1
|
Xue S, Biondi EG. Coordination of symbiosis and cell cycle functions in Sinorhizobium meliloti. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:691-696. [PMID: 29783033 DOI: 10.1016/j.bbagrm.2018.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/11/2018] [Accepted: 05/17/2018] [Indexed: 10/16/2022]
Abstract
The symbiotic nitrogen fixing species Sinorhizobium meliloti represents a remarkable model system for the class Alphaproteobacteria, which includes genera such as Caulobacter, Agrobacterium and Brucella. It is capable of living free in the soil, and is also able to establish a complex symbiosis with leguminous plants, during which its cell cycle program is completely rewired presumably due, at least in part, to the action of peptides secreted by the plant. Here we will discuss how the cell cycle regulation works in S. meliloti and the kinds of molecular mechanisms that take place during the infection. We will focus on the complex regulation of the master regulator of the S. meliloti cell cycle, the response regulator CtrA, discussing its implication in symbiosis.
Collapse
Affiliation(s)
- Shuanghong Xue
- Aix Marseille University, CNRS, IMM, LCB, 13009 Marseille, France
| | | |
Collapse
|
2
|
Heinrich K, Sobetzko P, Jonas K. A Kinase-Phosphatase Switch Transduces Environmental Information into a Bacterial Cell Cycle Circuit. PLoS Genet 2016; 12:e1006522. [PMID: 27941972 PMCID: PMC5189948 DOI: 10.1371/journal.pgen.1006522] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 12/27/2016] [Accepted: 12/05/2016] [Indexed: 11/18/2022] Open
Abstract
The bacterial cell cycle has been extensively studied under standard growth conditions. How it is modulated in response to environmental changes remains poorly understood. Here, we demonstrate that the freshwater bacterium Caulobacter crescentus blocks cell division and grows to filamentous cells in response to stress conditions affecting the cell membrane. Our data suggest that stress switches the membrane-bound cell cycle kinase CckA to its phosphatase mode, leading to the rapid dephosphorylation, inactivation and proteolysis of the master cell cycle regulator CtrA. The clearance of CtrA results in downregulation of division and morphogenesis genes and consequently a cell division block. Upon shift to non-stress conditions, cells quickly restart cell division and return to normal cell size. Our data indicate that the temporary inhibition of cell division through the regulated inactivation of CtrA constitutes a growth advantage under stress. Taken together, our work reveals a new mechanism that allows bacteria to alter their mode of proliferation in response to environmental cues by controlling the activity of a master cell cycle transcription factor. Furthermore, our results highlight the role of a bifunctional kinase in this process that integrates the cell cycle with environmental information. Free-living bacteria are frequently exposed to various environmental stress conditions. To survive under such adverse conditions, cells must induce pathways that prevent and alleviate cellular damages, but they must also adjust their cell cycle to guarantee cellular integrity. It has long been observed that various bacteria transform into filamentous cells under certain conditions in nature, indicating that they dynamically modulate cell division and the cell cycle in response to environmental cues. The molecular bases that allow bacteria to regulate cell division in response to fluctuating environmental conditions remain poorly understood. Here, we describe a new mechanism by which Caulobacter crescentus blocks division and transforms into filamentous cells under stress. We find that the observed cell division block depends on precise regulation of the key cell cycle regulator CtrA. Under optimal conditions, the membrane-bound cell cycle kinase CckA activates CtrA in response to spatiotemporal cues to induce expression of genes required for cell division. Our data suggest that external stress triggers CckA to dephosphorylate and inactivate CtrA, thus ensuring the downregulation of CtrA-regulated functions, including cell division. Given that CckA and CtrA are highly conserved among alphaproteobacteria, the mechanism found here, might operate in diverse bacteria, including those that are medically and agriculturally relevant.
