1
|
Mohanty M, Lima S, Das Pattanayak P, Das S, Buchholz A, Görls H, Plass W, Kaminsky W, Dinda R. Hydrazonate-Based Copper(II) Metallodrugs: Insights into Solution Behavior, G-Quadruplex DNA Interaction, and Anticancer Potential. Chem Asian J 2025; 20:e202401628. [PMID: 40079907 DOI: 10.1002/asia.202401628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 03/06/2025] [Accepted: 03/12/2025] [Indexed: 03/15/2025]
Abstract
Here, two mixed-ligand mononuclear [Cu(L1)py] (1), [Cu(L2)Him] (2) and one dinuclear copper(II) complex [Cu2(L3)2(DMSO)(MeOH)] (3) were isolated in solid state and characterized through single-crystal X-ray diffraction. Herein, we highlight the solution behavior of these complexes in solution medium through HRMS and ESR. Though the complexes maintain their integrity with respect to the ligand coordination, there is solvent or co-ligand exchange and generation of both [Cu(L)(py/Him)] or [Cu(L)(H2O)] species. G-quadruplex (G4-DNA) structures in the human telomeric DNA (hTelo) and promoter regions of oncogenes (c-MYC) can behave as potential therapeutic targets for the cancer treatment. Hence, the interaction of these complexes with G4-DNA and also duplex DNA was investigated through spectroscopy and molecular docking studies. The results reveal that the copper complexes show higher affinity for G4-DNA over duplex DNA, with 3 demonstrating the strongest binding among them. The complexes have also been tested for DNA nuclease activity against pUC19 plasmid DNA. Finally, the complexes showed significant cytotoxicity towards cancerous cell lines, namely HeLa and MCF-7 in comparison to the noncancerous cell line NIH-3T3. Annexin V/PI double staining assay demonstrated the apoptotic mode of cell death caused by the complexes. Overall, the results of G4-DNA interaction and anticancer activity are consistent, suggesting G4-DNA is the target for their biological activity.
Collapse
Affiliation(s)
- Monalisa Mohanty
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | | | - Sanchita Das
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität, Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität, Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität, Jena, Humboldtstr. 8, 07743, Jena, Germany
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, Seattle, Washington, 98195, United States
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, Rourkela, 769008, Odisha, India
| |
Collapse
|
2
|
Garabet A, Prislan I, Poklar Ulrih N, Wells JW, Chalikian TV. Conformational Propensities of a DNA Hairpin with a Stem Sequence from the c-MYC Promoter. Biomolecules 2025; 15:483. [PMID: 40305258 PMCID: PMC12024889 DOI: 10.3390/biom15040483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
G-quadruplexes and i-motifs are four-stranded non-canonical structures of DNA. They exist in the cell, where they are implicated in the conformational regulation of cellular events, such as transcription, translation, DNA replication, telomere homeostasis, and genomic instability. Formation of the G-quadruplex and i-motif conformations in the genome is controlled by their competition with the pre-existing duplex. The fate of that competition depends upon the relative stabilities of the competing conformations, leading ultimately to a distribution of double helical, tetrahelical, and coiled conformations that coexist in dynamic equilibrium with each other. We previously developed a CD spectroscopy-based procedure to characterize the distribution of conformations adopted by equimolar mixtures of complementary G- and C-rich DNA strands from the promoter regions of the c-MYC, VEGF, and Bcl-2 oncogenes. In those bimolecular systems, duplex-to-tetraplex and duplex-to-coil transitions are accompanied by strand separation and an associated entropic cost. This situation is distinct from the pseudo-monomolecular nature of conformational transformations within the genome, where strand separation does not occur. To mimic better the situation in the genome, we here extend our studies to a monomolecular DNA construct-a hairpin-in which complementary G- and C-rich strands featuring sequences from the promoter region of the c-MYC oncogene are linked by a dT11 loop. We used our CD-based procedure to quantify the distribution of conformational states sampled by the hairpin at pH 5.0 and 7.0 as a function of temperature and the concentration of KCl. The data were analyzed according to a thermodynamic model based on equilibria between the different conformational states to evaluate the thermodynamic properties of the duplex-to-coil, G-quadruplex-to-coil, and i-motif-to-coil transitions of the hairpin. The results have implications for the modulation of such transitions as a means of therapeutic intervention.
Collapse
Affiliation(s)
- Arees Garabet
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| | - Iztok Prislan
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (I.P.); (N.P.U.)
| | - Nataša Poklar Ulrih
- Biotechnical Faculty, Department of Food Science and Technology, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia; (I.P.); (N.P.U.)
| | - James W. Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, ON M5S 3M2, Canada; (A.G.); (J.W.W.)
| |
Collapse
|
3
|
Mostafavi M, Hassani L, Khoshkam M. Interaction of berberine with different forms of DNA in human telomeric region. J Struct Biol 2025; 217:108175. [PMID: 39900194 DOI: 10.1016/j.jsb.2025.108175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/12/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
Guanine-rich oligonucleotide sequences have the potential to form four-stranded structure known as G-quadruplex. These structures are frequently observed in crucial regions of the human genome, including promoter and telomeric regions. Due to their involvement in regulating gene expression and cell division, G-quadruplexes have emerged as promising targets for anticancer drugs. This study investigated interaction of berberine with different forms of DNA within human telomeric region. The results of absorption and fluorescence spectroscopy indicated that conformation of DNA plays an important role in the mode of binding. Circular dichroism suggested that berberine promotes compaction of the unstable quadruplex structure formed under non-saline conditions. Furthermore, interaction of berberine with the stable structures of G-quadruplex resulted in a change in their compactness without altering the type of DNA structure. 3D fluorescence spectra analysis by chemometrics methods showed formation of two distinct species probably attributed to the self-association and specific binding of berberin to the different forms of DNA. It can be also concluded that berberine forms a more stable complex with the human telomeric hybride type G-quadruplex structure compared with the basket type. In conclusion, the findings imply that the successful design of drugs targeting DNA within the human telomere region necessitates careful consideration of the diverse forms of DNA.
Collapse
Affiliation(s)
- Mahdiyeh Mostafavi
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Leila Hassani
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran.
| | - Maryam Khoshkam
- Department of Chemistry, Faculty of Science, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran; Department of Chemistry, Faculty of Science, University of Zanjan, 45371-38791, Zanjan, Iran
| |
Collapse
|
4
|
Tsuruta M, Shil S, Taniguchi S, Kawauchi K, Miyoshi D. The role of cytosine methylation in regulating the topology and liquid-liquid phase separation of DNA G-quadruplexes. Chem Sci 2025:d4sc06959e. [PMID: 39935503 PMCID: PMC11808335 DOI: 10.1039/d4sc06959e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Aberrant expansion of GGGGCC DNA repeats that form G-quadruplexes (G4) is the main cause of amyotrophic lateral sclerosis (ALS). Expanded GGGGCC repeats induce liquid-liquid phase separation (LLPS) through their interaction with cellular proteins. Furthermore, GGGGCC expansion induces cytosine methylation (mC). Previous studies have shown that even slight chemical modifications of RNAs and proteins can drastically affect their LLPS ability, yet the relationship between LLPS and epigenetic DNA modifications like mC remains unexplored. As a model system, we investigated the effects of mC on LLPS induced by GGGGCC repeat DNAs and show for the first time that mC suppresses LLPS by altering the topology of G4 from being parallel to antiparallel.
Collapse
Affiliation(s)
- Mitsuki Tsuruta
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Sumit Shil
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Shinya Taniguchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University 7-1-20 Minatojima-minamimachi, Chuo-ku Kobe Hyogo 650-0047 Japan
| |
Collapse
|
5
|
Moura NMM, Guedes S, Salvador D, Oliveira H, Neves MGPMS, Ramos CIV. Is Silver a Precious Metal for G-Quadruplex Stabilization Mediated by Porphyrins? Int J Mol Sci 2024; 25:13556. [PMID: 39769320 PMCID: PMC11678824 DOI: 10.3390/ijms252413556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/08/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer is a leading cause of death, so continuous efforts into cancer therapy are imperative. In tumor cells, telomerase and oncogene activity are key points for uncontrolled cell growth. Targeting these processes with ligands that inhibit telomerase and/or reduce oncogene expression has been identified as a promising cancer therapy. This study evaluated the selectivity and affinity of the silverII complex of 5,10,15,20-tetrakis(N-methyl-4-pyridinium)porphyrin (AgTMPyP) to stabilize DNA sequences capable of forming G4 structures mimicking the telomeric and oncogene regions, using spectroscopic, biochemical methods and in vitro assays. The tetracationic silver complex was compared with the free base, H2TMPyP, and the zincII complex, ZnTMPyP. The results obtained from UV-Vis and fluorescence methods pointed to a great affinity and good selectivity of AgTMPyP to G4 structures, especially for the oncogene MYC. In general, an increase in the ability of the studied ligands for 1O2 generation when interacting with oncogenic and telomeric G4 sequences was found. The results of the PCR stop assays proved that AgTMPyP has the ability to inhibit Taq polymerase. Additionally, in vitro assays demonstrated that the silverII complex exhibits low cytotoxicity against HaCaT- an immortalized, non-tumorigenic, skin keratinocytes cell line-and, although nonexclusive, AgTMPyP shows nuclear co-localization.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| | - Sofia Guedes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| | - Diana Salvador
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (D.S.); (H.O.)
