1
|
Cacchione S, Cenci G, Dion-Côté AM, Barbash DA, Raffa GD. Maintaining Telomeres without Telomerase in Drosophila: Novel Mechanisms and Rapid Evolution to Save a Genus. Cold Spring Harb Perspect Biol 2025; 17:a041708. [PMID: 39694814 PMCID: PMC11875090 DOI: 10.1101/cshperspect.a041708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Telomere maintenance is crucial for preventing the linear eukaryotic chromosome ends from being mistaken for DNA double-strand breaks, thereby avoiding chromosome fusions and the loss of genetic material. Unlike most eukaryotes that use telomerase for telomere maintenance, Drosophila relies on retrotransposable elements-specifically HeT-A, TAHRE, and TART (collectively referred to as HTT)-which are regulated and precisely targeted to chromosome ends. Drosophila telomere protection is mediated by a set of fast-evolving proteins, termed terminin, which bind to chromosome termini without sequence specificity, balancing DNA damage response factors to avoid erroneous repair mechanisms. This unique telomere capping mechanism highlights an alternative evolutionary strategy to compensate for telomerase loss. The modulation of recombination and transcription at Drosophila telomeres offers insights into the diverse mechanisms of telomere maintenance. Recent studies at the population level have begun to reveal the architecture of telomere arrays, the diversity among the HTT subfamilies, and their relative frequencies, aiming to understand whether and how these elements have evolved to reach an equilibrium with the host and to resolve genetic conflicts. Further studies may shed light on the complex relationships between telomere transcription, recombination, and maintenance, underscoring the adaptive plasticity of telomeric complexes across eukaryotes.
Collapse
Affiliation(s)
- Stefano Cacchione
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanni Cenci
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
- Fondazione Cenci Bolognetti, Istituto Pasteur, 00161 Roma, Italy
| | - Anne-Marie Dion-Côté
- Département de Biologie, Université de Moncton, Moncton, New Brunswick E1A 3E9, Canada
| | - Daniel A Barbash
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Grazia Daniela Raffa
- Department of Biology and Biotechnology, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
2
|
Dubois JC, Bonnell E, Filion A, Frion J, Zimmer S, Riaz Khan M, Teplitz GM, Casimir L, Méthot É, Marois I, Idrissou M, Jacques PÉ, Wellinger RJ, Maréchal A. The single-stranded DNA-binding factor SUB1/PC4 alleviates replication stress at telomeres and is a vulnerability of ALT cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2419712122. [PMID: 39772744 PMCID: PMC11745411 DOI: 10.1073/pnas.2419712122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025] Open
Abstract
To achieve replicative immortality, cancer cells must activate telomere maintenance mechanisms. In 10 to 15% of cancers, this is enabled by recombination-based alternative lengthening of telomeres pathways (ALT). ALT cells display several hallmarks including heterogeneous telomere length, extrachromosomal telomeric repeats, and ALT-associated PML bodies. ALT cells also have high telomeric replication stress (RS) enhanced by fork-stalling structures (R-loops and G4s) and altered chromatin states. In ALT cells, telomeric RS promotes telomere elongation but above a certain threshold becomes detrimental to cell survival. Manipulating RS at telomeres has thus been proposed as a therapeutic strategy against ALT cancers. Through analysis of genome-wide CRISPR fitness screens, we identified ALT-specific vulnerabilities and describe here our characterization of the roles of SUB1, a ssDNA-binding protein, in telomere stability. SUB1 depletion increases RS at ALT telomeres, profoundly impairing ALT cell growth without impacting telomerase-positive cells. During RS, SUB1 is recruited to stalled forks and ALT telomeres via its ssDNA-binding domain. This recruitment is potentiated by RPA depletion, suggesting that these factors may compete for ssDNA. The viability of ALT cells and their resilience toward RS also requires ssDNA binding by SUB1. SUB1 depletion accelerates cell death induced by FANCM depletion, triggering unsustainable levels of telomeric damage in ALT cells. Finally, combining SUB1 depletion with RS-inducing drugs rapidly induces replication catastrophe in ALT cells. Altogether, our work identifies SUB1 as an ALT susceptibility with roles in the mitigation of RS at ALT telomeres and suggests advanced therapeutic strategies for a host of still poorly managed cancers.
