1
|
Yaglova NV, Obernikhin SS, Timokhina EP, Yaglov VV, Nazimova SV. Changes in Secretion of the Thyroid and Pituitary Glands with a Gradual Decrease in Deuterium Body Content. Bull Exp Biol Med 2023; 174:797-800. [PMID: 37160602 DOI: 10.1007/s10517-023-05792-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Indexed: 05/11/2023]
Abstract
We studied changes in the secretion of thyroid hormones and pituitary thyroid-stimulating hormone (TSH) in young mature male Wistar rats during gradual decrease in deuterium body content. The rats received deuterium-depleted water ([D]=10 ppm) instead of tap water for 21 days. As soon as after 1 day, an increase in the secretion of thyroid hormones was recorded. On day 14, secondary hypothyroidism due to a sharp decrease in TSH secretion by the pituitary gland was found. By day 21, secretion of the thyroid hormones increased, and the reciprocal dependence between the concentrations of thyroid hormones and TSH was restored. Thus, the thyroid gland showed a higher sensitivity to a decrease in the deuterium content in the body than the hypothalamic-pituitary complex. The second difference was in type of response: activation of the secretory processes in the thyroid gland and a transient decrease in the secretory activity of pituitary gland thyrotropes to a decrease in deuterium content.
Collapse
Affiliation(s)
- N V Yaglova
- Laboratory of Endocrine System Development, A. P. Avtsyn Research Institute of Human Morphology, , A. P. Petrovsky Russian Research Center of Surgery, Moscow, Russia.
| | - S S Obernikhin
- Laboratory of Endocrine System Development, A. P. Avtsyn Research Institute of Human Morphology, , A. P. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - E P Timokhina
- Laboratory of Endocrine System Development, A. P. Avtsyn Research Institute of Human Morphology, , A. P. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - V V Yaglov
- Laboratory of Endocrine System Development, A. P. Avtsyn Research Institute of Human Morphology, , A. P. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| | - S V Nazimova
- Laboratory of Endocrine System Development, A. P. Avtsyn Research Institute of Human Morphology, , A. P. Petrovsky Russian Research Center of Surgery, Moscow, Russia
| |
Collapse
|
2
|
Yaglova NV, Obernikhin SS, Timokhina EP, Yaglov VV, Tsomartova DA, Nazimova SV, Tsomartova ES, Ivanova MY, Chereshneva EV, Lomanovskaya TA. Bilateral Shifts in Deuterium Supply Similarly Change Physiology of the Pituitary–Thyroid Axis, but Differentially Influence Na+/I− Symporter Production. Int J Mol Sci 2023; 24:ijms24076803. [PMID: 37047776 PMCID: PMC10095216 DOI: 10.3390/ijms24076803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023] Open
Abstract
Deuterium, a stable isotope of hydrogen, is abundant in organisms. It is known to produce various biological effects. However, its impact in thyroid hormone synthesis and secretion is poorly studied. The aim of this investigation was to evaluate the dynamics of thyroid hormones and pituitary thyroid-stimulating hormone secretion during bilateral shifts in deuterium supply and assess a possible role of the Na+/I− symporter (NIS), the main iodide transporter, in altered thyroid function. The experiment was performed on adult male Wistar rats, which consumed deuterium-depleted ([D] = 10 ppm) and deuterium-enriched ([D] = 500,000 ppm) water for 21 days. The assessment of total thyroxine and triiodothyronine and their free fractions, as well as thyroid-stimulating hormone in blood serum, revealed the rapid response of the thyroid gland to shifts in the deuterium/protium balance. The present investigation shows that the bilateral changes in the deuterium body content similarly modulate thyroid hormone production and functional activity of the pituitary gland, but the responses of the thyroid and pituitary glands differ. The response of the thyroid cells was to increase the synthesis of the hormones and the pituitary thyrotropes, in order to reduce the production of the thyroid-stimulating hormone. The evaluation of NIS serum levels found a gradual increase in the rats that consumed deuterium-enriched water and no differences in the group exposed to deuterium depletion. NIS levels in both groups did not correlate with thyroid hormones and pituitary thyroid-stimulating hormone production. The data obtained show that thyroid gland has a higher sensitivity to shifts in the deuterium body content than the hypothalamic–pituitary complex, which responded later but similarly in the case of deuteration or deuterium depletion. It indicates a different sensitivity of the endocrine glands to alterations in deuterium content. It suggests that thyroid hormone production rate may depend on deuterium blood/tissue and cytosol/organelle gradients, which possibly disturb the secretory process independently of the NIS.