- CICECO, Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; (D.S.); (H.O.)
| | - M. Graça P. M. S. Neves
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| | - Catarina I. V. Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (N.M.M.M.); (S.G.)
| |
Collapse
|
6
|
Ngo KH, Liew CW, Heddi B, Phan AT. Structural Basis for Parallel G-Quadruplex Recognition by an Ankyrin Protein. J Am Chem Soc 2024; 146:13709-13713. [PMID: 38738955 DOI: 10.1021/jacs.4c01971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
G-Quadruplex (G4) structures formed by guanine-rich DNA and RNA sequences are implicated in various biological processes. Understanding the mechanisms by which proteins recognize G4 structures is crucial for elucidating their functional roles. Here we present the X-ray crystal structure of an ankyrin protein bound to a parallel G4 structure. Our findings reveal a new specific recognition mode in which a bundle of α-helices and loops of the ankyrin form a flat surface to stack on the G-tetrad core. The protein employs a combination of hydrogen bonds and hydrophobic contacts to interact with the G4, and electrostatic interaction is used to enhance the binding affinity. This binding mechanism provides valuable insights into understanding G4 recognition by proteins.
Collapse
Affiliation(s)
- Khac Huy Ngo
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
| | - Chong Wai Liew
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| | - Brahim Heddi
- Laboratoire de Biologie et Pharmacologie Appliquée (LBPA), UMR8113 CNRS, ENS Paris-Saclay, Gif-sur-Yvette 91190, France
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, Singapore 636921, Singapore
| |
Collapse
|
7
|
Vojsovič M, Kratochvilová L, Valková N, Šislerová L, El Rashed Z, Menichini P, Inga A, Monti P, Brázda V. Transactivation by partial function P53 family mutants is increased by the presence of G-quadruplexes at a promoter site. Biochimie 2024; 216:14-23. [PMID: 37838351 DOI: 10.1016/j.biochi.2023.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/04/2023] [Accepted: 09/27/2023] [Indexed: 10/16/2023]
Abstract
The effect of mutations in the P53 family of transcription factors on their biological functions, including partial or complete loss of transcriptional activity, has been confirmed several times. At present, P53 family proteins showing partial loss of activity appear to be promising potential candidates for the development of novel therapeutic strategies which could restore their transcriptional activity. In this context, it is important to employ tools to precisely monitor their activity; in relation to this, non-canonical DNA secondary structures in promoters including G-quadruplexes (G4s) were shown to influence the activity of transcription factors. Here, we used a defined yeast assay to evaluate the impact of differently modeled G4 forming sequences on a panel of partial function P53 family mutant proteins. Specifically, a 22-mer G4 prone sequence (derived from the KSHV virus) and five derivatives that progressively mutate characteristic guanine stretches were placed upstream of a minimal promoter, adjacent to a P53 response element in otherwise isogenic yeast luciferase reporter strains. The transactivation ability of cancer-associated P53 (TA-P53α: A161T, R213L, N235S, V272L, R282W, R283C, R337C, R337H, and G360V) or Ectodermal Dyplasia syndromes-related P63 mutant proteins (ΔN-P63α: G134D, G134V and inR155) were tested. Our results show that the presence of G4 forming sequences can increase the transactivation ability of partial function P53 family proteins. These observations are pointing to the importance of DNA structural characteristics for accurate classification of P53 family proteins functionality in the context of the wide variety of TP53 and TP63 germline and somatic mutations.
Collapse
Affiliation(s)
- Matúš Vojsovič
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Libuše Kratochvilová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Natália Valková
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic.
| | - Lucie Šislerová
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| | - Zeinab El Rashed
- Gene Expression Regulation, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Paola Menichini
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| | - Paola Monti
- Mutagenesis and Cancer Prevention, IRCCS Ospedale Policlinico San Martino, 16132, Genoa, Italy.
| | - Václav Brázda
- Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61200, Brno, Czech Republic; Department of Food Chemistry and Biotechnology, Faculty of Chemistry, Brno University of Technology, Purkyňova 118, 61200, Brno, Czech Republic.
| |
Collapse
|
8
|
Badalyan M, Vardanyan IV, Haroutiunian SG, Dalyan YB. Structural Transitions in Complementary G-Rich and C-Rich Strands and Their Mixture at Various pH Conditions. ACS OMEGA 2023; 8:47051-47056. [PMID: 38107945 PMCID: PMC10719991 DOI: 10.1021/acsomega.3c06934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/11/2023] [Accepted: 11/14/2023] [Indexed: 12/19/2023]
Abstract
We used circular dichroism spectroscopy, UV spectrophotometry, and differential scanning calorimetry to investigate pH-dependent structural transitions in an equimolar mixture of complementary G-rich d[5'-A(GGGTTA)3GGG-3'] (TelG) and C-rich d[3'-T(CCCAAT)3CCC-5'] (TelC) human telomeric DNA strands. Our studies were conducted at neutral (pH 7.0) and slightly acidic (pH 5.5 and 6.5) pH. We analyzed the melting thermodynamics of TelG and TelC and their equimolar mixture. Our analysis revealed that the preferred conformation of an equimolar mixture of TelG and TelC is the duplex. At pH 5.5, however, in addition to the duplex state, we observed a significant population of the i-motif state formed by TelC. Our results are consistent with the picture in which an increase in pH from 5.5 to 7.0 has little effect on the melting enthalpy of an isolated G-quadruplex while causing a strong reduction in the melting enthalpy of an isolated i-motif (the latter diminishes to 0 at pH 7.0). These effects summarily lead to a decrease in the contribution of the i-motif to the melting enthalpy of the mixture and, hence, an increase in the apparent melting enthalpy and overall stability of the duplex state.
Collapse
Affiliation(s)
- Milena
Kh. Badalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | - Ishkhan V. Vardanyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| | | | - Yeva B. Dalyan
- Department of Molecular Physics, Yerevan State University, Yerevan 0025, Armenia
| |
Collapse
|
9
|
Schumann SL, Kotnig S, Kutin Y, Drosou M, Stratmann LM, Streltsova Y, Schnegg A, Pantazis DA, Clever GH, Kasanmascheff M. Structure and Flexibility of Copper-Modified DNA G-Quadruplexes Investigated by 19 F ENDOR Experiments at 34 GHz. Chemistry 2023; 29:e202302527. [PMID: 37602522 DOI: 10.1002/chem.202302527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/18/2023] [Accepted: 08/21/2023] [Indexed: 08/22/2023]
Abstract
DNA G-quadruplexes (GQs) are of great interest due to their involvement in crucial biological processes such as telomerase maintenance and gene expression. Furthermore, they are reported as catalytically active DNAzymes and building blocks in bio-nanotechnology. GQs exhibit remarkable structural diversity and conformational heterogeneity, necessitating precise and reliable tools to unravel their structure-function relationships. Here, we present insights into the structure and conformational flexibility of a unimolecular GQ with high spatial resolution via electron-nuclear double resonance (ENDOR) experiments combined with Cu(II) and fluorine labeling. These findings showcase the successful application of the 19 F-ENDOR methodology at 34 GHz, overcoming the limitations posed by the complexity and scarcity of higher-frequency spectrometers. Importantly, our approach retains both sensitivity and orientational resolution. This integrated study not only enhances our understanding of GQs but also expands the methodological toolbox for studying other macromolecules.
Collapse
Affiliation(s)
- Simon L Schumann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Simon Kotnig
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yury Kutin
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Maria Drosou
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Lukas M Stratmann
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yana Streltsova
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Alexander Schnegg
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Müge Kasanmascheff
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| |
Collapse
|
10
|
Lin J, Zhang J, Ma Z, Wu X, Wang F, Zhao Y, Wu K, Liu Y. Reaction of human telomeric unit TTAGGG and a photoactivatable Pt(IV) anticancer prodrug. Dalton Trans 2023; 52:12057-12066. [PMID: 37581306 DOI: 10.1039/d3dt01643a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The interaction of a photoactivatable diazidodihydroxido Pt(IV) prodrug, trans,trans,trans-[Pt(N3)2(OH)2(py)2] (py = pyridine; 1), with a hexamer straight human telomeric DNA unit sequence (5'-T1T2A3G4G5G6-3', I) upon light irradiation was investigated by electrospray ionization mass spectroscopy (ESI-MS). In the primary mass spectrum, two major mono-platinated I adducts with the bound Pt moieties, trans-[PtII(N3)(py)2]+ (1') and trans-[PtII(py)2]2+ (1''), respectively, were detected. It is rare to observe such high abundance and nearly equal intensity platinated DNA adducts formed by these two PtII species because 1' is usually the only major reduced Pt(II) species produced by the photodecomposition of complex 1 in the presence of DNA while 1'' was rarely detected as the major reduced PtII species reported previously. Subsequent tandem mass spectrometric analysis by collision-induced dissociation (CID) showed that in the former adduct {I + 1'}2+, G6 and A3 were the platination sites. While in the latter adduct {I + 1''}2+, a potential intrastrand crosslink was speculated after G4 and G6 sites were identified. Additionally, other minor platinated adducts like di-platinated I adduct by 1' with platination sites at G4 and G6 and mono-platinated I adducts containing base oxidation were also detected by mass spectrometry. Due to the rich guanines and their sensitivity to oxidation, the oxidation induced by 1 most probably occurred at guanine. The oxidation adducts were proposed as 8-hydroxyl guanine, spiroiminodihydantoin (Sp), 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG), 5-guanidinohydantoin (Gh), and/or dehydroguanidinohydantoin (DGh) referring to previous reports. The obtained results provide useful chemical information about the photoreaction between photoactivatable Pt(IV) anticancer prodrugs and human telomeric DNA. Such special damages of Pt(IV) prodrugs on human telomeric DNA implicate its active role in the mechanism of Pt(IV) prodrugs and further support the unique sequence-dependent photointeraction profile of complex 1 reacting with DNA.