Collapse
Affiliation(s)
- Jean-Christophe Dubois
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Erin Bonnell
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Amélie Filion
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Julie Frion
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Samuel Zimmer
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Muhammad Riaz Khan
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Gabriela M. Teplitz
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Lisa Casimir
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Élie Méthot
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Isabelle Marois
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Mouhamed Idrissou
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Pierre-Étienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
| | - Raymund J. Wellinger
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
- Department of Microbiology and Infectiology, Université de Sherbrooke, Sherbrooke, QCJ1E 4K8, Canada
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QCJ1K 2R1, Canada
- Cancer Research Institute, Université de Sherbrooke, Sherbrooke, QCJ1K2R1, Canada
- Aging Research Center of Sherbrooke, Sherbrooke, QCJ1H 5N3, Canada
| |
Collapse
|
3
|
Herrera-Moyano E, Porreca RM, Ranjha L, Skourti E, Gonzalez-Franco R, Stylianakis E, Sun Y, Li R, Saleh A, Montoya A, Kramer H, Vannier JB. Human SKI component SKIV2L regulates telomeric DNA-RNA hybrids and prevents telomere fragility. iScience 2024; 27:111096. [PMID: 39493885 PMCID: PMC11530851 DOI: 10.1016/j.isci.2024.111096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/31/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Super killer (SKI) complex is a well-known cytoplasmic 3'-5' mRNA decay complex that functions with the exosome to degrade excessive and aberrant mRNAs, is implicated with the extraction of mRNA at stalled ribosomes, tackling aberrant translation. Here, we show that SKIV2L and TTC37 of the hSKI complex are present within the nucleus, localize on chromatin and at some telomeres during the G2 cell cycle phase. In cells, SKIV2L prevents telomere replication stress, independently of its helicase domain, and increases the stability of telomere DNA-RNA hybrids in G2. We further demonstrate that purified hSKI complex binds telomeric DNA and RNA substrates in vitro and SKIV2L association with telomeres is dependent on DNA-RNA hybrids. Taken together, our results provide a nuclear function for SKIV2L of the hSKI complex in overcoming replication stress at telomeres mediated by its recruitment to DNA-RNA hybrid structures in G2 and thus maintaining telomere stability.
Collapse
Affiliation(s)
- Emilia Herrera-Moyano
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Rosa Maria Porreca
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Lepakshi Ranjha
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Eleni Skourti
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Roser Gonzalez-Franco
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Emmanouil Stylianakis
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Ying Sun
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Ruihan Li
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| | - Almutasem Saleh
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
- DNA Replication Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
| | - Alex Montoya
- Biological Mass Spectrometry & Proteomics, MRC-LMS, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Holger Kramer
- Biological Mass Spectrometry & Proteomics, MRC-LMS, Hammersmith Hospital Campus, London W12 0NN, UK
| | - Jean-Baptiste Vannier
- Telomere Replication & Stability Group, Institute of Clinical Sciences, Imperial College London, London W12 0NN, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
4
|
Joo SY, Sung K, Lee H. Balancing act: BRCA2's elaborate management of telomere replication through control of G-quadruplex dynamicity. Bioessays 2024; 46:e2300229. [PMID: 38922965 DOI: 10.1002/bies.202300229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
In billion years of evolution, eukaryotes preserved the chromosome ends with arrays of guanine repeats surrounded by thymines and adenines, which can form stacks of four-stranded planar structure known as G-quadruplex (G4). The rationale behind the evolutionary conservation of the G4 structure at the telomere remained elusive. Our recent study has shed light on this matter by revealing that telomere G4 undergoes oscillation between at least two distinct folded conformations. Additionally, tumor suppressor BRCA2 exhibits a unique mode of interaction with telomere G4. To elaborate, BRCA2 directly interacts with G-triplex (G3)-derived intermediates that form during the interconversion of the two different G4 states. In doing so, BRCA2 remodels the G4, facilitating the restart of stalled replication forks. In this review, we succinctly summarize the findings regarding the dynamicity of telomeric G4, emphasize its importance in maintaining telomere replication homeostasis, and the physiological consequences of losing G4 dynamicity at the telomere.
