1
|
Maskrey BH, Costas C, Méndez-Martínez L, Guerrero-Peña L, Tur R, García P, Touriñan P, Chavarrias D, Canario AV, Scott AP, Rotllant J. Studies on cortisol, corticosterone, and 17β-estradiol indicate these steroids have no role in stress or reproduction in the common octopus ( Octopus vulgaris). Am J Physiol Endocrinol Metab 2025; 328:E105-E115. [PMID: 39661330 DOI: 10.1152/ajpendo.00251.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/17/2024] [Accepted: 11/22/2024] [Indexed: 12/12/2024]
Abstract
The common octopus (Octopus vulgaris) is a promising candidate for aquaculture diversification, particularly in Europe. As interest in octopus farming grows, animal welfare concerns arise. In bony vertebrates (teleosts and tetrapods), measurements of the levels of corticosterone or cortisol have been successfully used as indicators of stress and welfare. Here, it is explored whether octopuses also produce cortisol or corticosterone and, if so, whether they are released into the water in response to stress (as can be done in teleosts and amphibians). The ability of the octopus to absorb cortisol from the water is also investigated-with another steroid, the principle vertebrate estrogen, 17β-estradiol (E2), being used as a positive uptake control. In this study, using liquid chromatography tandem mass spectrometry techniques, it was found that octopus hemolymph did not contain either cortisol, corticosterone, cortisone (a common metabolite of cortisol), or E2. Nor were any of the corticosteroids consistently found in the water in which stressed octopuses were held. The results support the evolutionary argument that octopuses are unlikely to exhibit a stress response mediated by vertebrate-like corticosteroids. Octopus demonstrated a low ability to absorb cortisol from the water (<2% over 24 h) but showed a high ability to absorb E2 from water (92% over 24 h). In this latter respect, the octopus is similar to other mollusks. The finding calls into doubt the origin of the E2 measured in this species.NEW & NOTEWORTHY This study demonstrates that common octopuses (Octopus vulgaris Cuvier 1797) do not produce cortisol, cortisone, or corticosterone in response to stress. Using liquid chromatography tandem mass spectrometry, it was also shown that octopuses have a low absorption rate of cortisol from water but a high absorption rate of 17β-estradiol (E2). The findings support the evolutionary argument that octopuses are unlikely to exhibit a stress response mediated by vertebrate-like corticosteroids.
Collapse
Affiliation(s)
- Benjamin H Maskrey
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth Laboratory, Weymouth, United Kingdom
| | - Carolina Costas
- Aquatic Biotechnology Laboratory, Instituto Investigaciones Marinas-CSIC, Vigo, Spain
| | - Luís Méndez-Martínez
- Aquatic Biotechnology Laboratory, Instituto Investigaciones Marinas-CSIC, Vigo, Spain
| | - Laura Guerrero-Peña
- Aquatic Biotechnology Laboratory, Instituto Investigaciones Marinas-CSIC, Vigo, Spain
| | - Ricardo Tur
- Pescanova Biomarine Center, Pontevedra, Spain
| | | | | | | | - Adelino V Canario
- Centro de Ciências do Mar do Algarve (CCMAR/CIMAR), University of Algarve, Faro, Portugal
| | - Alex P Scott
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth Laboratory, Weymouth, United Kingdom
| | - Josep Rotllant
- Aquatic Biotechnology Laboratory, Instituto Investigaciones Marinas-CSIC, Vigo, Spain
| |
Collapse
|
8
|
Deans AR, Lewis SE, Huala E, Anzaldo SS, Ashburner M, Balhoff JP, Blackburn DC, Blake JA, Burleigh JG, Chanet B, Cooper LD, Courtot M, Csösz S, Cui H, Dahdul W, Das S, Dececchi TA, Dettai A, Diogo R, Druzinsky RE, Dumontier M, Franz NM, Friedrich F, Gkoutos GV, Haendel M, Harmon LJ, Hayamizu TF, He Y, Hines HM, Ibrahim N, Jackson LM, Jaiswal P, James-Zorn C, Köhler S, Lecointre G, Lapp H, Lawrence CJ, Le Novère N, Lundberg JG, Macklin J, Mast AR, Midford PE, Mikó I, Mungall CJ, Oellrich A, Osumi-Sutherland D, Parkinson H, Ramírez MJ, Richter S, Robinson PN, Ruttenberg A, Schulz KS, Segerdell E, Seltmann KC, Sharkey MJ, Smith AD, Smith B, Specht CD, Squires RB, Thacker RW, Thessen A, Fernandez-Triana J, Vihinen M, Vize PD, Vogt L, Wall CE, Walls RL, Westerfeld M, Wharton RA, Wirkner CS, Woolley JB, Yoder MJ, Zorn AM, Mabee P. Finding our way through phenotypes. PLoS Biol 2015; 13:e1002033. [PMID: 25562316 PMCID: PMC4285398 DOI: 10.1371/journal.pbio.1002033] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.