Collapse
Affiliation(s)
- Jiafan Lin
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Jishuai Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Ziqi Ma
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Yi Liu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, P. R. China
| |
Collapse
|
11
|
Moura NMM, Cavaleiro JAS, Neves MGPMS, Ramos CIV. opp-Dibenzoporphyrin Pyridinium Derivatives as Potential G-Quadruplex DNA Ligands. Molecules 2023; 28:6318. [PMID: 37687146 PMCID: PMC10489911 DOI: 10.3390/molecules28176318] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 09/10/2023] Open
Abstract
Since the occurrence of tumours is closely associated with the telomerase function and oncogene expression, the structure of such enzymes and genes are being recognized as targets for new anticancer drugs. The efficacy of several ligands in telomerase inhibition and in the regulation of genes expression, by an effective stabilisation of G-quadruplexes (G4) DNA structures, is being considered as a promising strategy in cancer therapies. When evaluating the potential of a ligand for telomerase inhibition, the selectivity towards quadruplex versus duplex DNA is a fundamental attribute due to the large amount of double-stranded DNA in the cellular nucleus. This study reports the evaluated efficacy of three tetracationic opp-dibenzoporphyrins, a free base, and the corresponding zinc(II) and nickel(II) complexes, to stabilise G4 structures, namely the telomeric DNA sequence (AG3(T2AG3)3). In order to evaluate the selectivity of these ligands towards G4 structures, their interaction towards DNA calf thymus, as a double-strand DNA sequence, were also studied. The data obtained by using different spectroscopic techniques, such as ultraviolet-visible, fluorescence, and circular dichroism, suggested good affinity of the free-base porphyrin and of its zinc(II) complex for the considered DNA structures, both showing a pattern of selectivity for the telomeric G4 structure. A pattern of aggregation in aqueous solution was detected for both Zn(II) and Ni(II) metallo dibenzoporphyrins and the ability of DNA sequences to induce ligand disaggregation was observed.
Collapse
Affiliation(s)
- Nuno M. M. Moura
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.A.S.C.); (M.G.P.M.S.N.)
| | | | | | - Catarina I. V. Ramos
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal; (J.A.S.C.); (M.G.P.M.S.N.)
| |
Collapse
|
12
|
Han ZQ, Wen LN. Application of G-quadruplex targets in gastrointestinal cancers: Advancements, challenges and prospects. World J Gastrointest Oncol 2023; 15:1149-1173. [PMID: 37546556 PMCID: PMC10401460 DOI: 10.4251/wjgo.v15.i7.1149] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/11/2023] [Accepted: 05/08/2023] [Indexed: 07/12/2023] Open
Abstract
Genomic instability and inflammation are considered to be two enabling characteristics that support cancer development and progression. G-quadruplex structure is a key element that contributes to genomic instability and inflammation. G-quadruplexes were once regarded as simply an obstacle that can block the transcription of oncogenes. A ligand targeting G-quadruplexes was found to have anticancer activity, making G-quadruplexes potential anticancer targets. However, further investigation has revealed that G-quadruplexes are widely distributed throughout the human genome and have many functions, such as regulating DNA replication, DNA repair, transcription, translation, epigenetics, and inflammatory response. G-quadruplexes play double regulatory roles in transcription and translation. In this review, we focus on G-quadruplexes as novel targets for the treatment of gastrointestinal cancers. We summarize the application basis of G-quadruplexes in gastrointestinal cancers, including their distribution sites, structural characteristics, and physiological functions. We describe the current status of applications for the treatment of esophageal cancer, pancreatic cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, and gastrointestinal stromal tumors, as well as the associated challenges. Finally, we review the prospective clinical applications of G-quadruplex targets, providing references for targeted treatment strategies in gastrointestinal cancers.
Collapse
Affiliation(s)
- Zong-Qiang Han
- Department of Laboratory Medicine, Beijing Xiaotangshan Hospital, Beijing 102211, China
| | - Li-Na Wen
- Department of Clinical Nutrition, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China
| |
Collapse
|
13
|
Fukuda H, Zou T, Fujii S, Sato S, Wakahara D, Higashi S, Tseng TY, Chang TC, Yada N, Matsuo K, Habu M, Tominaga K, Takeuchi H, Takenaka S. Cyclic anthraquinone derivatives, unique G-quadruplex binders, selectively induce cancer cell apoptosis and inhibit tumor growth. PNAS NEXUS 2023; 2:pgad211. [PMID: 37416876 PMCID: PMC10319625 DOI: 10.1093/pnasnexus/pgad211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023]
Abstract
Cyclic anthraquinone derivatives (cAQs), which link two side chains of 1,5-disubstituted anthraquinone as a threading DNA intercalator, have been developed as G-quartet (G4) DNA-specific ligands. Among the cAQs, cAQ-mBen linked through the 1,3-position of benzene had the strongest affinity for G4 recognition and stabilization in vitro and was confirmed to bind to the G4 structure in vivo, selectively inhibiting cancer cell proliferation in correlation with telomerase expression levels and triggering cell apoptosis. RNA-sequencing analysis further indicated that differentially expressed genes regulated by cAQ-mBen were profiled with more potential quadruplex-forming sequences. In the treatment of the tumor-bearing mouse model, cAQ-mBen could effectively reduce tumor tissue and had less adverse effects on healthy tissue. These results suggest that cAQ-mBen can be a potential cancer therapeutic agent as a G4 binder.
Collapse
Affiliation(s)
| | | | | | | | - Daiki Wakahara
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka 804-8550, Japan
| | - Sen Higashi
- Division of Applied Pharmacology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan
| | - Ting-Yuan Tseng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Ta-Chau Chang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Naomi Yada
- Division of Oral Pathology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan
| | - Kou Matsuo
- Division of Oral Pathology, Department of Health Promotion, Kyushu Dental University, Fukuoka 803-8580, Japan
| | - Manabu Habu
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, Fukuoka 803-8580, Japan
| | - Kazuhiro Tominaga
- Division of Oral and Maxillofacial Surgery, Department of Science of Physical Functions, Kyushu Dental University, Fukuoka 803-8580, Japan
| | | | | |
Collapse
|
14
|
Structural Polymorphism of Guanine Quadruplex-Containing Regions in Human Promoters. Int J Mol Sci 2022; 23:ijms232416020. [PMID: 36555662 PMCID: PMC9786302 DOI: 10.3390/ijms232416020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Intramolecular guanine quadruplexes (G4s) are non-canonical nucleic acid structures formed by four guanine (G)-rich tracts that assemble into a core of stacked planar tetrads. G4-forming DNA sequences are enriched in gene promoters and are implicated in the control of gene expression. Most G4-forming DNA contains more G residues than can simultaneously be incorporated into the core resulting in a variety of different possible G4 structures. Although this kind of structural polymorphism is well recognized in the literature, there remain unanswered questions regarding possible connections between G4 polymorphism and biological function. Here we report a detailed bioinformatic survey of G4 polymorphism in human gene promoter regions. Our analysis is based on identifying G4-containing regions (G4CRs), which we define as stretches of DNA in which every residue can form part of a G4. We found that G4CRs with higher degrees of polymorphism are more tightly clustered near transcription sites and tend to contain G4s with shorter loops and bulges. Furthermore, we found that G4CRs with well-characterized biological functions tended to be longer and more polymorphic than genome-wide averages. These results represent new evidence linking G4 polymorphism to biological function and provide new criteria for identifying biologically relevant G4-forming regions from genomic data.
Collapse
|
15
|
Guo H, Deng B, Zhao L, Gao Y, Zhang X, Yang C, Zou B, Chen H, Sun M, Wang L, Jiao B. Programmed Aptamer Screening, Characterization, and Rapid Detection for α-Conotoxin MI. Toxins (Basel) 2022; 14:toxins14100706. [PMID: 36287974 PMCID: PMC9606946 DOI: 10.3390/toxins14100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Conotoxins (CTXs) are a variety of mixed polypeptide toxins, among which α-conotoxin MI (CTX-MI) is the most toxic. Serious toxic symptoms, a lack of counteracting drugs, and cumbersome detection processes have made CTX-MI a hidden danger for humans. One of the obstacles to resolving this problem is the absence of specific recognition elements. Aptamers have shown great advantages in the fields of molecule detection, drug development, etc. In this study, we screened and characterized aptamers for CTX-MI through a programmed process. MBMI-01c, the isolated aptamer, showed great affinity, with an affinity constant (K<sub>D</sub>) of 0.524 μM, and it formed an antiparallel G-quadruplet (GQ) structure for the specific recognition of CTX-MI. Additionally, an aptasensor based on the biolayer interferometry (BLI) platform was developed and displayed high precision, specificity, and repeatability with a limit of detection (LOD) of 0.26 μM. This aptasensor provides a potential tool for the rapid detection of CTX-MI in 10 min. The aptamer can be further developed for the enrichment, detoxification, and biological studies of CTX-MI. Additionally, the programmed process is applicable to screening and characterizing aptamers for other CTXs.
Collapse
|
16
|
Liu L, Zhu L, Tong H, Su C, Wells JW, Chalikian TV. Distribution of Conformational States Adopted by DNA from the Promoter Regions of the VEGF and Bcl-2 Oncogenes. J Phys Chem B 2022; 126:6654-6670. [PMID: 36001297 DOI: 10.1021/acs.jpcb.2c04304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We employed a previously described procedure, based on circular dichroism (CD) spectroscopy, to quantify the distribution of conformational states adopted by equimolar mixtures of complementary G-rich and C-rich DNA strands from the promoter regions of the VEGF and Bcl-2 oncogenes. Spectra were recorded at different pHs, concentrations of KCl, and temperatures. The temperature dependences of the fractional populations of the duplex, G-quadruplex, i-motif, and coiled conformations of each promoter were then analyzed within the framework of a thermodynamic model to obtain the enthalpy and melting temperature of each folded-to-unfolded transition involved in the equilibrium. A comparison of the conformational data on the VEGF and Bcl-2 DNA with similar results on the c-MYC DNA, which we reported previously, reveals that the distribution of conformational states depends on the specific DNA sequence and is modulated by environmental factors. Under the physiological conditions of room temperature, neutral pH, and elevated concentrations of potassium ions, the duplex conformation coexists with the G-quadruplex conformation in proportions that depend on the sequence. This observed conformational diversity has biological implications, and it further supports our previously proposed thermodynamic hypothesis of gene regulation. In that hypothesis, a specific distribution of duplex and tetraplex conformations in a promoter region is fine-tuned to maintain the healthy level of gene expression. Any deviation from a healthy distribution of conformational states may result in pathology stemming from up- or downregulation of the gene.