Collapse
Affiliation(s)
- So Young Joo
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| | - Keewon Sung
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul, South Korea
| | - Hyunsook Lee
- Department of Biological Sciences & Institute of Molecular Biology and Genetics (IMBG), Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Li B. Telomere maintenance in African trypanosomes. Front Mol Biosci 2023; 10:1302557. [PMID: 38074093 PMCID: PMC10704157 DOI: 10.3389/fmolb.2023.1302557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/15/2023] [Indexed: 02/12/2024] Open
Abstract
Telomere maintenance is essential for genome integrity and chromosome stability in eukaryotic cells harboring linear chromosomes, as telomere forms a specialized structure to mask the natural chromosome ends from DNA damage repair machineries and to prevent nucleolytic degradation of the telomeric DNA. In Trypanosoma brucei and several other microbial pathogens, virulence genes involved in antigenic variation, a key pathogenesis mechanism essential for host immune evasion and long-term infections, are located at subtelomeres, and expression and switching of these major surface antigens are regulated by telomere proteins and the telomere structure. Therefore, understanding telomere maintenance mechanisms and how these pathogens achieve a balance between stability and plasticity at telomere/subtelomere will help develop better means to eradicate human diseases caused by these pathogens. Telomere replication faces several challenges, and the "end replication problem" is a key obstacle that can cause progressive telomere shortening in proliferating cells. To overcome this challenge, most eukaryotes use telomerase to extend the G-rich telomere strand. In addition, a number of telomere proteins use sophisticated mechanisms to coordinate the telomerase-mediated de novo telomere G-strand synthesis and the telomere C-strand fill-in, which has been extensively studied in mammalian cells. However, we recently discovered that trypanosomes lack many telomere proteins identified in its mammalian host that are critical for telomere end processing. Rather, T. brucei uses a unique DNA polymerase, PolIE that belongs to the DNA polymerase A family (E. coli DNA PolI family), to coordinate the telomere G- and C-strand syntheses. In this review, I will first briefly summarize current understanding of telomere end processing in mammals. Subsequently, I will describe PolIE-mediated coordination of telomere G- and C-strand synthesis in T. brucei and implication of this recent discovery.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
6
|
Stylianakis E, Chan JPK, Law PP, Jiang Y, Khadayate S, Karimi MM, Festenstein R, Vannier JB. Mouse HP1γ regulates TRF1 expression and telomere stability. Life Sci 2023; 331:122030. [PMID: 37598977 DOI: 10.1016/j.lfs.2023.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
AIMS Telomeric repeat-containing RNAs are long non-coding RNAs generated from the telomeres. TERRAs are essential for the establishment of heterochromatin marks at telomeres, which serve for the binding of members of the heterochromatin protein 1 (HP1) protein family of epigenetic modifiers involved with chromatin compaction and gene silencing. While HP1γ is enriched on gene bodies of actively transcribed human and mouse genes, it is unclear if its transcriptional role is important for HP1γ function in telomere cohesion and telomere maintenance. We aimed to study the effect of mouse HP1γ on the transcription of telomere factors and molecules that can affect telomere maintenance. MAIN METHODS We investigated the telomere function of HP1γ by using HP1γ deficient mouse embryonic fibroblasts (MEFs). We used gene expression analysis of HP1γ deficient MEFs and validated the molecular and mechanistic consequences of HP1γ loss by telomere FISH, immunofluorescence, RT-qPCR and DNA-RNA immunoprecipitation (DRIP). KEY FINDINGS Loss of HP1γ in primary MEFs led to a downregulation of various telomere and telomere-accessory transcripts, including the shelterin protein TRF1. Its downregulation is associated with increased telomere replication stress and DNA damage (γH2AX), effects more profound in females. We suggest that the source for the impaired telomere maintenance is a consequence of increased telomeric DNA-RNA hybrids and TERRAs arising at and from mouse chromosomes 18 and X. SIGNIFICANCE Our results suggest an important transcriptional control by mouse HP1γ of various telomere factors including TRF1 protein and TERRAs that has profound consequences on telomere stability, with a potential sexually dimorphic nature.