Collapse
Affiliation(s)
- Kristina Heinrich
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Patrick Sobetzko
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Kristina Jonas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- LOEWE Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
3
|
Quiñones-Valles C, Sánchez-Osorio I, Martínez-Antonio A. Dynamical modeling of the cell cycle and cell fate emergence in Caulobacter crescentus. PLoS One 2014; 9:e111116. [PMID: 25369202 PMCID: PMC4219702 DOI: 10.1371/journal.pone.0111116] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/24/2014] [Indexed: 12/16/2022] Open
Abstract
The division of Caulobacter crescentus, a model organism for studying cell cycle and differentiation in bacteria, generates two cell types: swarmer and stalked. To complete its cycle, C. crescentus must first differentiate from the swarmer to the stalked phenotype. An important regulator involved in this process is CtrA, which operates in a gene regulatory network and coordinates many of the interactions associated to the generation of cellular asymmetry. Gaining insight into how such a differentiation phenomenon arises and how network components interact to bring about cellular behavior and function demands mathematical models and simulations. In this work, we present a dynamical model based on a generalization of the Boolean abstraction of gene expression for a minimal network controlling the cell cycle and asymmetric cell division in C. crescentus. This network was constructed from data obtained from an exhaustive search in the literature. The results of the simulations based on our model show a cyclic attractor whose configurations can be made to correspond with the current knowledge of the activity of the regulators participating in the gene network during the cell cycle. Additionally, we found two point attractors that can be interpreted in terms of the network configurations directing the two cell types. The entire network is shown to be operating close to the critical regime, which means that it is robust enough to perturbations on dynamics of the network, but adaptable to environmental changes.
Collapse
Affiliation(s)
- César Quiñones-Valles
- Engineering and Biomedical Physics Department, Center for Research and Advanced Studies of the National Polytechnic Institute at Monterrey, Apodaca, Nuevo León, México
- Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute at Irapuato, Irapuato, Guanajuato, México
| | - Ismael Sánchez-Osorio
- Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute at Irapuato, Irapuato, Guanajuato, México
| | - Agustino Martínez-Antonio
- Genetic Engineering Department, Center for Research and Advanced Studies of the National Polytechnic Institute at Irapuato, Irapuato, Guanajuato, México
- * E-mail:
| |
Collapse
|
4
|
Gaskell AA, Giovinazzo JA, Fonte V, Willey JM. Multi-tier regulation of the streptomycete morphogenetic peptide SapB. Mol Microbiol 2012; 84:501-15. [PMID: 22486809 DOI: 10.1111/j.1365-2958.2012.08041.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Streptomyces coelicolor is a morphologically complex bacterium requiring the secretion of surface-active proteins to progress through its life cycle. SapB represents an important class of these biosurfactants, as illustrated by its ability to restore aerial hyphae formation when applied exogenously to developmental mutants. However, such aerial hyphae fail to sporulate, exemplifying the need to co-ordinate the timing of SapB production with other developmental events. SapB has an unusual lantibiotic structure. Its structural gene, ramS, is only 38 nucleotides downstream of the gene encoding its putative modification enzyme, RamC. Transient, co-ordinated expression of the operon was thought to be controlled by the response regulator RamR. However, we show that ramS is transcribed throughout the cell cycle with a dual expression profile dissimilar to the tightly controlled ramC expression. Surprisingly, post-translational modification relies on prior membrane localization of the precursor peptide, RamS, as demonstrated by the absence of RamS modification in S. coelicolor hyphae treated with the Bacillus subtilis lipoprotein surfactin. Our results demonstrate that interspecies interaction can also be mediated by interference of post-translational events. Further, temporal and spatial regulation of irreversible post-translational modification of a surface-active morphogenetic peptide suggests a new model for the control of key developmental events.