Collapse
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Legeng Zhu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Haoyuan Tong
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Chongyu Su
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - James W Wells
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
17
|
Ma X, Shi L, Zhang B, Liu L, Fu Y, Zhang X. Recent advances in bioprobes and biolabels based on cyanine dyes. Anal Bioanal Chem 2022; 414:4551-4573. [PMID: 35359180 DOI: 10.1007/s00216-022-03995-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/19/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022]
Abstract
As a functional dye, cyanine dye promotes the widespread application of bioprobes in the fields of medicine, genetics and environment, owing to its advantages of good photophysical properties, excellent biocompatibility and low toxicity to biological systems. Nowadays, it is mainly used in the fields of life sciences such as fluorescent labeling of biological macromolecules, disease diagnosis, immunoassay and DNA detection, all of which lie at the core of this review. First, we briefly introduced the characteristics and principles of the cyanine dye bioprobe. Afterward, we paid attention to the recent progress of cyanine dye bioprobes widely used in the 10 years from 2010 to 2020. The application of cyanine dyes as bioprobes with different identification elements, including enzymes, organelles, immunity and DNAs, was mainly summarized. Finally, this review gave an outlook on the future development trend of cyanine dye bioprobes. This facilitates the construction of a new type of multifunctional fluorescent probe and promotes its clinical application.
Collapse
Affiliation(s)
- Xiaoying Ma
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Lei Shi
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China.
| | - Buyue Zhang
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Lu Liu
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Yao Fu
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China
| | - Xiufeng Zhang
- College of Chemical Engineering, Hebei and Tangshan Key Laboratory of Medical-Industrial Integration Precision Medicine, North China University of Science and Technology, 063210, Tangshan, China.
| |
Collapse
|
18
|
Jiang J, Teunens T, Tisaun J, Denuit L, Moucheron C. Ruthenium(II) Polypyridyl Complexes and Their Use as Probes and Photoreactive Agents for G-quadruplexes Labelling. Molecules 2022; 27:1541. [PMID: 35268640 PMCID: PMC8912042 DOI: 10.3390/molecules27051541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their optical and electrochemical properties, ruthenium(II) polypyridyl complexes have been used in a wide array of applications. Since the discovery of the light-switch ON effect of [Ru(bpy)2dppz]2+ when interacting with DNA, the design of new Ru(II) complexes as light-up probes for specific regions of DNA has been intensively explored. Amongst them, G-quadruplexes (G4s) are of particular interest. These structures formed by guanine-rich parts of DNA and RNA may be associated with a wide range of biological events. However, locating them and understanding their implications in biological pathways has proven challenging. Elegant approaches to tackle this challenge relies on the use of photoprobes capable of marking, reversibly or irreversibly, these G4s. Indeed, Ru(II) complexes containing ancillary π-deficient TAP ligands can create a covalently linked adduct with G4s after a photoinduced electron transfer from a guanine residue to the excited complex. Through careful design of the ligands, high selectivity of interaction with G4 structures can be achieved. This allows the creation of specific Ru(II) light-up probes and photoreactive agents for G4 labelling, which is at the core of this review composed of an introduction dedicated to a brief description of G-quadruplex structures and two main sections. The first one will provide a general picture of ligands and metal complexes interacting with G4s. The second one will focus on an exhaustive and comprehensive overview of the interactions and (photo)reactions of Ru(II) complexes with G4s.
Collapse
Affiliation(s)
- Julie Jiang
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
- Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000 Mons, Belgium
| | - Jérôme Tisaun
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Laura Denuit
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université Libre de Bruxelles, Avenue F. D. Roosevelt 50-CP 160/08, 1050 Brussels, Belgium; (J.J.); (T.T.); (J.T.); (L.D.)
| |
Collapse
|
19
|
Duraisamy R, Palanisamy UM, Sheriffa Begum KMM, Dharmar P. Facile induction and stabilization of intramolecular antiparallel G-quadruplex of d(TTAGGG)n on interaction with triazine-2-imidazole ethyl amine compound and its Cu(II), Zn(II) complexes under no-salt conditions. J CHEM SCI 2022. [DOI: 10.1007/s12039-021-01996-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Persico M, Abbruzzese C, Matteoni S, Matarrese P, Campana AM, Villani V, Pace A, Paggi MG. Tackling the Behavior of Cancer Cells: Molecular Bases for Repurposing Antipsychotic Drugs in the Treatment of Glioblastoma. Cells 2022; 11:263. [PMID: 35053377 PMCID: PMC8773942 DOI: 10.3390/cells11020263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma (GBM) is associated with a very dismal prognosis, and current therapeutic options still retain an overall unsatisfactorily efficacy in clinical practice. Therefore, novel therapeutic approaches and effective medications are highly needed. Since the development of new drugs is an extremely long, complex and expensive process, researchers and clinicians are increasingly considering drug repositioning/repurposing as a valid alternative to the standard research process. Drug repurposing is also under active investigation in GBM therapy, since a wide range of noncancer and cancer therapeutics have been proposed or investigated in clinical trials. Among these, a remarkable role is played by the antipsychotic drugs, thanks to some still partially unexplored, interesting features of these agents. Indeed, antipsychotic drugs have been described to interfere at variable incisiveness with most hallmarks of cancer. In this review, we analyze the effects of antipsychotics in oncology and how these drugs can interfere with the hallmarks of cancer in GBM. Overall, according to available evidence, mostly at the preclinical level, it is possible to speculate that repurposing of antipsychotics in GBM therapy might contribute to providing potentially effective and inexpensive therapies for patients with this disease.
Collapse
Affiliation(s)
- Michele Persico
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Claudia Abbruzzese
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Silvia Matteoni
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| | - Paola Matarrese
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, 00162 Rome, Italy;
| | - Anna Maria Campana
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, USA;
| | - Veronica Villani
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.V.); (A.P.)
| | - Andrea Pace
- Neuro-Oncology, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (V.V.); (A.P.)
| | - Marco G. Paggi
- Cellular Networks and Molecular Therapeutic Targets, Proteomics Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.P.); (C.A.); (S.M.)
| |
Collapse
|
21
|
Patil KM, Chin D, Seah HL, Shi Q, Lim KW, Phan AT. G4-PROTAC: targeted degradation of a G-quadruplex binding protein. Chem Commun (Camb) 2021; 57:12816-12819. [PMID: 34783801 DOI: 10.1039/d1cc05025g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-quadruplex (G4) binding proteins regulate important biological processes, but their interaction networks are poorly understood. We report the first use of G4 as a warhead of a proteolysis-targeting chimera (G4-PROTAC) for targeted degradation of a G4-binding protein (RHAU/DHX36). G4-PROTAC provides a new way to explore G4-protein networks and to develop potential therapeutics.
Collapse
Affiliation(s)
- Kiran M Patil
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | - Danielle Chin
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | - Hui Ling Seah
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | - Qi Shi
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore. .,NTU Institute of Structural Biology, Nanyang Technological University, 636921, Singapore
| |
Collapse
|
22
|
Fu W, Jing H, Xu X, Xu S, Wang T, Hu W, Li H, Zhang N. Two coexisting pseudo-mirror heteromolecular telomeric G-quadruplexes in opposite loop progressions differentially recognized by a low equivalent of Thioflavin T. Nucleic Acids Res 2021; 49:10717-10734. [PMID: 34500466 PMCID: PMC8501994 DOI: 10.1093/nar/gkab755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/24/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
The final 3′-terminal residue of the telomeric DNA G-overhang is inherently less precise. Here, we describe how alteration of the last 3′-terminal base affects the mutual recognition between two different G-rich oligomers of human telomeric DNA in the formation of heteromolecular G-quadruplexes (hetero-GQs). Associations between three- and single-repeat fragments of human telomeric DNA, target d(GGGTTAGGGTTAGGG) and probe d(TAGGGT), in Na+ solution yield two coexisting forms of (3 + 1) hybrid hetero-GQs: the kinetically favourable LLP-form (left loop progression) and the thermodynamically controlled RLP-form (right loop progression). However, only the adoption of a single LLP-form has been previously reported between the same probe d(TAGGGT) and a target variant d(GGGTTAGGGTTAGGGT) having one extra 3′-end thymine. Moreover, the flanking base alterations of short G-rich probe variants also significantly affect the loop progressions of hetero-GQs. Although seemingly two pseudo-mirror counter partners, the RLP-form exhibits a preference over the LLP-form to be recognized by a low equivalent of fluorescence dye thioflavin T (ThT). To a greater extent, ThT preferentially binds to RLP hetero-GQ than with the corresponding telomeric DNA duplex context or several other representative unimolecular GQs.
Collapse
Affiliation(s)
- Wenqiang Fu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Haitao Jing
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Xiaojuan Xu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Suping Xu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Tao Wang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China
| | - Wenxuan Hu
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Huihui Li
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,University of Science and Technology of China, Hefei 230026, China
| | - Na Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei 230031, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Key Laboratory of Anhui Province for High Field Magnetic Resonance Imaging, Hefei 230031, China.,High Magnetic Field Laboratory of Anhui Province, Hefei 230031, China
| |
Collapse
|
23
|
Ma Y, Wakabayashi Y, Watatani N, Saito R, Hirokawa T, Tera M, Nagasawa K. Vinylnaphthalene-bearing hexaoxazole as a fluorescence turn-on type G-quadruplex ligand. Org Biomol Chem 2021; 19:8035-8040. [PMID: 34492672 DOI: 10.1039/d1ob01500a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oxazole-type fluorophores show an increase of fluorescence intensity upon interaction with nucleic acids, and therefore can be used as tools for nucleic acid-sensing and fluorescence imaging. Here, we developed a novel stilbene-type fluorophore, MO-VN (1), consisting of a mono oxazole bearing a vinyl naphthalene moiety. This compound (1) was embedded in a trioxazole 2 and a cyclic hexaoxazole 3a. The fluorescence properties of 1, 2, and 3a were evaluated in the presence of various nucleic acid sequences. Compound 3 showed significant fluorescent enhancement upon interacting with G-quadruplex (G4) structure, which plays critical roles in various biological phenomena. Further structural development focusing on the vinyl naphthalene moiety of 3a afforded a turn-on type G4 ligand 3e that shows G4-specific fluorescence. Measurement of the fluorescence of 3e during titration of a telomeric DNA, telo24, with its C-rich complementary sequence, which unwinds the G4 structure, allowed us to monitor the dynamics of G4.