Collapse
Affiliation(s)
- Emmanouil Stylianakis
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jackson Ping Kei Chan
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Pui Pik Law
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Yi Jiang
- Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Sanjay Khadayate
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Mohammad Mahdi Karimi
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| | - Richard Festenstein
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom; Gene Control Mechanisms and Disease Group, Faculty of Medicine, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Jean-Baptiste Vannier
- Telomere Replication & Stability group, Medical Research Council London Institute of Medical Sciences, London, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, United Kingdom.
| |
Collapse
|
7
|
Fernandes RV, Lingner J. The THO complex counteracts TERRA R-loop-mediated telomere fragility in telomerase+ cells and telomeric recombination in ALT+ cells. Nucleic Acids Res 2023; 51:6702-6722. [PMID: 37246640 PMCID: PMC10359610 DOI: 10.1093/nar/gkad448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/26/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023] Open
Abstract
Telomeres are the nucleoprotein structures at the ends of linear chromosomes. Telomeres are transcribed into long non-coding Telomeric Repeat-Containing RNA (TERRA), whose functions rely on its ability to associate with telomeric chromatin. The conserved THO complex (THOC) was previously identified at human telomeres. It links transcription with RNA processing, decreasing the accumulation of co-transcriptional DNA:RNA hybrids throughout the genome. Here, we explore the role of THOC at human telomeres, as a regulator of TERRA localization to chromosome ends. We show that THOC counteracts TERRA association with telomeres via R-loops formed co-transcriptionally and also post-transcriptionally, in trans. We demonstrate that THOC binds nucleoplasmic TERRA, and that RNaseH1 loss, which increases telomeric R-loops, promotes THOC occupancy at telomeres. Additionally, we show that THOC counteracts lagging and mainly leading strand telomere fragility, suggesting that TERRA R-loops can interfere with replication fork progression. Finally, we observed that THOC suppresses telomeric sister-chromatid exchange and C-circle accumulation in ALT cancer cells, which maintain telomeres by recombination. Altogether, our findings reveal crucial roles of THOC in telomeric homeostasis through the co- and post-transcriptional regulation of TERRA R-loops.
Collapse
Affiliation(s)
- Rita Valador Fernandes
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Pennarun G, Picotto J, Bertrand P. Close Ties between the Nuclear Envelope and Mammalian Telomeres: Give Me Shelter. Genes (Basel) 2023; 14:genes14040775. [PMID: 37107534 PMCID: PMC10137478 DOI: 10.3390/genes14040775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
The nuclear envelope (NE) in eukaryotic cells is essential to provide a protective compartment for the genome. Beside its role in connecting the nucleus with the cytoplasm, the NE has numerous important functions including chromatin organization, DNA replication and repair. NE alterations have been linked to different human diseases, such as laminopathies, and are a hallmark of cancer cells. Telomeres, the ends of eukaryotic chromosomes, are crucial for preserving genome stability. Their maintenance involves specific telomeric proteins, repair proteins and several additional factors, including NE proteins. Links between telomere maintenance and the NE have been well established in yeast, in which telomere tethering to the NE is critical for their preservation and beyond. For a long time, in mammalian cells, except during meiosis, telomeres were thought to be randomly localized throughout the nucleus, but recent advances have uncovered close ties between mammalian telomeres and the NE that play important roles for maintaining genome integrity. In this review, we will summarize these connections, with a special focus on telomere dynamics and the nuclear lamina, one of the main NE components, and discuss the evolutionary conservation of these mechanisms.
Collapse
Affiliation(s)
- Gaëlle Pennarun
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Julien Picotto
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| | - Pascale Bertrand
- Université Paris Cité, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
- Université Paris-Saclay, INSERM, CEA, Stabilité Génétique Cellules Souches et Radiations, LREV/iRCM/IBFJ, F-92260 Fontenay-aux-Roses, France
| |
Collapse
|
9
|
Maresca C, Dello Stritto A, D'Angelo C, Petti E, Rizzo A, Vertecchi E, Berardinelli F, Bonanni L, Sgura A, Antoccia A, Graziani G, Biroccio A, Salvati E. PARP1 allows proper telomere replication through TRF1 poly (ADP-ribosyl)ation and helicase recruitment. Commun Biol 2023; 6:234. [PMID: 36864251 PMCID: PMC9981704 DOI: 10.1038/s42003-023-04596-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 02/15/2023] [Indexed: 03/04/2023] Open
Abstract
Telomeres are nucleoprotein structures at eukaryotic chromosome termini. Their stability is preserved by a six-protein complex named shelterin. Among these, TRF1 binds telomere duplex and assists DNA replication with mechanisms only partly clarified. Here we found that poly (ADP-ribose) polymerase 1 (PARP1) interacts and covalently PARylates TRF1 in S-phase modifying its DNA affinity. Therefore, genetic and pharmacological inhibition of PARP1 impairs the dynamic association of TRF1 and the bromodeoxyuridine incorporation at replicating telomeres. Inhibition of PARP1 also affects the recruitment of WRN and BLM helicases in TRF1 containing complexes during S-phase, triggering replication-dependent DNA-damage and telomere fragility. This work unveils an unprecedented role for PARP1 as a "surveillant" of telomere replication, which orchestrates protein dynamics at proceeding replication fork.
