1
|
Zhou Y, Xu Y, Song S, Zhan S, Li X, Wang H, Zhu Z, Yan L, Peng Y, Xie C. Effect of Different Probiotic Fermentations on the Quality of Plant-Based Hempseed Fermented Milk. Foods 2024; 13:4076. [PMID: 39767016 PMCID: PMC11675659 DOI: 10.3390/foods13244076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
This study investigated the effects of three different single-strain probiotics Lactiplantibacillus plantarum XD117, Lacticaseibacillus paracasei LC-37, and Lacticaseibacillus rhamnosus LGG, on the quality of hempseed fermented milk. The main findings were that adding probiotics increased the inhibition rate of α-glucosidase and pancreatic lipase in hempseed fermented milk significantly. Non-targeted metabolomic correlation analysis results confirmed that 14 substances, including three flavonoids, six amino acids and their derivatives, and five short peptides, were positively correlated with the hypoglycemic and hypolipidemic activities of hempseed fermented milk. Furthermore, a total of 59 volatile flavor compounds were identified, including aldehydes, alcohols, ketones, acids, and esters, and the role mapping of different probiotic communities was provided. These results can guide the development of hempseed fermented milk with unique flavor, rich probiotic content, and significant functional characteristics.
Collapse
Affiliation(s)
- Yingjun Zhou
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.Z.); (Y.X.); (S.Z.); (X.L.); (Z.Z.); (L.Y.); (Y.P.)
| | - Yifan Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.Z.); (Y.X.); (S.Z.); (X.L.); (Z.Z.); (L.Y.); (Y.P.)
| | - Shuai Song
- Jiangsu Junyao Life Technology Development Co., Ltd., Yancheng 224100, China
| | - Sha Zhan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.Z.); (Y.X.); (S.Z.); (X.L.); (Z.Z.); (L.Y.); (Y.P.)
| | - Xiaochun Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.Z.); (Y.X.); (S.Z.); (X.L.); (Z.Z.); (L.Y.); (Y.P.)
| | - Haixuan Wang
- Jiangsu Junyao Life Technology Development Co., Ltd., Yancheng 224100, China
| | - Zuohua Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.Z.); (Y.X.); (S.Z.); (X.L.); (Z.Z.); (L.Y.); (Y.P.)
| | - Li Yan
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.Z.); (Y.X.); (S.Z.); (X.L.); (Z.Z.); (L.Y.); (Y.P.)
| | - Yuande Peng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.Z.); (Y.X.); (S.Z.); (X.L.); (Z.Z.); (L.Y.); (Y.P.)
| | - Chunliang Xie
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; (Y.Z.); (Y.X.); (S.Z.); (X.L.); (Z.Z.); (L.Y.); (Y.P.)
| |
Collapse
|
2
|
Kim S, Jeong N, Park J, Noh H, Lee JO, Yu SJ, Ku JL. Establishment and characterization of mouse metabolic dysfunction-associated steatohepatitis-related hepatocellular carcinoma organoids. Sci Rep 2024; 14:27460. [PMID: 39523389 PMCID: PMC11551198 DOI: 10.1038/s41598-024-78963-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a form of chronic liver inflammation associated with metabolic syndrome, such as obesity and a major cause of hepatocellular carcinoma (HCC). Multi-biotics, a soymilk fermented with lactic acid bacteria, are known to alleviate obesity by lowering lipid profile. This study aimed to establish and characterize mouse organoids derived from MASH-related HCC models to evaluate drug responses, particularly focusing on Lenvatinib resistance. Organoids were developed using mouse liver tissues subjected to a choline-deficient L-amino acid-defined high-fat diet (CDAHFD) to mimic MASH-related HCC. The study evaluated the effect of multi-biotics, a fermented product, on tumor regression and drug sensitivity. While multi-biotics did not reduce tumor burden, they enhanced the response to Lenvatinib. Additionally, repeated treatment with Lenvatinib led to the development of drug-resistant organoids. Transcriptomic analysis of these resistant organoids identified key pathways related to KRAS signaling, inflammation, and epithelial-mesenchymal transition (EMT), revealing potential targets for overcoming Lenvatinib resistance. This study provides valuable insights into MASH-related HCC progression and drug resistance, offering a model for further therapeutic research.