Collapse
Affiliation(s)
- Andrew R. Deans
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Suzanna E. Lewis
- Genome Division, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Eva Huala
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
- Phoenix Bioinformatics, Palo Alto, California, United States of America
| | - Salvatore S. Anzaldo
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Michael Ashburner
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - James P. Balhoff
- National Evolutionary Synthesis Center, Durham, North Carolina, United States of America
| | - David C. Blackburn
- Department of Vertebrate Zoology and Anthropology, California Academy of Sciences, San Francisco, California, United States of America
| | - Judith A. Blake
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - J. Gordon Burleigh
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Bruno Chanet
- Muséum national d'Histoire naturelle, Département Systématique et Evolution, Paris, France
| | - Laurel D. Cooper
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Mélanie Courtot
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sándor Csösz
- MTA-ELTE-MTM, Ecology Research Group, Pázmány Péter sétány 1C, Budapest, Hungary
| | - Hong Cui
- School of Information Resources and Library Science, University of Arizona, Tucson, Arizona, United States of America
| | - Wasila Dahdul
- Department of Biology, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Sandip Das
- Department of Botany, University of Delhi, Delhi, India
| | - T. Alexander Dececchi
- Department of Biology, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Agnes Dettai
- Muséum national d'Histoire naturelle, Département Systématique et Evolution, Paris, France
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington D.C., United States of America
| | - Robert E. Druzinsky
- Department of Oral Biology, College of Dentistry, University of Illinois, Chicago, Illinois, United States of America
| | - Michel Dumontier
- Stanford Center for Biomedical Informatics Research, Stanford, California, United States of America
| | - Nico M. Franz
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Frank Friedrich
- Biocenter Grindel and Zoological Museum, Hamburg University, Hamburg, Germany
| | - George V. Gkoutos
- Department of Computer Science, Aberystwyth University, Aberystwyth, Ceredigion, United Kingdom
| | - Melissa Haendel
- Department of Medical Informatics & Epidemiology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Luke J. Harmon
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Terry F. Hayamizu
- Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Yongqun He
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, and Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Heather M. Hines
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nizar Ibrahim
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, United States of America
| | - Laura M. Jackson
- Department of Biology, University of South Dakota, Vermillion, South Dakota, United States of America
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Christina James-Zorn
- Cincinnati Children's Hospital, Division of Developmental Biology, Cincinnati, Ohio, United States of America
| | - Sebastian Köhler
- Institute for Medical Genetics and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Guillaume Lecointre
- Muséum national d'Histoire naturelle, Département Systématique et Evolution, Paris, France
| | - Hilmar Lapp
- National Evolutionary Synthesis Center, Durham, North Carolina, United States of America
| | - Carolyn J. Lawrence
- Department of Genetics, Development and Cell Biology and Department of Agronomy, Iowa State University, Ames, Iowa, United States of America
| | | | - John G. Lundberg
- Department of Ichthyology, The Academy of Natural Sciences, Philadelphia, Pennsylvania, United States of America
| | - James Macklin
- Eastern Cereal and Oilseed Research Centre, Ottawa, Ontario, Canada
| | - Austin R. Mast
- Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | | | - István Mikó
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Christopher J. Mungall
- Genome Division, Lawrence Berkeley National Lab, Berkeley, California, United States of America
| | - Anika Oellrich
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - David Osumi-Sutherland
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Helen Parkinson
- European Molecular Biology Laboratory - European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Martín J. Ramírez
- Division of Arachnology, Museo Argentino de Ciencias Naturales - CONICET, Buenos Aires, Argentina
| | - Stefan Richter
- Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, Universitätsplatz 2, Rostock, Germany
| | - Peter N. Robinson
- Institut für Medizinische Genetik und Humangenetik Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Alan Ruttenberg
- School of Dental Medicine, University at Buffalo, Buffalo, New York, United States of America
| | - Katja S. Schulz
- Smithsonian Institution, National Museum of Natural History, Washington, D.C., United States of America
| | - Erik Segerdell
- Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Katja C. Seltmann
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, United States of America
| | - Michael J. Sharkey
- Department of Entomology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Aaron D. Smith
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Barry Smith
- Department of Philosophy, University at Buffalo, Buffalo, New York, United States of America
| | - Chelsea D. Specht
- Department of Plant and Microbial Biology, Integrative Biology, and the University and Jepson Herbaria, University of California, Berkeley, California, United States of America
| | - R. Burke Squires
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert W. Thacker
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Anne Thessen
- The Data Detektiv, 1412 Stearns Hill Road, Waltham, Massachusetts, United States of America
| | | | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Peter D. Vize
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lars Vogt
- Universität Bonn, Institut für Evolutionsbiologie und Ökologie, Bonn, Germany
| | - Christine E. Wall
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
| | - Ramona L. Walls
- iPlant Collaborative University of Arizona, Thomas J. Keating Bioresearch Building, Tucson, Arizona, United States of America
| | - Monte Westerfeld
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Robert A. Wharton
- Department of Entomology, Texas A & M University, College, Station, Texas, United States of America
| | - Christian S. Wirkner
- Allgemeine & Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, Universitätsplatz 2, Rostock, Germany
| | - James B. Woolley
- Department of Entomology, Texas A & M University, College, Station, Texas, United States of America
| | - Matthew J. Yoder
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, United States of America
| | - Aaron M. Zorn
- Cincinnati Children's Hospital, Division of Developmental Biology, Cincinnati, Ohio, United States of America
| | - Paula Mabee
- Department of Biology, University of South Dakota, Vermillion, South Dakota, United States of America
| |
Collapse
|