Collapse
Affiliation(s)
- C Maresca
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - A Dello Stritto
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
- Institute of Molecular Genetics "Luigi Cavalli-Sforza", National Research Council, Via Abbiategrasso 207, Pavia, Italy
| | - C D'Angelo
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - E Petti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - A Rizzo
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - E Vertecchi
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | | | - L Bonanni
- Department of Biology, Roma Tre University, Rome, Italy
| | - A Sgura
- Department of Biology, Roma Tre University, Rome, Italy
| | - A Antoccia
- Department of Biology, Roma Tre University, Rome, Italy
| | - G Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - A Biroccio
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - E Salvati
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy.
| |
Collapse
|
10
|
Mirceta M, Shum N, Schmidt MHM, Pearson CE. Fragile sites, chromosomal lesions, tandem repeats, and disease. Front Genet 2022; 13:985975. [PMID: 36468036 PMCID: PMC9714581 DOI: 10.3389/fgene.2022.985975] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/02/2022] [Indexed: 09/16/2023] Open
Abstract
Expanded tandem repeat DNAs are associated with various unusual chromosomal lesions, despiralizations, multi-branched inter-chromosomal associations, and fragile sites. Fragile sites cytogenetically manifest as localized gaps or discontinuities in chromosome structure and are an important genetic, biological, and health-related phenomena. Common fragile sites (∼230), present in most individuals, are induced by aphidicolin and can be associated with cancer; of the 27 molecularly-mapped common sites, none are associated with a particular DNA sequence motif. Rare fragile sites ( ≳ 40 known), ≤ 5% of the population (may be as few as a single individual), can be associated with neurodevelopmental disease. All 10 molecularly-mapped folate-sensitive fragile sites, the largest category of rare fragile sites, are caused by gene-specific CGG/CCG tandem repeat expansions that are aberrantly CpG methylated and include FRAXA, FRAXE, FRAXF, FRA2A, FRA7A, FRA10A, FRA11A, FRA11B, FRA12A, and FRA16A. The minisatellite-associated rare fragile sites, FRA10B, FRA16B, can be induced by AT-rich DNA-ligands or nucleotide analogs. Despiralized lesions and multi-branched inter-chromosomal associations at the heterochromatic satellite repeats of chromosomes 1, 9, 16 are inducible by de-methylating agents like 5-azadeoxycytidine and can spontaneously arise in patients with ICF syndrome (Immunodeficiency Centromeric instability and Facial anomalies) with mutations in genes regulating DNA methylation. ICF individuals have hypomethylated satellites I-III, alpha-satellites, and subtelomeric repeats. Ribosomal repeats and subtelomeric D4Z4 megasatellites/macrosatellites, are associated with chromosome location, fragility, and disease. Telomere repeats can also assume fragile sites. Dietary deficiencies of folate or vitamin B12, or drug insults are associated with megaloblastic and/or pernicious anemia, that display chromosomes with fragile sites. The recent discovery of many new tandem repeat expansion loci, with varied repeat motifs, where motif lengths can range from mono-nucleotides to megabase units, could be the molecular cause of new fragile sites, or other chromosomal lesions. This review focuses on repeat-associated fragility, covering their induction, cytogenetics, epigenetics, cell type specificity, genetic instability (repeat instability, micronuclei, deletions/rearrangements, and sister chromatid exchange), unusual heritability, disease association, and penetrance. Understanding tandem repeat-associated chromosomal fragile sites provides insight to chromosome structure, genome packaging, genetic instability, and disease.