Collapse
Affiliation(s)
- Nataliya V. Yaglova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Sergey S. Obernikhin
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Ekaterina P. Timokhina
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Valentin V. Yaglov
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Dibakhan A. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Svetlana V. Nazimova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
| | - Elina S. Tsomartova
- Laboratory of Endocrine System Development, A.P. Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution “Petrovsky National Research Centre of Surgery”, 119991 Moscow, Russia
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Marina Y. Ivanova
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Elizaveta V. Chereshneva
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Tatiana A. Lomanovskaya
- Department of Human Anatomy and Histology, Federal State Funded Educational Institution, Higher Education I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| |
Collapse
|
3
|
Laranjeiro MI, Alves LMF, Silva JM, Calado JG, Norte AC, Paiva VH, Lemos MFL, Ramos JA, Novais SC, Ceia FR. Assessment of environmental health based on a complementary approach using metal quantification, oxidative stress and trophic ecology of two gull species (Larus michahellis & Larus audouinii) breeding in sympatry. MARINE POLLUTION BULLETIN 2020; 159:111439. [PMID: 32692669 DOI: 10.1016/j.marpolbul.2020.111439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Metal pollution is currently a major issue in marine ecosystems, as organisms, and particularly seabirds, are exposed and accumulating increased levels from several anthropogenic sources. A set of 13 metals were quantified in two gull species breeding in sympatry, and in two distinct colonies separated by ca. 400 km. Oxidative stress was measured, and stable isotope analyses were used to link metal contamination and oxidative stress with the trophic ecology of each species/population. There was a clear segregation of metal contamination between the two species and to a much lesser extent between colonies. Overall, Audouin's gull was the most contaminated species for most metals, once this species relies mainly on fish and other marine resources. The Yellow-legged gull feeds regularly on terrestrial food sources besides fish, which may dilute contamination levels. Oxidative stress responses were related with birds' trophic ecology and foraging habitat, but apparently not with metal contamination.
Collapse
Affiliation(s)
- Maria I Laranjeiro
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Luís M F Alves
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| | - Joana M Silva
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Joana G Calado
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; CBMA - Molecular and Environmental Biology Centre, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; Animal Ecology Group, Lab 97, Torre CACTI, Campus As Lagoas, Universidade de Vigo, Spain
| | - Ana C Norte
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Vítor H Paiva
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| | - Jaime A Ramos
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre, ESTM, Instituto Politécnico de Leiria, 2520-641 Peniche, Portugal
| | - Filipe R Ceia
- University of Coimbra, Marine and Environmental Sciences Centre, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| |
Collapse
|
4
|
Elkina AA, Tumaev EN, Basov AA, Moiseev AV, Malyshko VV, Barisheva EV, Churkina AV, Dzhimak SS. The Mechanisms of the Interaction of Stable Isotopes with Biological Objects in the Presence of an Uncompensated Neutron in Chemical Bonds. Biophysics (Nagoya-shi) 2020. [DOI: 10.1134/s0006350920050048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
5
|
Demidov VV. Site-specifically deuterated essential lipids as new drugs against neuronal, retinal and vascular degeneration. Drug Discov Today 2020; 25:1469-1476. [DOI: 10.1016/j.drudis.2020.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/07/2020] [Accepted: 03/23/2020] [Indexed: 01/10/2023]
|
6
|
Shchepinov MS. Polyunsaturated Fatty Acid Deuteration against Neurodegeneration. Trends Pharmacol Sci 2020; 41:236-248. [DOI: 10.1016/j.tips.2020.01.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022]
|
7
|
