examine the global m6A RNA methylation levels. Quantitative real-time PCR (qRT-PCR) was adopted to figure out the mRNA expression levels of m6A-related enzymes in testicular tissues of different PFHpA treated groups. Methylated RNA immunoprecipitation sequencing (MeRIP-seq) was applied to further explore the m6A RNA methylation at a whole-genome scale. RESULTS Compared with the control group, no significant differences were observed in body weight, testicular weight, testicular coefficient, and the visceral-brain ratio of testicular tissue in the PFHpA treated groups. And no significant change was observed in intra-testicular testosterone among the four groups. CASA results showed a decrease of sperm count, sperm concentration, and total cell count, as well as an increase of sperm progressive cells' head area after prenatal PFHpA exposure (P < 0.05). Hematoxylin and eosin staining of pathological sections showed seminiferous tubules morphological change, disorder arrangement of seminiferous epithelium, and reduction of spermatogenic cells in the PFHpA treated groups. PFHpA significantly decreased global levels of m6A RNA methylation in testicular tissue (P < 0.05). Besides, qRT-PCR results showed significant alteration of the mRNA expression levels of seven m6A-related enzymes (Mettl3, Mettl5, Mettl14, Pcif1, Wtap, Hnrnpa2b1, and Hnrnpc) in the PFHpA treated groups (P < 0.05). MeRIP-seq results showed a correlation between prenatal PFHpA exposure and activation and binding of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Cnga3 and Mpzl3 showed differential expression in the enrichment subcategories or pathways. CONCLUSIONS Exposure to PFHpA during the gestation period would adversely affect the development of seminiferous tubules and testicular m6A RNA methylation in offspring mice, which subsequently interferes with spermatogenesis and leads to reproductive toxicity.
Collapse
Affiliation(s)
- Yijie Zhou
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Weilian Sun
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qiuqin Tang
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yiwen Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Mei Li
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jing Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Andersen B, Duan J, Karri SS. How and Why the Circadian Clock Regulates Proliferation of Adult Epithelial Stem Cells. Stem Cells 2023; 41:319-327. [PMID: 36740940 PMCID: PMC10128966 DOI: 10.1093/stmcls/sxad013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/17/2023] [Indexed: 02/07/2023]
Abstract
First described in the early 20th century, diurnal oscillations in stem cell proliferation exist in multiple internal epithelia, including in the gastrointestinal tract, and in the epidermis. In the mouse epidermis, 3- to 4-fold more stem cells are in S-phase during the night than during the day. More recent work showed that an intact circadian clock intrinsic to keratinocytes is required for these oscillations in epidermal stem cell proliferation. The circadian clock also regulates DNA excision repair and DNA damage in epidermal stem cells in response to ultraviolet B radiation. During skin inflammation, epidermal stem cell proliferation is increased and diurnal oscillations are suspended. Here we discuss possible reasons for the evolution of this stem cell phenomenon. We argue that the circadian clock coordinates intermediary metabolism and the cell cycle in epidermal stem cells to minimize the accumulation of DNA damage from metabolism-generated reactive oxygen species. Circadian disruption, common in modern society, leads to asynchrony between metabolism and the cell cycle, and we speculate this will lead to oxidative DNA damage, dysfunction of epidermal stem cells, and skin aging.
Collapse
Affiliation(s)
- Bogi Andersen
- Division of Endocrinology, Department of Medicine, School of Medicine, University of California, Irvine, CA, USA
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
- Institute for Genomics and Bioinformatics, University of California, Irvine, CA, USA
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, USA
| | - Junyan Duan
- Center for Complex Biological Systems, University of California, Irvine, CA, USA
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, USA
| | - Satya Swaroop Karri
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
6
|
Liu S, Zhou C, Meng G, Wan T, Tang M, Yang C, Murphy RW, Fan Z, Liu Y, Zeng T, Zhao Y, Liu S. Evolution and diversification of Mountain voles (Rodentia: Cricetidae). Commun Biol 2022; 5:1417. [PMID: 36572770 PMCID: PMC9792541 DOI: 10.1038/s42003-022-04371-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022] Open
Abstract
The systematics of the Cricetid genus Neodon have long been fraught with uncertainty due to sampling issues and a lack of comprehensive datasets. To gain better insights into the phylogeny and evolution of Neodon, we systematically sampled Neodon across the Hengduan and Himalayan Mountains, which cover most of its range in China. Analyses of skulls, teeth, and bacular structures revealed 15 distinct patterns corresponding to 15 species of Neodon. In addition to morphological analyses, we generated a high-quality reference genome for the mountain vole and generated whole-genome sequencing data for 47 samples. Phylogenomic analyses supported the recognition of six new species, revealing a long-term underestimation of Neodon diversity. We further identified positively selected genes potentially related to high-elevation adaptation. Together, our results illuminate how climate change caused the plateau to become the centre of Neodon origin and diversification and how mountain voles have adapted to the hypoxic high-altitude plateau environment.