Collapse
Affiliation(s)
- Yue Ma
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, To-kyo 184-8588, Japan.
| | - Yuki Wakabayashi
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Ko-ganei, Tokyo 184-8588, Japan.
| | - Naruyuki Watatani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Ko-ganei, Tokyo 184-8588, Japan.
| | - Ryota Saito
- Department of Chemistry Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan
| | - Takatsugu Hirokawa
- Transborder Medical Research center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.,Division of Biomedical Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8575, Japan.,Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ward, Tokyo 135-0064, Japan
| | - Masayuki Tera
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Ko-ganei, Tokyo 184-8588, Japan.
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Ko-ganei, Tokyo 184-8588, Japan.
| |
Collapse
|
24
|
Ray U, Sharma S, Kapoor I, Kumari S, Gopalakrishnan V, Vartak SV, Kumari N, Varshney U, Raghavan SC. G4 DNA present at human telomeric DNA contributes toward reduced sensitivity to γ-radiation induced oxidative damage, but not bulky adduct formation. Int J Radiat Biol 2021; 97:1166-1180. [PMID: 34259614 DOI: 10.1080/09553002.2021.1955997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/11/2021] [Accepted: 06/23/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE DNA, the hereditary material of a human cell generally exists as Watson-Crick base paired double-stranded B-DNA. Studies suggest that DNA can also exist in non-B forms, such as four stranded G-quadruplexes (G4 DNA). Recently, our studies revealed that the regions of DNA that can fold into G-quadruplex structures are less sensitive to ionizing radiation (IR) compared to B-DNA. Importantly, we reported that the planar G-quartet of a G4 structure is shielded from radiation induced DNA breaks, while the single- and double-stranded DNA regions remained susceptible. Thus, in the present study, we investigate whether telomeric repeat DNA present at the end of telomere, known to fold into G4 DNA can protect from radiation induced damages including strand breaks, oxidation of purines and bulky adduct formation on DNA. MATERIALS AND METHODS For plasmid irradiation assay, plasmids containing human telomeric repeat DNA sequence TTAGGG (0.8 kb or 1.8 kb) were irradiated with increasing doses of IR along with appropriate control plasmids and products were resolved on 1% agarose gel. Radioprotection was evaluated based on extent of conversion of supercoiled to nicked or linear forms of the DNA following irradiation. Formation of G-quadruplex structure on supercoiled DNA was evaluated based on circular dichroism (CD) spectroscopy studies. Cleavage of radiation induced oxidative damage and extent of formation of nicks was further evaluated using base and nucleotide excision repair proteins. RESULTS Results from CD studies showed that the plasmid DNA harboring human telomeric repeats (TTAGGG) can fold into G-quadruplex DNA structures. Further, results showed that human telomeric repeat sequence when present on a plasmid can protect the plasmid DNA against IR induced DNA strand breaks, unlike control plasmids bearing random DNA sequence. CONCLUSIONS Human telomeric repeat sequence when present on plasmids can fold into G-quadruplex DNA structures, and can protect the DNA against IR induced DNA strand breaks and oxidative damage. These results in conjunction with our previous studies suggest that telomeric repeat sequence imparts less sensitivity to IR and thus telomeres of chromosomes are protected from radiation.
Collapse
Affiliation(s)
- Ujjayinee Ray
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Shivangi Sharma
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Indu Kapoor
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Susmita Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Vidya Gopalakrishnan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
- Department of Zoology, St. Joseph's College, Irinjalakuda, India
| | - Supriya V Vartak
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Nitu Kumari
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - Umesh Varshney
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Sathees C Raghavan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
25
|
Singh U, Morya V, Datta B, Ghoroi C, Bhatia D. Stimuli Responsive, Programmable DNA Nanodevices for Biomedical Applications. Front Chem 2021; 9:704234. [PMID: 34277571 PMCID: PMC8278982 DOI: 10.3389/fchem.2021.704234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Of the multiple areas of applications of DNA nanotechnology, stimuli-responsive nanodevices have emerged as an elite branch of research owing to the advantages of molecular programmability of DNA structures and stimuli-responsiveness of motifs and DNA itself. These classes of devices present multiples areas to explore for basic and applied science using dynamic DNA nanotechnology. Herein, we take the stake in the recent progress of this fast-growing sub-area of DNA nanotechnology. We discuss different stimuli, motifs, scaffolds, and mechanisms of stimuli-responsive behaviours of DNA nanodevices with appropriate examples. Similarly, we present a multitude of biological applications that have been explored using DNA nanodevices, such as biosensing, in vivo pH-mapping, drug delivery, and therapy. We conclude by discussing the challenges and opportunities as well as future prospects of this emerging research area within DNA nanotechnology.
Collapse
Affiliation(s)
- Udisha Singh
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Vinod Morya
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Bhaskar Datta
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Chinmay Ghoroi
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
- Chemical Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology Gandhinagar, Palaj, India
- Center for Biomedical Engineering, Indian Institute of Technology Gandhinagar, Palaj, India
| |
Collapse
|
26
|
Stratmann LM, Kutin Y, Kasanmascheff M, Clever GH. Precise Distance Measurements in DNA G-Quadruplex Dimers and Sandwich Complexes by Pulsed Dipolar EPR Spectroscopy. Angew Chem Int Ed Engl 2021; 60:4939-4947. [PMID: 33063395 PMCID: PMC7984025 DOI: 10.1002/anie.202008618] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/12/2020] [Indexed: 12/20/2022]
Abstract
DNA G-quadruplexes show a pronounced tendency to form higher-order structures, such as π-stacked dimers and aggregates with aromatic binding partners. Reliable methods for determining the structure of these non-covalent adducts are scarce. Here, we use artificial square-planar Cu(pyridine)4 complexes, covalently incorporated into tetramolecular G-quadruplexes, as rigid spin labels for detecting dimeric structures and measuring intermolecular Cu2+ -Cu2+ distances via pulsed dipolar EPR spectroscopy. A series of G-quadruplex dimers of different spatial dimensions, formed in tail-to-tail or head-to-head stacking mode, were unambiguously distinguished. Measured distances are in full agreement with results of molecular dynamics simulations. Furthermore, intercalation of two well-known G-quadruplex binders, PIPER and telomestatin, into G-quadruplex dimers resulting in sandwich complexes was investigated, and previously unknown binding modes were discovered. Additionally, we present evidence that free G-tetrads also intercalate into dimers. Our transition metal labeling approach, combined with pulsed EPR spectroscopy, opens new possibilities for examining structures of non-covalent DNA aggregates.
Collapse
Affiliation(s)
- Lukas M. Stratmann
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Yury Kutin
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Müge Kasanmascheff
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| | - Guido H. Clever
- Faculty of Chemistry and Chemical BiologyTU Dortmund UniversityOtto-Hahn-Strasse 644227DortmundGermany
| |
Collapse
|
27
|
Long W, Zheng BX, Huang XH, She MT, Liu AL, Zhang K, Wong WL, Lu YJ. Molecular Recognition and Imaging of Human Telomeric G-Quadruplex DNA in Live Cells: A Systematic Advancement of Thiazole Orange Scaffold To Enhance Binding Specificity and Inhibition of Gene Expression. J Med Chem 2021; 64:2125-2138. [PMID: 33559473 DOI: 10.1021/acs.jmedchem.0c01656] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A series of fluorescent ligands, which were systematically constructed from thiazole orange scaffold, was investigated for their interactions with G-quadruplex structures and antitumor activity. Among the ligands, compound 3 was identified to exhibit excellent specificity toward telomere G4-DNA over other nucleic acids. The affinity of 3-Htg24 was almost 5 times higher than that of double-stranded DNA and promoter G4-DNA. Interaction studies showed that 3 may bind to both G-tetrad and the lateral loop near the 5'-end. The intracellular colocalization with BG4 and competition studies with BRACO19 reveal that 3 may interact with G4-structures. Moreover, 3 reduces the telomere length and downregulates hTERC and hTERT mRNA expression in HeLa cells. The cytotoxicity of 3 against cancer cells (IC50 = 12.7-16.2 μM) was found to be generally higher than noncancer cells (IC50 = 52.3 μM). The findings may support that the ligand is telomere G4-DNA specific and may provide meaningful insights for anticancer drug design.
Collapse
Affiliation(s)
- Wei Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Bo-Xin Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Xuan-He Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Meng-Ting She
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ao-Lu Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Kun Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.,School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China
| | - Wing-Leung Wong
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yu-Jing Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, P. R. China.,Engineering Research Academy of High Value Utilization of Green Plants, Meizhou 514779, P. R. China
| |
Collapse
|
28
|
Stratmann LM, Kutin Y, Kasanmascheff M, Clever GH. Präzise Abstandsmessungen in DNA‐G‐Quadruplex‐Dimeren und Sandwichkomplexen über gepulste dipolare EPR‐Spektroskopie. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lukas M. Stratmann
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Yury Kutin
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Müge Kasanmascheff
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Guido H. Clever
- Fakultät für Chemie und Chemische Biologie TU Dortmund Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| |
Collapse
|
29
|
Yasuda M, Ma Y, Okabe S, Wakabayashi Y, Su D, Chang YT, Seimiya H, Tera M, Nagasawa K. Target identification of a macrocyclic hexaoxazole G-quadruplex ligand using post-target-binding visualization. Chem Commun (Camb) 2020; 56:12905-12908. [PMID: 33030187 DOI: 10.1039/d0cc04957c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Macrocyclic hexaoxazoles (6OTDs) are G-quadruplex (G4) ligands, and some derivatives, such as L2H2-6OTD (1a) bearing two aminobutyl side chains, show cytotoxicity towards cancer cells. To identify the cellular target of 1a, we employed a post-target-binding strategy utilizing click reaction (Huisgen cyclization) between the azide-conjugated ligand L2H2-6OTD-Az (1b) and the cell-permeable dye CO-1 bearing a strained alkyne moiety and the BODIPY fluorophore under Cu-free conditions. We confirmed that introduction of the small azide group did not alter the physical or biological properties, including anti-cancer activity, of 1a, and we also demonstrated bias-free localization of CO-1. The post-binding visualization strategy suggested that L2H2-6OTD (1a) colocalized with RNA G4 in living cells.