Basov A, Fedulova L, Vasilevskaya E, Dzhimak S. Possible Mechanisms of Biological Effects Observed in Living Systems during 2H/ 1H Isotope Fractionation and Deuterium Interactions with Other Biogenic Isotopes. Molecules 2019; 24:E4101. [PMID: 31766268 PMCID: PMC6891295 DOI: 10.3390/molecules24224101] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/01/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
This article presents the original descriptions of some recent physics mechanisms (based on the thermodynamic, kinetic, and quantum tunnel effects) providing stable 2H/1H isotope fractionation, leading to the accumulation of particular isotopic forms in intra- or intercellular space, including the molecular effects of deuterium interaction with 18O/17O/16O, 15N/14N, 13C/12C, and other stable biogenic isotopes. These effects were observed mainly at the organelle (mitochondria) and cell levels. A new hypothesis for heavy nonradioactive isotope fractionation in living systems via neutron effect realization is discussed. The comparative analysis of some experimental studies results revealed the following observation: "Isotopic shock" is highly probable and is observed mostly when chemical bonds form between atoms with a summary odd number of neutrons (i.e., bonds with a non-compensated neutron, which correspond to the following equation: Nn - Np = 2k + 1, where k ϵ Z, k is the integer, Z is the set of non-negative integers, Nn is number of neutrons, and Np is number of protons of each individual atom, or in pair of isotopes with a chemical bond). Data on the efficacy and metabolic pathways of the therapy also considered 2H-modified drinking and diet for some diseases, such as Alzheimer's disease, Friedreich's ataxia, mitochondrial disorders, diabetes, cerebral hypoxia, Parkinson's disease, and brain cancer.
Collapse
Affiliation(s)
- Alexander Basov
- Department of Fundamental and Clinical Biochemistry, Kuban State Medical University, Krasnodar 350063, Russia;
- Department of Radiophysics and Nanotechnology, Kuban State University, Krasnodar 350040, Russia
| | - Liliya Fedulova
- The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow 109316, Russia; (L.F.); (E.V.)
| | - Ekaterina Vasilevskaya
- The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow 109316, Russia; (L.F.); (E.V.)
| | - Stepan Dzhimak
- Department of Radiophysics and Nanotechnology, Kuban State University, Krasnodar 350040, Russia
- The V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow 109316, Russia; (L.F.); (E.V.)
- Federal Research Center the Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don 344006, Russia
| |
Collapse
|
8
|
Mamet SD, Ma B, Ulrich A, Schryer A, Siciliano SD. Who Is the Rock Miner and Who Is the Hunter? The Use of Heavy-Oxygen Labeled Phosphate (P 18O 4) to Differentiate between C and P Fluxes in a Benzene-Degrading Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:1773-1786. [PMID: 29378402 DOI: 10.1021/acs.est.7b05773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Phosphorus availability and cycling in microbial communities is a key determinant of bacterial activity. However, identifying organisms critical to P cycling in complex biodegrading consortia has proven elusive. Here we assess a new DNA stable isotope probing (SIP) technique using heavy oxygen-labeled phosphate (P18O4) and its effectiveness in pure cultures and a nitrate-reducing benzene-degrading consortium. First, we successfully labeled pure cultures of Gram-positive Micrococcus luteus and Gram-negative Bradyrhizobium elkanii and separated isotopically light and heavy DNA in pure cultures using centrifugal analyses. Second, using high-throughput amplicon sequencing of 16S rRNA genes to characterize active bacterial taxa (13C-labeled), we found taxa like Betaproteobacteria were key in denitrifying benzene degradation and that other degrading (nonhydrocarbon) inactive taxa (P18O4-labeled) like Staphylococcus and Corynebacterium may promote degradation through production of secondary metabolites (i.e., "helper" or "rock miner" bacteria). Overall, we successfully separated active and inactive taxa in contaminated soils, demonstrating the utility of P18O4-DNA SIP for identifying actively growing bacterial taxa. We also identified potential "miner" bacteria that choreograph hydrocarbon degradation by other microbes (i.e., the "hunters") without directly degrading contaminants themselves. Thus, while several taxa degrade benzene under denitrifying conditions, microbial benzene degradation may be enhanced by both direct degraders and miner bacteria.