Collapse
Affiliation(s)
- Sumin Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
| | - Nahyun Jeong
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
| | - Jeayeon Park
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyojin Noh
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Ja Oh Lee
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea
| | - Su Jong Yu
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Cancer Research Institute, Seoul National University, Seoul, 03080, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Korea.
| |
Collapse
|
3
|
Kober AKMH, Saha S, Ayyash M, Namai F, Nishiyama K, Yoda K, Villena J, Kitazawa H. Insights into the Anti-Adipogenic and Anti-Inflammatory Potentialities of Probiotics against Obesity. Nutrients 2024; 16:1373. [PMID: 38732619 PMCID: PMC11085650 DOI: 10.3390/nu16091373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Functional foods with probiotics are safe and effective dietary supplements to improve overweight and obesity. Thus, altering the intestinal microflora may be an effective approach for controlling or preventing obesity. This review aims to summarize the experimental method used to study probiotics and obesity, and recent advances in probiotics against obesity. In particular, we focused on studies (in vitro and in vivo) that used probiotics to treat obesity and its associated comorbidities. Several in vitro and in vivo (animal and human clinical) studies conducted with different bacterial species/strains have reported that probiotics promote anti-obesity effects by suppressing the differentiation of pre-adipocytes through immune cell activation, maintaining the Th1/Th2 cytokine balance, altering the intestinal microbiota composition, reducing the lipid profile, and regulating energy metabolism. Most studies on probiotics and obesity have shown that probiotics are responsible for a notable reduction in weight gain and body mass index. It also increases the levels of anti-inflammatory adipokines and decreases those of pro-inflammatory adipokines in the blood, which are responsible for the regulation of glucose and fatty acid breakdown. Furthermore, probiotics effectively increase insulin sensitivity and decrease systemic inflammation. Taken together, the intestinal microbiota profile found in overweight individuals can be modified by probiotic supplementation which can create a promising environment for weight loss along enhancing levels of adiponectin and decreasing leptin, tumor necrosis factor (TNF)-α, interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, and transforming growth factor (TGF)-β on human health.
Collapse
Affiliation(s)
- A. K. M. Humayun Kober
- Department of Dairy and Poultry Science, Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh;
| | - Sudeb Saha
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates;
| | - Fu Namai
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| | - Keita Nishiyama
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| | - Kazutoyo Yoda
- Technical Research Laboratory, Takanashi Milk Products Co., Ltd., Yokohama 241-0023, Japan;
| | - Julio Villena
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), Tucuman 4000, Argentina
| | - Haruki Kitazawa
- Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai 980-8576, Japan; (F.N.); (K.N.)
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai 980-8576, Japan
| |
Collapse
|
4
|
Hyun IK, Hong SW, Ma MJ, Chang JY, Lee S, Yun YR. Anti-Obesity Effect of Kimchi with Starter Cultures in 3T3-L1 Cells. J Microbiol Biotechnol 2024; 34:123-131. [PMID: 37830224 PMCID: PMC10840470 DOI: 10.4014/jmb.2307.07005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/22/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Lactic acid bacteria (LAB) isolated from kimchi have various functions, including antioxidant, anti-inflammation, and anti-obesity activities, and are therefore widely used in the food, pharmaceutical, and medical fields. To date, the health functionalities of LAB have been widely reported; however, those of kimchi fermented with LAB as a starter have rarely been reported. Therefore, research on the selection of LAB with anti-obesity activity and the health functionality of kimchi fermented with LAB is needed. In the present study, LAB with anti-obesity activity were initially selected by measuring the Oil-Red O intensity. Among the four LAB strains, anti-obesity activity was confirmed by measuring cell viability, lipid levels, and lipid accumulation. Then, starter kimchi (SK) was prepared by inoculating selected LABs, and its pH, total acidity, and salinity were compared with those of naturally fermented kimchi (NK). Lastly, anti-obesity activity was also investigated in 3T3-L1 cells. Selected LAB showed no cytotoxicity up to 107 CFU/ml, with Lactobacillus brevis JC7 and Leuconostoc mesenteroides KCKM0828 having higher inhibitory effects on TG, TC content and lipid accumulation. Most SKs showed fermentation properties similar to those of the NK. SKs showed no cytotoxicity at concentrations of up to 1,000 μg/ml. SKs showed strong inhibitory effects on TG content, lipid accumulation, and obesity-related gene and protein expressions. Taken together, the utilization of LAB as a starter could improve the health benefits of kimchi.