Collapse
Affiliation(s)
- Mizuho Yasuda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kumar S, Choudhary D, Patra A, Bhavesh NS, Vivekanandan P. Analysis of G-quadruplexes upstream of herpesvirus miRNAs: evidence of G-quadruplex mediated regulation of KSHV miR-K12-1-9,11 cluster and HCMV miR-US33. BMC Mol Cell Biol 2020; 21:67. [PMID: 32972365 PMCID: PMC7513282 DOI: 10.1186/s12860-020-00306-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND G-quadruplexes regulate gene expression, recombination, packaging and latency in herpesviruses. Herpesvirus-encoded miRNAs have been linked to important biological functions. The presence and the biological role of G-quadruplexes have not been studied in the regulatory regions of virus miRNA. We hypothesized that herpesvirus-encoded miRNAs are regulated by G-quadruplexes in their promoters. RESULTS We analyzed the 1 kb regulatory regions of all herpesvirus-encoded miRNAs for the presence of putative quadruplex-forming sequences (PQS). Over two-third (67%) of the regulatory regions of herpesvirus miRNAs had atleast 1 PQS. The 200 bp region of the promoter proximal to herpesvirus miRNA is particularly enriched for PQS. We chose to study the G-quadruplex motifs in the promoters of miR-K12 cluster in Kaposi's sarcoma-associated Herpesvirus (KSHV miR-K12-1-9,11) and the miR-US33 encoded by Human Cytomegalovirus (HCMV miR-US33). Biophysical characterization indicates that the G-quadruplex motifs in the promoters of the KSHV miR-K12 cluster and the HCMV miR-US33 form stable intramolecular G-quadruplexes in vitro. Mutations disrupting the G-quadruplex motif in the promoter of the KSHV miR-K12 cluster significantly inhibits promoter activity, while those disrupting the motif in the promoter of HCMV miR-US33 significantly enhance the promoter activity as compared to that of the respective wild-type promoter. Similarly, the addition of G-quadruplex binding ligands resulted in the modulation of promoter activity of the wild-type promoters (with intact G-quadruplex) but not the mutant promoters (containing quadruplex-disrupting mutations). CONCLUSION Our findings highlight previously unknown mechanisms of regulation of virus-encoded miRNA and also shed light on new roles for G-quadruplexes in herpesvirus biology.
Collapse
Affiliation(s)
- Shivani Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| | - Divya Choudhary
- Department of Chemical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Perumal Vivekanandan
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
31
|
Huang C, Ma Z, Lin J, Gong X, Zhang F, Wu X, Wang F, Zheng W, Zhao Y, Wu K. Tandem Mass Spectrometry Reveals Preferential Ruthenation of Thymines in Human Telomeric G-Quadruplex DNA by an Organometallic Ruthenium Anticancer Complex. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00399] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chao Huang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Ziqi Ma
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Jiafan Lin
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Xianxian Gong
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Fengfeng Zhang
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Xiaoqin Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People’s Republic of China
| | - Wei Zheng
- Peking University Health Science Center, Beijing 100191, People’s Republic of China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
| | - Kui Wu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People’s Republic of China
| |
Collapse
|
32
|
Chalikian TV, Liu L, Macgregor RB. Duplex-tetraplex equilibria in guanine- and cytosine-rich DNA. Biophys Chem 2020; 267:106473. [PMID: 33031980 DOI: 10.1016/j.bpc.2020.106473] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Noncanonical four-stranded DNA structures, including G-quadruplexes and i-motifs, have been discovered in the cell and are implicated in a variety of genomic regulatory functions. The tendency of a specific guanine- and cytosine-rich region of genomic DNA to adopt a four-stranded conformation depends on its ability to overcome the constraints of duplex base-pairing by undergoing consecutive duplex-to-coil and coil-to-tetraplex transitions. The latter ability is determined by the balance between the free energies of participating ordered and disordered structures. In this review, we present an overview of the literature on the stability of G-quadruplex and i-motif structures and discuss the extent of duplex-tetraplex competition as a function of the sequence context of the DNA and environmental conditions including temperature, pH, salt, molecular crowding, and the presence of G-quadruplex-binding ligands. We outline how the results of in vitro studies can be expanded to understanding duplex-tetraplex equilibria in vivo.
Collapse
Affiliation(s)
- Tigran V Chalikian
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada.
| | - Lutan Liu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B Macgregor
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
33
|
Xu CX, Liu LY, Lv B, Zhao HY, Cao Q, Zhai T, Mao ZW. Two novel fan-shaped trinuclear Pt(ii) complexes act as G-quadruplex binders and telomerase inhibitors. Dalton Trans 2020; 49:9322-9329. [PMID: 32579629 DOI: 10.1039/d0dt01767a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Two new trinuclear Pt(ii) complexes {[Pt(dien)]3(tib)}(NO3)6 (1) and {[Pt(dpa)]3(tib)}(NO3)6 (2) (dien: diethylenetriamine, dpa: bis-(2-pyridylmethyl)amine, tib: 1,3,5-tris(1H-imidazol-1-yl)benzene) have been designed, synthesized, characterized and applied to a series of biochemical studies. We found that both of the Pt(ii) complexes exhibited much better selectivity for human telomeric G-quadruplex sequence than promoter G-quadruplexes (c-kit, c-myc, and bcl2) or duplex DNA. Both complexes displayed comparative stability and affinity towards human telomeric G-quadruplex by the studies from surface plasmon resonance, fluorescence resonance energy transfer and polymerase chain reaction stop assays. The circular dichroism indicated that both complexes could induce and stabilize anti-parallel G-quadruplex structures. Molecule docking presented that Pt(ii) complex intercalated into the large groove of human telomeric G-quadruplex (PDB ID: 143D). Furthermore, telomeric repeat amplification protocol assays quantitatively evaluated the inhibition of telomerase activity caused by the Pt(ii) complexes. The obtained IC50 values of 6.41 ± 0.042 μM and 2.67 ± 0.035 μM for 1 and 2, respectively, exhibited strong telomerase inhibitions. All results suggest that such fan-shaped trinuclear Pt(ii) complexes are effective and selective G-quadruplex binders, as well as strong telomerase inhibitors. This study provides insight into the development of human telomeric G-quadruplex targeted anticancer drugs based on the metal complex.
Collapse
Affiliation(s)
- Cui-Xia Xu
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211222, China and MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Bei Lv
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211222, China
| | - Hao-Yu Zhao
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211222, China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Teng Zhai
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
34
|
Tan J, Lan L. The DNA secondary structures at telomeres and genome instability. Cell Biosci 2020; 10:47. [PMID: 32257105 PMCID: PMC7104500 DOI: 10.1186/s13578-020-00409-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Telomeric DNA are TTAGGG tandem repeats, which are susceptible for oxidative DNA damage and hotspot regions for formation of DNA secondary structures such as t-loop, D-loop, G-quadruplexes (G4), and R-loop. In the past two decades, unique DNA or RNA secondary structures at telomeres or some specific regions of genome have become promising therapeutic targets. G-quadruplex and R-loops at telomeres or transcribed regions of genome have been considered as the potential targets for cancer therapy. Here we discuss the potentials to target the secondary structures (G4s and R-loops) in genome as therapy approaches.
Collapse
Affiliation(s)
- Jun Tan
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Li Lan
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115 USA
| |
Collapse
|
35
|
Amato R, Valenzuela M, Berardinelli F, Salvati E, Maresca C, Leone S, Antoccia A, Sgura A. G-quadruplex Stabilization Fuels the ALT Pathway in ALT-positive Osteosarcoma Cells. Genes (Basel) 2020; 11:genes11030304. [PMID: 32183119 PMCID: PMC7140816 DOI: 10.3390/genes11030304] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/20/2020] [Accepted: 03/09/2020] [Indexed: 12/20/2022] Open
Abstract
Most human tumors maintain telomere lengths by telomerase, whereas a portion of them (10–15%) uses a mechanism named alternative lengthening of telomeres (ALT). The telomeric G-quadruplex (G4) ligand RHPS4 is known for its potent antiproliferative effect, as shown in telomerase-positive cancer models. Moreover, RHPS4 is also able to reduce cell proliferation in ALT cells, although the influence of G4 stabilization on the ALT mechanism has so far been poorly investigated. Here we show that sensitivity to RHPS4 is comparable in ALT-positive (U2OS; SAOS-2) and telomerase-positive (HOS) osteosarcoma cell lines, unlinking the telomere maintenance mechanism and RHPS4 responsiveness. To investigate the impact of G4 stabilization on ALT, the cardinal ALT hallmarks were analyzed. A significant induction of telomeric doublets, telomeric clusterized DNA damage, ALT-associated Promyelocytic Leukaemia-bodies (APBs), telomere sister chromatid exchanges (T-SCE) and c-circles was found exclusively in RHPS4-treated ALT cells. We surmise that RHPS4 affects ALT mechanisms through the induction of replicative stress that in turn is converted in DNA damage at telomeres, fueling recombination. In conclusion, our work indicates that RHPS4-induced telomeric DNA damage promotes overactivation of telomeric recombination in ALT cells, opening new questions on the therapeutic employment of G4 ligands in the treatment of ALT positive tumors.