Collapse
Affiliation(s)
- Steven D Mamet
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Bin Ma
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta , Edmonton, Alberta T6G 1H9, Canada
| | - Aimée Schryer
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| | - Steven D Siciliano
- Department of Soil Science, University of Saskatchewan , Saskatoon, Saskatchewan S7N 5A8, Canada
| |
Collapse
|
9
|
Gorokhova E. Shifts in rotifer life history in response to stable isotope enrichment: testing theories of isotope effects on organismal growth. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160810. [PMID: 28405367 PMCID: PMC5383824 DOI: 10.1098/rsos.160810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
In ecology, stable isotope labelling is commonly used for tracing material transfer in trophic interactions, nutrient budgets and biogeochemical processes. The main assumption in this approach is that the enrichment with a heavy isotope has no effect on the organism growth and metabolism. This assumption is, however, challenged by theoretical considerations and experimental studies on kinetic isotope effects in vivo. Here, I demonstrate profound changes in life histories of the rotifer Brachionus plicatilis fed 15N-enriched algae (0.4-5.0 at%); i.e. at the enrichment levels commonly used in ecological studies. These findings support theoretically predicted effects of heavy isotope enrichment on growth, metabolism and ageing in biological systems and underline the importance of accounting for such effects when using stable isotope labelling in experimental studies.
Collapse
Affiliation(s)
- Elena Gorokhova
- Department of Environmental Science and Analytical Chemistry , Stockholm University , Svante Arrhenius väg 8, 10691 Stockholm , Sweden
| |
Collapse
|
10
|
Korneenko TV, Pestov NB, Hurski AL, Fedarkevich AM, Shmanai VV, Brenna JT, Shchepinov MS. A strong developmental isotope effect in Caenorhabditis elegans induced by 5,5-deuterated lysine. Amino Acids 2017; 49:887-894. [DOI: 10.1007/s00726-017-2386-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/27/2017] [Indexed: 01/17/2023]
|
11
|
Li X, Snyder MP. Can heavy isotopes increase lifespan? Studies of relative abundance in various organisms reveal chemical perspectives on aging. Bioessays 2016; 38:1093-1101. [PMID: 27554342 PMCID: PMC5108472 DOI: 10.1002/bies.201600040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Stable heavy isotopes co-exist with their lighter counterparts in all elements commonly found in biology. These heavy isotopes represent a low natural abundance in isotopic composition but impose great retardation effects in chemical reactions because of kinetic isotopic effects (KIEs). Previous isotope analyses have recorded pervasive enrichment or depletion of heavy isotopes in various organisms, strongly supporting the capability of biological systems to distinguish different isotopes. This capability has recently been found to lead to general decline of heavy isotopes in metabolites during yeast aging. Conversely, supplementing heavy isotopes in growth medium promotes longevity. Whether this observation prevails in other organisms is not known, but it potentially bears promise in promoting human longevity.
Collapse
Affiliation(s)
- Xiyan Li
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
12
|
Isotopic resonance hypothesis: experimental verification by Escherichia coli growth measurements. Sci Rep 2015; 5:9215. [PMID: 25782666 PMCID: PMC4363831 DOI: 10.1038/srep09215] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/23/2015] [Indexed: 12/20/2022] Open
Abstract
Isotopic composition of reactants affects the rates of chemical and biochemical reactions. As a rule, enrichment of heavy stable isotopes leads to progressively slower reactions. But the recent isotopic resonance hypothesis suggests that the dependence of the reaction rate upon the enrichment degree is not monotonous. Instead, at some “resonance” isotopic compositions, the kinetics increases, while at “off-resonance” compositions the same reactions progress slower. To test the predictions of this hypothesis for the elements C, H, N and O, we designed a precise (standard error ±0.05%) experiment that measures the parameters of bacterial growth in minimal media with varying isotopic composition. A number of predicted resonance conditions were tested, with significant enhancements in kinetics discovered at these conditions. The combined statistics extremely strongly supports the validity of the isotopic resonance phenomenon (p ≪ 10−15). This phenomenon has numerous implications for the origin of life studies and astrobiology, and possible applications in agriculture, biotechnology, medicine, chemistry and other areas.