Collapse
Affiliation(s)
- In-Kyung Hyun
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| | - Sung Wook Hong
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| | - Min-Ji Ma
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| | - Ji Yoon Chang
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute (KBSI), Gwangju 61751, Republic of Korea
| | - Ye-Rang Yun
- World Institute of Kimchi, Nam-Gu, Gwangju 61755, Republic of Korea
| |
Collapse
|
5
|
Han HS, Soundharrajan I, Valan Arasu M, Kim D, Choi KC. Leuconostoc Citreum Inhibits Adipogenesis and Lipogenesis by Inhibiting p38 MAPK/Erk 44/42 and Stimulating AMPKα Signaling Pathways. Int J Mol Sci 2023; 24:7367. [PMID: 37108530 PMCID: PMC10138540 DOI: 10.3390/ijms24087367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Probiotics provide a range of health benefits. Several studies have shown that using probiotics in obesity treatment can reduce bodyweight. However, such treatments are still restricted. Leuconostoc citreum, an epiphytic bacterium, is widely used in a variety of biological applications. However, few studies have investigated the role of Leuconostoc spp. in adipocyte differentiation and its molecular mechanisms. Therefore, the objective of this study was to determine the effects of cell-free metabolites of L. citreum (LSC) on adipogenesis, lipogenesis, and lipolysis in 3T3-L1 adipocytes. The results showed that LSC treatment reduced the accumulation of lipid droplets and expression levels of CCAAT/ enhancer-binding protein-α & β (C/EBP-α & β), peroxisome proliferator-activated receptor-γ (PPAR-γ), serum regulatory binding protein-1c (SREBP-1c), adipocyte fatty acid binding protein (aP2), fatty acid synthase (FAS), acetyl CoA carboxylase (ACC), resistin, pp38MAPK, and pErk 44/42. However, compared to control cells, adiponectin, an insulin sensitizer, was elevated in adipocytes treated with LSC. In addition, LSC treatment increased lipolysis by increasing pAMPK-α and suppressing FAS, ACC, and PPAR-γ expression, similarly to the effects of AICAR, an AMPK agonist. In conclusion, L. citreum is a novel probiotic strain that can be used to treat obesity and its associated metabolic disorders.
Collapse
Affiliation(s)
- Hyo-Shim Han
- Department of Biotechnology, Sunchon University, Suncheon 57922, Republic of Korea;
| | - Ilavenil Soundharrajan
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Dahye Kim
- Animal Genomics and Bioinformatics Division, National Institute of Animal Science, Jeonju 55365, Republic of Korea
| | - Ki-Choon Choi
- Grassland and Forages Division, National Institute of Animal Science, Rural Development Administration, Cheonan 31000, Republic of Korea;
| |
Collapse
|
6
|
KESIKA P, SIVAMARUTHI BS, CHAIYASUT C. A review on the functional properties of fermented soymilk. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.10721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
7
|
Ma X, Bi Q, Kong Y, Xu H, Liang M, Mai K, Zhang Y. Dietary lipid levels affected antioxidative status, inflammation response, apoptosis and microbial community in the intestine of juvenile turbot (Scophthalmus maximus L.). Comp Biochem Physiol A Mol Integr Physiol 2021; 264:111118. [PMID: 34793954 DOI: 10.1016/j.cbpa.2021.111118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 02/08/2023]
Abstract
A nine-week feeding trial was conducted to comprehensively investigate the effects of different levels of dietary lipid on intestinal physiology of juvenile turbot. Three diets with different lipid levels (8%, 12% and 16%) were formulated, which were designated as the low-lipid group (LL), medium-lipid group (ML) and high-lipid group (HL), respectively. Each diet was fed to six replicate tanks, and each tank was stocked with 35 fish. The results revealed that medium dietary lipid (12%) increased the activities of intestinal digestive enzymes and brush border enzymes. Excessive dietary lipid (16%) decreased the intestinal antioxidative enzyme levels and increased the lipid peroxidation pressure. In addition, HL stimulated the occurrence of intestinal inflammation and significantly up-regulated the mRNA expression level of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interferon-γ (IFN-γ) and transforming growth factor-β (TGF-β). Dietary LL and HL induced the apoptosis of intestinal epithelial cells. Sequencing of bacterial 16 s rRNA V4 region indicated that the abundance and diversity of intestinal microflora in fish fed with medium lipid diet (12%) were significantly higher than those in other groups, indicating the intestinal microflora ecology in group ML was more balanced. MetaStat analysis indicated that both low- and high-lipid diets significantly reduced the relative abundance of intestinal beneficial bacteria. In conclusion, results of this study demonstrated the sensitivity of intestinal health and microbiota to dietary lipid levels. From the perspective of microecological balance, medium dietary lipid (12%) was more conducive to maintaining the intestinal microflora stability of turbot.