Collapse
Affiliation(s)
- Shaoying Liu
- Sichuan Academy of Forestry, No.18, Xinhui xilu, Chengdu, 610081, China.
| | - Chengran Zhou
- BGI-Shenzhen, Shenzhen, 518083, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Guanliang Meng
- Zoological Research Museum Alexander Koenig, D-53113, Bonn, Germany
| | - Tao Wan
- Sichuan Academy of Forestry, No.18, Xinhui xilu, Chengdu, 610081, China
| | - Mingkun Tang
- Sichuan Academy of Forestry, No.18, Xinhui xilu, Chengdu, 610081, China
| | | | - Robert W Murphy
- Reptilia Sanctuary and Education Centre, Concord, ON, L4K 2N6, Canada
- Centre for Biodiversity and Conservation Biology, Royal Ontario Museum, Toronto, ON, M5S 2C6, Canada
| | - Zhenxin Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- Sichuan Academy of Forestry, No.18, Xinhui xilu, Chengdu, 610081, China
| | - Tao Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Yun Zhao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Shanlin Liu
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
7
|
Huang R, Li L, Wang Z, Shen K. A systemic pan-cancer analysis of MPZL3 as a potential prognostic biomarker and its correlation with immune infiltration and drug sensitivity in breast cancer. Front Oncol 2022; 12:901728. [PMID: 35965540 PMCID: PMC9372439 DOI: 10.3389/fonc.2022.901728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundThis study aimed to analyze the role of myelin protein zero-like 3 (MPZL3), a single membrane glycoprotein, in prognosis, tumor immune infiltration, and drug susceptibility in human cancers.MethodsData regarding MPZL3 were extracted from the TCGA, GTEx, CellMiner, CCLE, TIMER, GSEA, and USCS Xena databases. The expression difference, survival outcomes, DNA methylation, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), tumor microenvironment (TME), immune cell infiltration, and drug sensitivity of MPZL3 were analyzed by R language software. Cell proliferation and drug sensitivity tests were applied to analyze the biological role of MPZL3 and drug sensitivities in breast cancer.ResultsMPZL3 was highly expressed in most cancer types and correlated with unfavorable survival outcomes in several cancers. TMB, MSI, MMR, DNA methylation, and RNA modification played a significant role in mediating MPZL3 dysregulation in cancers, and MPZL3 was closely linked to CD8+ T cells and CD4+ T immune infiltration. The MPML3 mRNA level was associated with protein secretion, the Notch signaling pathway, and heme metabolism. In addition, drug sensitivity analysis and validation also indicated that MPZL3 expression influenced the sensitivity of therapeutics targeting EGFR, ABL, FGFR, etc. Additionally, MPZL3 overexpression contributed to proliferation and drug sensitivity in different subtypes of breast cancer.ConclusionsThis study provides a comprehensive analysis and understanding of the oncogenic roles of the pan-cancer gene MPZL3 across different tumors, including breast cancer. MPZL3 could be a potential prognostic biomarker and therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liangqiang Li
- Department of Breast Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Kunwei Shen, ; Zheng Wang,
| | - Kunwei Shen
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Kunwei Shen, ; Zheng Wang,
| |
Collapse
|
8
|
Wikramanayake TC, Chéret J, Sevilla A, Birch-Machin M, Paus R. Targeting mitochondria in dermatological therapy: Beyond oxidative damage and skin aging. Expert Opin Ther Targets 2022; 26:233-259. [PMID: 35249436 DOI: 10.1080/14728222.2022.2049756] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The analysis of the role of the mitochondria in oxidative damage and skin aging is a significant aspect of dermatological research. Mitochondria generate most reactive oxygen species (ROS); however, excessive ROS are cytotoxic and DNA-damaging and promote (photo-)aging. ROS also possesses key physiological and regulatory functions and mitochondrial dysfunction is prominent in several skin diseases including skin cancers. Although many standard dermatotherapeutics modulate mitochondrial function, dermatological therapy rarely targets the mitochondria. Accordingly, there is a rationale for "mitochondrial dermatology"-based approaches to be applied to therapeutic research. AREAS COVERED This paper examines the functions of mitochondria in cutaneous physiology beyond energy (ATP) and ROS production. Keratinocyte differentiation and epidermal barrier maintenance, appendage morphogenesis and homeostasis, photoaging and skin cancer are considered. Based on related PubMed search results, the paper evaluates thyroid hormones, glucocorticoids, Vitamin D3 derivatives, retinoids, cannabinoid receptor agonists, PPARγ agonists, thyrotropin, and thyrotropin-releasing hormone as instructive lead compounds. Moreover, the mitochondrial protein MPZL3 as a promising new drug target for future "mitochondrial dermatology" is highlighted. EXPERT OPINION Future dermatological therapeutic research should have a mitochondrial medicine emphasis. Focusing on selected lead agents, protein targets, in silico drug design, and model diseases will fertilize a mito-centric approach.
Collapse
Affiliation(s)
- Tongyu C Wikramanayake
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Molecular Cell and Developmental Biology Program, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Jérémy Chéret
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Alec Sevilla
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| | - Mark Birch-Machin
- Dermatological Sciences, Translational and Clinical Research Institute, and The UK National Innovation Centre for Ageing, Newcastle University, Newcastle upon Tyne, UK
| | - Ralf Paus
- Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A.,Monasterium Laboratory, Münster, Germany.,Centre for Dermatology Research, University of Manchester, and NIHR Manchester Biomedical Research Centre, Manchester, UK
| |
Collapse
|
9
|
Wikramanayake TC, Nicu C, Gherardini J, Mello AC, Chéret J, Paus R. Mitochondrially Localized MPZL3 Functions as a Negative Regulator of Sebaceous Gland Size and Sebocyte Proliferation. J Invest Dermatol 2022; 142:2524-2527.e7. [DOI: 10.1016/j.jid.2021.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
|