Collapse
Affiliation(s)
- Alisa A Gaskell
- Department of Biology, Hofstra University, Hempstead, NY 11549, USA.
| | | | | | | |
Collapse
|
5
|
Regulatory response to carbon starvation in Caulobacter crescentus. PLoS One 2011; 6:e18179. [PMID: 21494595 PMCID: PMC3073932 DOI: 10.1371/journal.pone.0018179] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 02/22/2011] [Indexed: 11/19/2022] Open
Abstract
Bacteria adapt to shifts from rapid to slow growth, and have developed strategies for long-term survival during prolonged starvation and stress conditions. We report the regulatory response of C. crescentus to carbon starvation, based on combined high-throughput proteome and transcriptome analyses. Our results identify cell cycle changes in gene expression in response to carbon starvation that involve the prominent role of the FixK FNR/CAP family transcription factor and the CtrA cell cycle regulator. Notably, the SigT ECF sigma factor mediates the carbon starvation-induced degradation of CtrA, while activating a core set of general starvation-stress genes that respond to carbon starvation, osmotic stress, and exposure to heavy metals. Comparison of the response of swarmer cells and stalked cells to carbon starvation revealed four groups of genes that exhibit different expression profiles. Also, cell pole morphogenesis and initiation of chromosome replication normally occurring at the swarmer-to-stalked cell transition are uncoupled in carbon-starved cells.
Collapse
|
6
|
Polar localization of the CckA histidine kinase and cell cycle periodicity of the essential master regulator CtrA in Caulobacter crescentus. J Bacteriol 2009; 192:539-52. [PMID: 19897656 DOI: 10.1128/jb.00985-09] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phosphorylated form of the response regulator CtrA represses DNA replication initiation and regulates the transcription of about 100 cell cycle-regulated genes in Caulobacter crescentus. CtrA activity fluctuates during the cell cycle, and its periodicity is a key element of the engine that drives cell cycle progression. The histidine kinase CckA controls the phosphorylation not only of CtrA but also of CpdR, whose unphosphorylated form promotes CtrA proteolysis. Thus, CckA has a central role in establishing the cell cycle periodicity of CtrA activity by controlling both its phosphorylation and stability. Evidence suggests that the polar localization of CckA during the cell cycle plays a role in CckA function. However, the exact pattern of CckA localization remains controversial. Here, we describe a thorough, quantitative analysis of the spatiotemporal distribution of a functional and chromosomally produced CckA-monomeric green fluorescent protein fusion that affects current models of cell cycle regulation. We also identify two cis-acting regions in CckA that are important for its proper localization and function. The disruption of a PAS-like motif in the sensor domain affects the stability of CckA accumulation at the poles. This is accompanied by a partial loss in CckA function. Shortening an extended linker between beta-sheets within the CckA catalysis-assisting ATP-binding domain has a more severe effect on CckA polar localization and function. This mutant strain exhibits a dramatic cell-to-cell variability in CpdR levels and CtrA cell cycle periodicity, suggesting that the cell cycle-coordinated polar localization of CckA may be important for the robustness of signal transduction and cell cycle progression.
Collapse
|
7
|
Temporal controls of the asymmetric cell division cycle in Caulobacter crescentus. PLoS Comput Biol 2009; 5:e1000463. [PMID: 19680425 PMCID: PMC2714070 DOI: 10.1371/journal.pcbi.1000463] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 07/09/2009] [Indexed: 01/20/2023] Open
Abstract
The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella).