Collapse
Affiliation(s)
- Roberta Amato
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Martina Valenzuela
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Francesco Berardinelli
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
- Correspondence: ; Tel.: +39-0657-33-6330
| | - Erica Salvati
- BPM-CNR Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy;
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Carmen Maresca
- Oncogenomic and Epigenetic Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Stefano Leone
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Antonio Antoccia
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| | - Antonella Sgura
- Department of Science, Roma Tre University, I-00146 Rome, Italy; (R.A.); (M.V.); (S.L.); (A.A.); (A.S.)
| |
Collapse
|
36
|
Zou T, Sato S, Yasukawa R, Takeuchi R, Ozaki S, Fujii S, Takenaka S. The Interaction of Cyclic Naphthalene Diimide with G-Quadruplex under Molecular Crowding Condition. Molecules 2020; 25:molecules25030668. [PMID: 32033198 PMCID: PMC7037305 DOI: 10.3390/molecules25030668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/24/2020] [Accepted: 02/01/2020] [Indexed: 01/23/2023] Open
Abstract
G-quadruplex specific targeting molecules, also termed as G4 ligands, are attracting increasing attention for their ability to recognize and stabilize G-quadruplex and high potentiality for biological regulation. However, G4 ligands recognizing G-quadruplex were generally investigated within a dilute condition, which might be interfered with under a cellular crowding environment. Here, we designed and synthesized several new cyclic naphthalene diimide (cNDI) derivatives, and investigated their interaction with G-quadruplex under molecular crowding condition (40% v/v polyethylene glycol (PEG)200) to mimic the cellular condition. The results indicated that, under molecular crowding conditions, cNDI derivatives were still able to recognize and stabilize G-quadruplex structures based on circular dichroism measurement. The binding affinities were slightly decreased but still comparatively high upon determination by isothermal titration calorimetry and UV-vis absorbance spectroscopy. More interestingly, cNDI derivatives were observed with preference to induce a telomere sequence to form a hybrid G-quadruplex under cation-deficient molecular crowding conditions.
Collapse
Affiliation(s)
- Tingting Zou
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka 804-8550, Japan; (T.Z.); (S.S.); (R.Y.); (R.T.); (S.O.)
- Research Center for Bio-Microsensing Technology, Kyushu Institute of Technology, Fukuoka 804-8550, Japan
| | - Shinobu Sato
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka 804-8550, Japan; (T.Z.); (S.S.); (R.Y.); (R.T.); (S.O.)
- Research Center for Bio-Microsensing Technology, Kyushu Institute of Technology, Fukuoka 804-8550, Japan
| | - Rui Yasukawa
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka 804-8550, Japan; (T.Z.); (S.S.); (R.Y.); (R.T.); (S.O.)
| | - Ryusuke Takeuchi
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka 804-8550, Japan; (T.Z.); (S.S.); (R.Y.); (R.T.); (S.O.)
| | - Shunsuke Ozaki
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka 804-8550, Japan; (T.Z.); (S.S.); (R.Y.); (R.T.); (S.O.)
| | - Satoshi Fujii
- Department of Bioscience and Bioinformatics, Kyushu Institute of Technology, Fukuoka 820-8502, Japan;
| | - Shigeori Takenaka
- Department of Applied Chemistry, Kyushu Institute of Technology, Fukuoka 804-8550, Japan; (T.Z.); (S.S.); (R.Y.); (R.T.); (S.O.)
- Research Center for Bio-Microsensing Technology, Kyushu Institute of Technology, Fukuoka 804-8550, Japan
- Correspondence: ; Tel.: +81-93-884-3322
| |
Collapse
|
37
|
Heddi B, Cheong VV, Schmitt E, Mechulam Y, Phan AT. Recognition of different base tetrads by RHAU (DHX36): X-ray crystal structure of the G4 recognition motif bound to the 3′-end tetrad of a DNA G-quadruplex. J Struct Biol 2020; 209:107399. [DOI: 10.1016/j.jsb.2019.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 12/16/2022]
|
38
|
Interaction of (G4)2 and (X4)2 DNA quadruplexes with Cu+, Ag+ and Au+ metal cations: a quantum chemical calculation on structural, energetic and electronic properties. Struct Chem 2019. [DOI: 10.1007/s11224-019-01421-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Nakano SI, Ayusawa T, Tanino Y, Sugimoto N. Stabilization of DNA Loop Structures by Large Cations. J Phys Chem B 2019; 123:7687-7694. [PMID: 31465227 DOI: 10.1021/acs.jpcb.9b06074] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The DNA-binding properties of large cations differ from those of metal ions due to steric exclusion from base-paired regions. In this study, the thermal stability of DNA secondary structures, including duplexes, internal loops, bulge loops, hairpin loops, dangling ends, and G-quadruplexes, was investigated in the presence of cations of different sizes. Large cations, such as tetrabutylammonium and tetrapentylammonium ions, reduced the stability of fully matched duplexes but increased the stability of duplexes with a long loop. The cations also increased the stability of G-quadruplexes with a long loop, and the degree of stabilization was greater for low-stability G-quadruplexes. Analysis of the salt concentration dependence indicates that large cations bind to the loop nucleotides, leading to counteracting the destabilization effect on base pairing. It is likely that binding occurs when loop nucleotides are sufficiently flexible to allow for greater accessibility for large cations. These results provide insight into nucleic acid interactions with large cationic molecules and suggest a potential method for stabilizing noncanonical DNA structures under intracellular conditions.
Collapse
Affiliation(s)
- Shu-Ichi Nakano
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| | - Toshiya Ayusawa
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| | - Yuichi Tanino
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| | - Naoki Sugimoto
- Department of Nanobiochemistry, Faculty of Frontiers of Innovative Research in Science and Technology (FIRST) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan.,Frontier Institute for Biomolecular Engineering Research (FIBER) , Konan University , 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe , 650-0047 , Japan
| |
Collapse
|
40
|
Zhou K, Liu J, Xiong X, Cheng M, Hu X, Narva S, Zhao X, Wu Y, Zhang W. Design, synthesis of 4,5-diazafluorene derivatives and their anticancer activity via targeting telomeric DNA G-quadruplex. Eur J Med Chem 2019; 178:484-499. [PMID: 31202994 DOI: 10.1016/j.ejmech.2019.06.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 01/19/2023]
Abstract
In our work, 19 novel 4,5-diazafluorene derivatives (11a-d, 12a-d, 13a-d, 14a-c, 15c, 16a-c) bearing a 1,3-disubstituted pyrazol/thioxothiazolidinone or thioxothiazolidinone-oxadiazole moieties were designed, synthesized, preliminarily explored for their antitumor activities and in vitro mechanism. All compounds showed different values of antiproliferative activity against A549, AGS, HepG2 and MCF-7 cell lines through CCK-8. Especially, the compound 14c exhibited the strongest activity and best selectivity against A549 cells with an IC50 1.13 μM and an SI value of 7.01 relative to MRC-5 cells, which was better than cisplatin (SI = 1.80) as a positive control. Experimental results at extracellular level demonstrated that compounds 14a-c could strongly interact with the G-quadruplex(es) formed in a 26 nt telomeric G-rich DNA, in particular, the 14c exhibits quite strong binding affinity with an association equilibrium constant (KA) of 7.04(±0.16) × 107 M-1 and more than 1000-fold specificity to G4-DNA over ds-DNA and Mut-DNA at the compound/G4-DNA ratio of 1:1. Further trap assay ascertained that compounds 14a-c owned strong inhibitory ability of telomerase activity in A549 cells, suggesting that these compounds have great possibility to target telomeric G-quadruplexes and consequently indirectly inhibit the telomerase activity. In addition, it is worthy of note that the remarkable inhibitory effects of 14a-c on the mobility of tested cancer cells were observed by wound healing assays. Furthermore, molecular docking and UV-Vis spectral results unclose the rationale for the interaction of compounds with such G-quadruplex(es). These results indicate that the growth and metastasis inhibition of cancer cells mediated by these 4,5-diazafluorene derivatives possibly result from their interaction with telomeric G-quadruplexes, suggesting that 4,5-diazafluorene derivatives, especially 14c, possess potential as anticancer drugs.
Collapse
Affiliation(s)
- Kang Zhou
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiachun Liu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xuqiong Xiong
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mei Cheng
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaolin Hu
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Suresh Narva
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaoyin Zhao
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yanling Wu
- Lab of Molecular Immunology, Virus Inspection Department, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310051, China.
| | - Wen Zhang
- Lab of Chemical Biology and Molecular Drug Design, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China; Lab of Chemical Biology and Molecular Drug Design, Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
41
|
Ramos CIV, Almeida SP, Lourenço LMO, Pereira PMR, Fernandes R, Faustino MAF, Tomé JPC, Carvalho J, Cruz C, Neves MGPMS. Multicharged Phthalocyanines as Selective Ligands for G-Quadruplex DNA Structures. Molecules 2019; 24:E733. [PMID: 30781675 PMCID: PMC6412362 DOI: 10.3390/molecules24040733] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 01/21/2023] Open
Abstract
The stabilization of G-Quadruplex DNA structures by ligands is a promising strategy for telomerase inhibition in cancer therapy since this enzyme is responsible for the unlimited proliferation of cancer cells. To assess the potential of a compound as a telomerase inhibitor, selectivity for quadruplex over duplex DNA is a fundamental attribute, as the drug must be able to recognize quadruplex DNA in the presence of a large amount of duplex DNA, in the cellular nucleus. By using different spectroscopic techniques, such as ultraviolet-visible, fluorescence and circular dichroism, this work evaluates the potential of a series of multicharged phthalocyanines, bearing four or eight positive charges, as G-Quadruplex stabilizing ligands. This work led us to conclude that the existence of a balance between the number and position of the positive charges in the phthalocyanine structure is a fundamental attribute for its selectivity for G-Quadruplex structures over duplex DNA structures. Two of the studied phthalocyanines, one with four peripheral positive charges (ZnPc1) and the other with less exposed eight positive charges (ZnPc4) showed high selectivity and affinity for G-Quadruplex over duplex DNA structures and were able to accumulate in the nucleus of UM-UC-3 bladder cancer cells.