Collapse
|
13
|
Relationships between isotopic values and oxidative status: insights from populations of gentoo penguins. Oecologia 2015; 177:1211-20. [DOI: 10.1007/s00442-015-3267-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 02/06/2015] [Indexed: 02/07/2023]
|
14
|
Gao L, Edwards EJ, Zeng Y, Huang Y. Major evolutionary trends in hydrogen isotope fractionation of vascular plant leaf waxes. PLoS One 2014; 9:e112610. [PMID: 25402476 PMCID: PMC4234459 DOI: 10.1371/journal.pone.0112610] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/15/2014] [Indexed: 11/23/2022] Open
Abstract
Hydrogen isotopic ratios of terrestrial plant leaf waxes (δD) have been widely used for paleoclimate reconstructions. However, underlying controls for the observed large variations in leaf wax δD values in different terrestrial vascular plants are still poorly understood, hampering quantitative paleoclimate interpretation. Here we report plant leaf wax and source water δD values from 102 plant species grown in a common environment (New York Botanic Garden), chosen to represent all the major lineages of terrestrial vascular plants and multiple origins of common plant growth forms. We found that leaf wax hydrogen isotope fractionation relative to plant source water is best explained by membership in particular lineages, rather than by growth forms as previously suggested. Monocots, and in particular one clade of grasses, display consistently greater hydrogen isotopic fractionation than all other vascular plants, whereas lycopods, representing the earlier-diverging vascular plant lineage, display the smallest fractionation. Data from greenhouse experiments and field samples suggest that the changing leaf wax hydrogen isotopic fractionation in different terrestrial vascular plants may be related to different strategies in allocating photosynthetic substrates for metabolic and biosynthetic functions, and potential leaf water isotopic differences.
Collapse
Affiliation(s)
- Li Gao
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, United States of America
| | - Erika J. Edwards
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, United States of America
| | - Yongbo Zeng
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Yongsong Huang
- Department of Earth, Environmental and Planetary Sciences, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
15
|
Hammel SC, East K, Shaka AJ, Rose MR, Shahrestani P. Brief early-life non-specific incorporation of deuterium extends mean life span in Drosophila melanogaster without affecting fecundity. Rejuvenation Res 2014; 16:98-104. [PMID: 23301756 DOI: 10.1089/rej.2012.1368] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have investigated the effects of brief, non-specific deuteration of Drosophila melanogaster by including varying percentages of ²H (D) in the H₂O used in the food mix consumed during initial development. Up to 22.5% deuterium oxide (D₂O) in H₂O was administered, with the result that a low percentage of D₂O in the water increased mean life span, whereas the highest percentage used (22.5%) reduced life span. After the one-time treatment period, adult flies were maintained ad libitum with food of normal isotopic distribution. At low deuterium levels, where life span extension was observed, there was no observed change in fecundity. Dead flies were assayed for deuterium incorporation by complete hydrolysis in hot 12 N HCl solution followed by subsequent high-performance liquid chromatography/mass spectrometry (HPLC/MS). Isoleucine and leucine residues showed a small, linear dose-dependent incorporation of deuterium at non-exchangeable sites. Although high levels of D₂O itself are toxic for other reasons, higher levels of deuterium incorporation, which can be achieved without toxicity by strategies that avoid direct use of D₂O, are clearly worth exploring.