Collapse
|
8
|
Siegal-Gaskins D, Ash JN, Crosson S. Model-based deconvolution of cell cycle time-series data reveals gene expression details at high resolution. PLoS Comput Biol 2009; 5:e1000460. [PMID: 19680537 PMCID: PMC2718844 DOI: 10.1371/journal.pcbi.1000460] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/08/2009] [Indexed: 11/23/2022] Open
Abstract
In both prokaryotic and eukaryotic cells, gene expression is regulated across the cell cycle to ensure “just-in-time” assembly of select cellular structures and molecular machines. However, present in all time-series gene expression measurements is variability that arises from both systematic error in the cell synchrony process and variance in the timing of cell division at the level of the single cell. Thus, gene or protein expression data collected from a population of synchronized cells is an inaccurate measure of what occurs in the average single-cell across a cell cycle. Here, we present a general computational method to extract “single-cell”-like information from population-level time-series expression data. This method removes the effects of 1) variance in growth rate and 2) variance in the physiological and developmental state of the cell. Moreover, this method represents an advance in the deconvolution of molecular expression data in its flexibility, minimal assumptions, and the use of a cross-validation analysis to determine the appropriate level of regularization. Applying our deconvolution algorithm to cell cycle gene expression data from the dimorphic bacterium Caulobacter crescentus, we recovered critical features of cell cycle regulation in essential genes, including ctrA and ftsZ, that were obscured in population-based measurements. In doing so, we highlight the problem with using population data alone to decipher cellular regulatory mechanisms and demonstrate how our deconvolution algorithm can be applied to produce a more realistic picture of temporal regulation in a cell. Time-series analyses of cellular regulatory processes have successfully drawn attention to the importance of temporal regulation in biological systems. A number of model systems can be synchronized such that data collected on cell populations better reflect the dynamic properties of the individual cell. However, experimental synchronization is never perfect, and the degree of synchrony that does exist at the outset of an experiment is quickly lost over time as cells grow at different rates and enter different developmental or physiological states on cell division. Thus, data collected from a population of synchronized cells can lead to incorrect models of temporal regulation. Here we demonstrate that the problem of relating population data to the individual cell can be resolved with a computational method that effectively removes the effects of both imperfect synchrony and time-dependent loss of synchrony. Application of this deconvolution algorithm to a cell cycle time-series data set from the model bacterium Caulobacter crescentus uncovers critical temporal details in the expression of essential genes that are not evident in the raw population-based data. The deconvolution routine presented here is a robust and general tool for extracting biochemical parameters of the average single cell from population time-series data.
Collapse
Affiliation(s)
- Dan Siegal-Gaskins
- Mathematical Biosciences Institute, Ohio State University, Columbus, OH, USA.
| | | | | |
Collapse
|
9
|
Brown PJ, Hardy GG, Trimble MJ, Brun YV. Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus. Adv Microb Physiol 2009; 54:1-101. [PMID: 18929067 PMCID: PMC2621326 DOI: 10.1016/s0065-2911(08)00001-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caulobacter crescentus has become the predominant bacterial model system to study the regulation of cell-cycle progression. Stage-specific processes such as chromosome replication and segregation, and cell division are coordinated with the development of four polar structures: the flagellum, pili, stalk, and holdfast. The production, activation, localization, and proteolysis of specific regulatory proteins at precise times during the cell cycle culminate in the ability of the cell to produce two physiologically distinct daughter cells. We examine the recent advances that have enhanced our understanding of the mechanisms of temporal and spatial regulation that occur during cell-cycle progression.
Collapse
Affiliation(s)
- Pamela J.B. Brown
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| | - Gail G. Hardy
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| | - Michael J. Trimble
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| | - Yves V. Brun
- Department of Biology, Indiana University, 1001 East Third Street, Bloomington, IN 47405-3700, USA
| |
Collapse
|
10
|
Survival in nuclear waste, extreme resistance, and potential applications gleaned from the genome sequence of Kineococcus radiotolerans SRS30216. PLoS One 2008; 3:e3878. [PMID: 19057647 PMCID: PMC2587704 DOI: 10.1371/journal.pone.0003878] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 11/04/2008] [Indexed: 01/01/2023] Open
Abstract
Kineococcus radiotolerans SRS30216 was isolated from a high-level radioactive environment at the Savannah River Site (SRS) and exhibits γ-radiation resistance approaching that of Deinococcus radiodurans. The genome was sequenced by the U.S. Department of Energy's Joint Genome Institute which suggested the existence of three replicons, a 4.76 Mb linear chromosome, a 0.18 Mb linear plasmid, and a 12.92 Kb circular plasmid. Southern hybridization confirmed that the chromosome is linear. The K. radiotolerans genome sequence was examined to learn about the physiology of the organism with regard to ionizing radiation resistance, the potential for bioremediation of nuclear waste, and the dimorphic life cycle. K. radiotolerans may have a unique genetic toolbox for radiation protection as it lacks many of the genes known to confer radiation resistance in D. radiodurans. Additionally, genes involved in the detoxification of reactive oxygen species and the excision repair pathway are overrepresented. K. radiotolerans appears to lack degradation pathways for pervasive soil and groundwater pollutants. However, it can respire on two organic acids found in SRS high-level nuclear waste, formate and oxalate, which promote the survival of cells during prolonged periods of starvation. The dimorphic life cycle involves the production of motile zoospores. The flagellar biosynthesis genes are located on a motility island, though its regulation could not be fully discerned. These results highlight the remarkable ability of K radiotolerans to withstand environmental extremes and suggest that in situ bioremediation of organic complexants from high level radioactive waste may be feasible.