Collapse
Affiliation(s)
- Mila Mirceta
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Natalie Shum
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Monika H. M. Schmidt
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Christopher E. Pearson
- Program of Genetics and Genome Biology, The Hospital for Sick Children, The Peter Gilgan Centre for Research and Learning, Toronto, ON, Canada
- Program of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Batista LFZ, Dokal I, Parker R. Telomere biology disorders: time for moving towards the clinic? Trends Mol Med 2022; 28:882-891. [PMID: 36057525 PMCID: PMC9509473 DOI: 10.1016/j.molmed.2022.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 11/19/2022]
Abstract
Telomere biology disorders (TBDs) are a group of rare diseases caused by mutations that impair telomere maintenance. Mutations that cause reduced levels of TERC/hTR, the telomerase RNA component, are found in most TBD patients and include loss-of-function mutations in hTR itself, in hTR-binding proteins [NOP10, NHP2, NAF1, ZCCHC8, and dyskerin (DKC1)], and in proteins required for hTR processing (PARN). These patients show diverse clinical presentations that most commonly include bone marrow failure (BMF)/aplastic anemia (AA), pulmonary fibrosis, and liver cirrhosis. There are no curative therapies for TBD patients. An understanding of hTR biogenesis, maturation, and degradation has identified pathways and pharmacological agents targeting the poly(A) polymerase PAPD5, which adds 3'-oligoadenosine tails to hTR to promote hTR degradation, and TGS1, which modifies the 5'-cap structure of hTR to enhance degradation, as possible therapeutic approaches. Critical next steps will be clinical trials to establish the effectiveness and potential side effects of these compounds in TBD patients.
Collapse
Affiliation(s)
- Luis F Z Batista
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA; Center for Genome Integrity, Washington University in St. Louis, St. Louis, MO, USA; Center of Regenerative Medicine, Washington University in St. Louis, St. Louis, MO, USA.
| | - Inderjeet Dokal
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Roy Parker
- Department of Biochemistry and Biofrontiers Instiute, University of Colorado, Boulder, CO, USA; Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
12
|
Brenner KA, Nandakumar J. Consequences of telomere replication failure: the other end-replication problem. Trends Biochem Sci 2022; 47:506-517. [PMID: 35440402 PMCID: PMC9106919 DOI: 10.1016/j.tibs.2022.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/28/2022] [Accepted: 03/17/2022] [Indexed: 01/14/2023]
Abstract
Telomeres are chromosome-capping structures that protect ends of the linear genome from DNA damage sensors. However, these structures present obstacles during DNA replication. Incomplete telomere replication accelerates telomere shortening and limits replicative lifespan. Therefore, continued proliferation under conditions of replication stress requires a means of telomere repair, particularly in the absence of telomerase. It was recently revealed that replication stress triggers break-induced replication (BIR) and mitotic DNA synthesis (MiDAS) at mammalian telomeres; however, these mechanisms are error prone and primarily utilized in tumorigenic contexts. In this review article, we discuss the consequences of replication stress at telomeres and how use of available repair pathways contributes to genomic instability. Current research suggests that fragile telomeres are ultimately tumor-suppressive and thus may be better left unrepaired.
Collapse
Affiliation(s)
- Kirsten A Brenner
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Lin CYG, Näger AC, Lunardi T, Vančevska A, Lossaint G, Lingner J. The human telomeric proteome during telomere replication. Nucleic Acids Res 2021; 49:12119-12135. [PMID: 34747482 PMCID: PMC8643687 DOI: 10.1093/nar/gkab1015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/07/2021] [Accepted: 10/13/2021] [Indexed: 11/13/2022] Open
Abstract
Telomere shortening can cause detrimental diseases and contribute to aging. It occurs due to the end replication problem in cells lacking telomerase. Furthermore, recent studies revealed that telomere shortening can be attributed to difficulties of the semi-conservative DNA replication machinery to replicate the bulk of telomeric DNA repeats. To investigate telomere replication in a comprehensive manner, we develop QTIP-iPOND - Quantitative Telomeric chromatin Isolation Protocol followed by isolation of Proteins On Nascent DNA - which enables purification of proteins that associate with telomeres specifically during replication. In addition to the core replisome, we identify a large number of proteins that specifically associate with telomere replication forks. Depletion of several of these proteins induces telomere fragility validating their importance for telomere replication. We also find that at telomere replication forks the single strand telomere binding protein POT1 is depleted, whereas histone H1 is enriched. Our work reveals the dynamic changes of the telomeric proteome during replication, providing a valuable resource of telomere replication proteins. To our knowledge, this is the first study that examines the replisome at a specific region of the genome.
Collapse
Affiliation(s)
- Chih-Yi Gabriela Lin
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Anna Christina Näger
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Thomas Lunardi
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Aleksandra Vančevska
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Gérald Lossaint
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Joachim Lingner
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|