Collapse
Affiliation(s)
- Catarina I V Ramos
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Susana P Almeida
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Leandro M O Lourenço
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Patrícia M R Pereira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- CNC.IBILI Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - Rosa Fernandes
- Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal.
- CNC.IBILI Consortium, University of Coimbra, 3000-548 Coimbra, Portugal.
| | - M Amparo F Faustino
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - João P C Tomé
- CQE & Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, n1, 1049-001 Lisboa, Portugal.
| | - Josué Carvalho
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Carla Cruz
- CICS-UBI-Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - M Graça P M S Neves
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
42
|
Abstract
The genome-wide occurrence of G-quadruplexes and their demonstrated biological activities call for detailed understanding on the stability and transition kinetics of the structures. Although the core structural element in a G-quadruplex is simple and requires only four tandem repeats of Guanine rich sequences, there is rather rich conformational diversity in this structure. Corresponding to this structural diversity, it displays involved transition kinetics within individual G-quadruplexes and complicated interconversion among different G-quadruplex species. Due to the inherently high signal-to-noise ratio in the measurement, single-molecule tools offer a unique capability to investigate the thermodynamic, kinetic, and mechanical properties of G-quadruplexes with dynamic conformations. In this chapter, we describe different single molecule methods such as atomic-force microscopy (AFM), single-molecule fluorescence resonance energy transfer (smFRET), optical, magnetic, and magneto-optical tweezers to investigate G-quadruplex structures as well as their interactions with small-molecule ligands.
Collapse
Affiliation(s)
- Shankar Mandal
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA
| | | | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH, USA.
| |
Collapse
|
43
|
Azargun M, Meister PJ, Gauld JW, Fridgen TD. The K2(9-ethylguanine)122+ quadruplex is more stable to unimolecular dissociation than the K(9-ethylguanine)8+ quadruplex in the gas phase: a BIRD, energy resolved SORI-CID, IRMPD spectroscopic, and computational study. Phys Chem Chem Phys 2019; 21:15319-15326. [DOI: 10.1039/c9cp01651a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combination of experimental trapped-ion mass spectrometric studies and computational chemistry has been used to assess the intrinsic properties of the potassiated 9-ethylguanine (9eG) self-assembled quadruplex, K2(9eG)122+, in the gas phase.
Collapse
Affiliation(s)
- Mohammad Azargun
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada
| | - Paul J. Meister
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - James W. Gauld
- Department of Chemistry and Biochemistry
- University of Windsor
- Windsor
- Canada
| | - Travis D. Fridgen
- Department of Chemistry
- Memorial University of Newfoundland
- St. John's
- Canada
| |
Collapse
|
44
|
Abstract
G-quadruplexes (G4s) have become one of the most exciting nucleic acid secondary structures. A noncanonical, four-stranded structure formed in guanine-rich DNA and RNA sequences, G-quadruplexes can readily form under physiologically relevant conditions and are globularly folded structures. DNA is widely recognized as a double-helical structure essential in genetic information storage. However, only ~3% of the human genome is expressed in protein; RNA and DNA may form noncanonical secondary structures that are functionally important. G-quadruplexes are one such example which have gained considerable attention for their formation and regulatory roles in biologically significant regions, such as human telomeres, oncogene-promoter regions, replication initiation sites, and 5'- and 3'-untranslated region (UTR) of mRNA. They are shown to be a regulatory motif in a number of critical cellular processes including gene transcription, translation, replication, and genomic stability. G-quadruplexes are also found in nonhuman genomes, particularly those of human pathogens. Therefore, G-quadruplexes have emerged as a new class of molecular targets for drug development. In addition, there is considerable interest in the use of G-quadruplexes for biomaterials, biosensors, and biocatalysts. The First International Meeting on Quadruplex DNA was held in 2007, and the G-quadruplex field has been growing dramatically over the last decade. The methods used to study G-quadruplexes have been essential to the rapid progress in our understanding of this exciting nucleic acid secondary structure.
Collapse
Affiliation(s)
- Danzhou Yang
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, Purdue Center for Cancer Research, Purdue Institute for Drug Discovery, West Lafayette, IN USA
| | - Clement Lin
- Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN USA
| |
Collapse
|
45
|
Rajasekhar B, Kumar C, Premkumar G, Riyaz MAB, Lakshmi PTV, Swu T. Computational studies on G-quadruplex DNA-stabilizing property of novel Wittig-based Schiff-Base ligands and their copper(II) complexes. Struct Chem 2018. [DOI: 10.1007/s11224-018-1229-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
46
|
Rajasekhar B, Bodavarapu N, Sridevi M, Thamizhselvi G, RizhaNazar K, Padmanaban R, Swu T. Nonlinear optical and G-Quadruplex DNA stabilization properties of novel mixed ligand copper(II) complexes and coordination polymers: Synthesis, structural characterization and computational studies. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
47
|
Liu L, Kim BG, Feroze U, Macgregor RB, Chalikian TV. Probing the Ionic Atmosphere and Hydration of the c-MYC i-Motif. J Am Chem Soc 2018; 140:2229-2238. [DOI: 10.1021/jacs.7b11537] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Lutan Liu
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Byul G. Kim
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Ujala Feroze
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Robert B. Macgregor
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| | - Tigran V. Chalikian
- Department of Pharmaceutical Sciences,
Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College
Street, Toronto, Ontario M5S 3M2, Canada
| |
Collapse
|
48
|
Davis KJ, Assadawi NMO, Pham SQT, Birrento ML, Richardson C, Beck JL, Willis AC, Ralph SF. Effect of structure variations on the quadruplex DNA binding ability of nickel Schiff base complexes. Dalton Trans 2018; 47:13573-13591. [DOI: 10.1039/c8dt02727g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The synthesis of two new series of nickel complexes is described, along with their ability to bind to duplex and quadruplex DNA structures.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anthony C. Willis
- Research School of Chemistry
- Australian National University
- Canberra
- Australia
| | | |
Collapse
|
49
|
Yu Z, Cowan JA. Catalytic Metallodrugs: Substrate-Selective Metal Catalysts as Therapeutics. Chemistry 2017; 23:14113-14127. [PMID: 28688119 DOI: 10.1002/chem.201701714] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Zhen Yu
- Department of Chemistry and Biochemistry; The Ohio State University; 100 West 18th Avenue Columbus OH 43210 USA
| | - James A. Cowan
- Department of Chemistry and Biochemistry; The Ohio State University; 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
50
|
Yadav K, Meka PNR, Sadhu S, Guggilapu SD, Kovvuri J, Kamal A, Srinivas R, Devayani P, Babu BN, Nagesh N. Telomerase Inhibition and Human Telomeric G-Quadruplex DNA Stabilization by a β-Carboline-Benzimidazole Derivative at Low Concentrations. Biochemistry 2017; 56:4392-4404. [PMID: 28737386 DOI: 10.1021/acs.biochem.7b00008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Guanine rich regions in DNA, which can form highly stable secondary structures, namely, G-quadruplex or G4 DNA structures, affect DNA replication and transcription. Molecules that stabilize G4 DNA have become important in recent years. In this study, G4 DNA stabilization, inhibition of telomerase, and anticancer activity of synthetic β-carboline-benzimidazole derivatives (5a, 5d, 5h, and 5r) were studied. Among them, derivatives containing a 4-methoxyphenyl ring at C1 and a 6-methoxy-substituted benzimidazole at C3 (5a) were found to stabilize telomeric G-quadruplex DNA efficiently. The stoichiometry and interaction of a synthetic, β-carboline-benzimidazole derivative, namely, 3-(6-methoxy-1H-benzo[d]imidazol-2-yl)-1-(4-methoxyphenyl)-9H-pyrido[3,4-b]indole (5a), with human intermolecular G-quadruplex DNA at low concentrations were examined using electrospray ionization mass spectrometry. Spectroscopy techniques indicate that 5a may intercalate between the two stacks of G-quadruplex DNA. This model is supported by docking studies. When cancer cells are treated with 5a, the cell cycle arrest occurs at the sub-G1 phase. In addition, an apoptosis assay and fluorescence microscopy studies using cancer cells indicate that 5a can induce apoptosis. Results of biochemical assays such as the polymerase chain reaction stop assay and telomerase activity assay indicate that 5a has the potential to stabilize G-quadruplex DNA, and thereby, it may interfere with in vitro DNA synthesis and decrease telomerase activity. The results of this study reveal that the β-carboline-benzimidazole derivative (5a) is efficient in G-quadruplex DNA stabilization over double-stranded DNA, inhibits telomerase activity, and induces apoptosis in cancer cells.
Collapse
Affiliation(s)
- Kranthikumar Yadav
- Analytical Chemistry and Mass Spectrometry Division, CSIR-Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Penchala Narasimha Rao Meka
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Sudeshna Sadhu
- CSIR-Centre for Cellular and Molecular Biology , Hyderabad 500007, India
| | - Sravanthi Devi Guggilapu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500037, India
| | - Jeshma Kovvuri
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology , Hyderabad 500007, India.,Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500037, India
| | - Ragampeta Srinivas
- Analytical Chemistry and Mass Spectrometry Division, CSIR-Indian Institute of Chemical Technology , Hyderabad 500007, India
| | - Panuganti Devayani
- CSIR-Centre for Cellular and Molecular Biology , Hyderabad 500007, India
| | - Bathini Nagendra Babu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER) , Hyderabad 500037, India
| | - Narayana Nagesh
- CSIR-Centre for Cellular and Molecular Biology , Hyderabad 500007, India
| |
Collapse
|