Collapse
|
11
|
Fukushima T, Szurmant H, Kim EJ, Perego M, Hoch JA. A sensor histidine kinase co-ordinates cell wall architecture with cell division in Bacillus subtilis. Mol Microbiol 2008; 69:621-32. [PMID: 18573169 PMCID: PMC2574549 DOI: 10.1111/j.1365-2958.2008.06308.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The concerted interconnection between processes driving DNA synthesis, division septum formation and cell wall synthesis and remodelling in rapidly growing bacteria requires precise co-ordination by signalling mechanisms that are, for the most part, unknown. The YycG (sensor histidine kinase)-YycF (response regulator/transcription factor) two-component system of Bacillus subtilis controls the synthesis of enzymes and their inhibitors that function in cell wall remodelling and cell separation. Here it is shown that the YycG sensor histidine kinase is a component of the division septum in growing cells. RT-PCR quantification of YycF approximately PO(4)-regulated gene transcription, in wild type and FtsZ-depleted, septum-less cells, indicated that YycG kinase activity on YycF is dependent on YycG localization to a division septum. The data support a model in which the YycG sensor kinase perceives information at the division septum and regulates the reciprocal synthesis of autolysins and autolysin inhibitors to co-ordinate growth and division with cell wall restructuring.
Collapse
Affiliation(s)
- Tatsuya Fukushima
- Division of Cellular Biology, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
12
|
Affiliation(s)
- Dylan M. Morris
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| | - Grant J. Jensen
- Division of Biology, California Institute of Technology, Pasadena, California 91125;
| |
Collapse
|
13
|
Igoshin OA, Alves R, Savageau MA. Hysteretic and graded responses in bacterial two-component signal transduction. Mol Microbiol 2008; 68:1196-215. [PMID: 18363790 DOI: 10.1111/j.1365-2958.2008.06221.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacterial two-component systems (TCS) are key signal transduction networks regulating global responses to environmental change. Environmental signals may modulate the phosphorylation state of sensor kinases (SK). The phosphorylated SK transfers the phosphate to its cognate response regulator (RR), which causes physiological response to the signal. Frequently, the SK is bifunctional and, when unphosphorylated, it is also capable of dephosphorylating the RR. The phosphatase activity may also be modulated by environmental signals. Using the EnvZ/OmpR system as an example, we constructed mathematical models to examine the steady-state and kinetic properties of the network. Mathematical modelling reveals that the TCS can show bistable behaviour for a given range of parameter values if unphosphorylated SK and RR form a dead-end complex that prevents SK autophosphorylation. Additionally, for bistability to exist the major dephosphorylation flux of the RR must not depend on the unphosphorylated SK. Structural modelling and published affinity studies suggest that the unphosphorylated SK EnvZ and the RR OmpR form a dead-end complex. However, bistability is not possible because the dephosphorylation of OmpR approximately P is mainly done by unphosphorylated EnvZ. The implications of this potential bistability in the design of the EnvZ/OmpR network and other TCS are discussed.