Collapse
|
16
|
Gao L, Tsai YJ, Huang Y. Assessing the rate and timing of leaf wax regeneration in Fraxinus americana using stable hydrogen isotope labeling. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2012; 26:2241-2250. [PMID: 22956315 DOI: 10.1002/rcm.6348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
RATIONALE Understanding leaf wax regeneration and recycling is crucial for plant physiology and paleoclimate studies. However, our recent isotope labeling experiments on a grass species (Phleum pratense) yielded different conclusions from published data on a tree species (Populus trichocarpa), with the former showing rapid regeneration and the latter little regeneration in mature leaves. It is therefore important to determine if the discrepancies in published results were due to differing dynamics of leaf wax regeneration and/or caveats in experimental methods. METHODS Leaves from a native New England tree species (Fraxinus americana) were collected at 1 to 3 h intervals over a 2-day experimental period, and, subsequently, the leaf wax δ(2) H isotopic ratios were measured using gas chromatography/isotope ratio mass spectrometry. RESULTS It was necessary to irrigate the tree using water with significantly higher δ(2) H values than that used for the grass in order to obtain readily measurable isotopic responses over diurnal cycles. In addition, diurnal leaf wax regeneration in Fraxinus americana was delayed by 1-4 h relative to Phleum pratense, suggesting that the latter produced leaf waxes from more recently photosynthesized substrates. CONCLUSIONS The isotopic inertia in Fraxinus americana was due to lower leaf wax regeneration rates than in Phleum pratense by one to two orders of magnitude. The difference in the timing of leaf wax biosynthesis might partially account for the observed leaf wax hydrogen isotopic difference between trees and grasses.
Collapse
Affiliation(s)
- Li Gao
- Department of Geological Sciences, Brown University, Providence, RI 02912, USA
| | | | | |
Collapse
|
17
|
Hill S, Hirano K, Shmanai VV, Marbois BN, Vidovic D, Bekish AV, Kay B, Tse V, Fine J, Clarke CF, Shchepinov MS. Isotope-reinforced polyunsaturated fatty acids protect yeast cells from oxidative stress. Free Radic Biol Med 2011; 50:130-8. [PMID: 20955788 PMCID: PMC3014413 DOI: 10.1016/j.freeradbiomed.2010.10.690] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 10/11/2010] [Accepted: 10/11/2010] [Indexed: 01/08/2023]
Abstract
The facile abstraction of bis-allylic hydrogens from polyunsaturated fatty acids (PUFAs) is the hallmark chemistry responsible for initiation and propagation of autoxidation reactions. The products of these autoxidation reactions can form cross-links to other membrane components and damage proteins and nucleic acids. We report that PUFAs deuterated at bis-allylic sites are much more resistant to autoxidation reactions, because of the isotope effect. This is shown using coenzyme Q-deficient Saccharomyces cerevisiae coq mutants with defects in the biosynthesis of coenzyme Q (Q). Q functions in respiratory energy metabolism and also functions as a lipid-soluble antioxidant. Yeast coq mutants incubated in the presence of the PUFA α-linolenic or linoleic acid exhibit 99% loss of colony formation after 4h, demonstrating a profound loss of viability. In contrast, coq mutants treated with monounsaturated oleic acid or with one of the deuterated PUFAs, 11,11-D(2)-linoleic or 11,11,14,14-D(4)-α-linolenic acid, retain viability similar to wild-type yeast. Deuterated PUFAs also confer protection to wild-type yeast subjected to heat stress. These results indicate that isotope-reinforced PUFAs are stabilized compared to standard PUFAs, and they protect coq mutants and wild-type yeast cells against the toxic effects of lipid autoxidation products. These findings suggest new approaches to controlling ROS-inflicted cellular damage and oxidative stress.
Collapse
Affiliation(s)
- Shauna Hill
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Kathleen Hirano
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Vadim V. Shmanai
- Institute of Physical Organic Chemistry of the National Academy of Sciences of Belarus, 13 Surganova Street, 220072 Belarus
| | - Beth N. Marbois
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Dragoslav Vidovic
- Department of Chemistry, Oxford University, South Parks Road, Oxford OX1 3QR, UK
| | - Andrei V. Bekish
- Department of Chemistry, Belarussian State University, Minsk 220030 Belarus
| | - Bradley Kay
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Vincent Tse
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Jonathan Fine
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Catherine F. Clarke
- Department of Chemistry and Biochemistry and the Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | | |
Collapse
|
18
|
Shchepinov MS, Pestov NB. Isotope effect, essential diet components, and prospects of aging retardation. RUSS J GEN CHEM+ 2010. [DOI: 10.1134/s1070363210070480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Response to Zhang: another trick of heavy isotopes. Trends Biotechnol 2008. [DOI: 10.1016/j.tibtech.2007.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|