Collapse
Affiliation(s)
- Oleg A Igoshin
- Department of Bioengineering, Rice University, Houston, TX 77251-1892, USA.
| | | | | |
Collapse
|
14
|
Zakrzewska-Czerwińska J, Jakimowicz D, Zawilak-Pawlik A, Messer W. Regulation of the initiation of chromosomal replication in bacteria. FEMS Microbiol Rev 2007; 31:378-87. [PMID: 17459114 DOI: 10.1111/j.1574-6976.2007.00070.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The initiation of chromosomal replication occurs only once during the cell cycle in both prokaryotes and eukaryotes. Initiation of chromosome replication is the first and tightly controlled step of a DNA synthesis. Bacterial chromosome replication is initiated at a single origin, oriC, by the initiator protein DnaA, which specifically interacts with 9-bp non-palindromic sequences (DnaA boxes) at oriC. In Escherichia coli, a model organism used to study the mechanism of DNA replication and its regulation, the control of initiation relies on a reduction of the availability and/or activity of the two key elements, DnaA and the oriC region. This review summarizes recent research into the regulatory mechanisms of the initiation of chromosomal replication in bacteria, with emphasis on organisms other than E. coli.
Collapse
|
15
|
Biondi EG, Reisinger SJ, Skerker JM, Arif M, Perchuk BS, Ryan KR, Laub MT. Regulation of the bacterial cell cycle by an integrated genetic circuit. Nature 2006; 444:899-904. [PMID: 17136100 DOI: 10.1038/nature05321] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Accepted: 10/05/2006] [Indexed: 11/09/2022]
Abstract
How bacteria regulate cell cycle progression at a molecular level is a fundamental but poorly understood problem. In Caulobacter crescentus, two-component signal transduction proteins are crucial for cell cycle regulation, but the connectivity of regulators involved has remained elusive and key factors are unidentified. Here we identify ChpT, an essential histidine phosphotransferase that controls the activity of CtrA, the master cell cycle regulator. We show that the essential histidine kinase CckA initiates two phosphorelays, each requiring ChpT, which lead to the phosphorylation and stabilization of CtrA. Downregulation of CckA activity therefore results in the dephosphorylation and degradation of CtrA, which in turn allow the initiation of DNA replication. Furthermore, we show that CtrA triggers its own destruction by promoting cell division and inducing synthesis of the essential regulator DivK, which feeds back to downregulate CckA immediately before S phase. Our results define a single integrated circuit whose components and connectivity can account for the cell cycle oscillations of CtrA in Caulobacter.
Collapse
Affiliation(s)
- Emanuele G Biondi
- FAS Center for Systems Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cyanobacteria such as Synechococcus elongatus PCC 7942, Thermosynechococcus elongatus BP-1, and Synechocystis species strain PCC 6803 have an endogenous timing mechanism that can generate and maintain a 24 h (circadian) periodicity to global (whole genome) gene expression patterns. This rhythmicity extends to many other physiological functions, including chromosome compaction. These rhythmic patterns seem to reflect the periodicity of availability of the primary energy source for these photoautotrophic organisms, the Sun. Presumably, eons of environmentally derived rhythmicity--light/dark cycles--have simply been mechanistically incorporated into the regulatory networks of these cyanobacteria. Genetic and biochemical experimentation over the last 15 years has identified many key components of the primary timing mechanism that generates rhythmicity, the input pathways that synchronize endogenous rhythms to exogenous rhythms, and the output pathways that transduce temporal information from the timekeeper to the regulators of gene expression and function. Amazingly, the primary timing mechanism has evidently been extracted from S. elongatus PCC 7942 and can also keep time in vitro. Mixing the circadian clock proteins KaiA, KaiB, and KaiC from S. elongatus PCC 7942 in vitro and adding ATP results in a circadian rhythm in the KaiC protein phosphorylation state. Nonetheless, many questions still loom regarding how this circadian clock mechanism works, how it communicates with the environment and how it regulates temporal patterns of gene expression. Many details regarding structure and function of the individual clock-related proteins are provided here as a basis to discuss these questions. A strong, data-intensive foundation has been developed to support the working model for the cyanobacterial circadian regulatory system. The eventual addition to that model of the metabolic parameters participating in the command and control of this circadian global regulatory system will ultimately allow a fascinating look into whole-cell physiology and metabolism and the consequential organization of global gene expression patterns.
Collapse
Affiliation(s)
- Stanly B Williams
- Department of Biology, Life Science Building, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|