Collapse
Affiliation(s)
- Xiuhua Ma
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China
| | - Qingzhu Bi
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China
| | - Yaoyao Kong
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China
| | - Houguo Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China
| | - Mengqing Liang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106, Nanjing Road, Qingdao 266071, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China
| | - Yanjiao Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5, Yushan Road, Qingdao 266003, China; Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao 266237, China.
| |
Collapse
|
8
|
Wang B, Wang L, Wang H, Dai H, Lu X, Lee YK, Gu Z, Zhao J, Zhang H, Chen W, Wang G. Targeting the Gut Microbiota for Remediating Obesity and Related Metabolic Disorders. J Nutr 2021; 151:1703-1716. [PMID: 33982127 DOI: 10.1093/jn/nxab103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/19/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
The rate of obesity is rapidly increasing and has become a health and economic burden worldwide. As recent studies have revealed that the gut microbiota is closely linked to obesity, researchers have used various approaches to modulate the gut microbiota to treat the condition. Dietary composition and energy intake strongly affect the composition and function of the gut microbiota. Intestinal microbial changes alter the composition of bile acids and fatty acids and regulate bacterial lipopolysaccharide production, all of which influence energy metabolism and immunity. Evidence also suggests that remodeling the gut microbiota through intake of probiotics, prebiotics, fermented foods, and dietary plants, as well as by fecal microbiota transplantation, are feasible methods to remediate obesity.
Collapse
Affiliation(s)
- Botao Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Linlin Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China
| | - Haojue Wang
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Hongyan Dai
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Xianyi Lu
- The Department of Obstetrics and Gynecology, Wuxi Xishan People's Hospital, Wuxi, P. R. China
| | - Yuan-Kun Lee
- Department of Microbiology & Immunology, National University of Singapore, Singapore, Singapore
| | - Zhennan Gu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China.,Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, P. R. China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, P. R. China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,School of Food Science and Technology, Jiangnan University, Wuxi, P. R. China.,International Joint Research Laboratory for Probiotics, Jiangnan University, Wuxi, P. R. China.,(Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, P. R. China
| |
Collapse
|
9
|
Hsu CL, Hou YH, Wang CS, Lin SW, Jhou BY, Chen CC, Chen YL. Antiobesity and Uric Acid-Lowering Effect of Lactobacillus plantarum GKM3 in High-Fat-Diet-Induced Obese Rats. J Am Coll Nutr 2019; 38:623-632. [PMID: 30794474 DOI: 10.1080/07315724.2019.1571454] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective: Obesity has become one of the world's biggest issues. This condition has a great impact on several metabolic and chronic diseases. For example, obesity is often accompanied by hyperuricemia or gout. However, few drugs are available for the treatment of obesity. The present study is to evaluate the antiobesity effect of Lactobacillus plantarum GKM3 in high-fat-diet-induced obese rats and whether taking L plantarum GKM3 can effectively reduce uric acid accumulation caused by obesity and ameliorate other harmful factors. Method: Sixty male Wistar rats were divided into five groups as follows: ( 1 ) ND group, fed normal diet; ( 2 ) HFC group, fed AIN93G-based high-fat diet containing 65% solids, 7% soybean oil, and 25% lard; ( 3 ) HFL group, fed AIN93G-based high-fat diet supplemented with 102.7 mg/kg/d L plantarum GKM3; ( 4 ) HFM group, fed AIN93G-based high-fat diet supplemented with 205.4 mg/kg/d L plantarum GKM3; and ( 5 ) HFH group, fed AIN93G-based high-fat diet supplemented with 513.5 mg/kg/d L plantarum GKM3. After 6 weeks, the body, organ, and fat weights; food intake; blood serum levels; and adipocyte size were measured. Results: Results showed that rats fed on the high-fat diet showed more body weight, increased feed efficiency, higher fat deposition, higher total liver weight, elevated serum lipid levels, and increased adipocyte size compared with those on the normal diet. All these effects were reversed by supplementation of L plantarum GKM3. Conclusions: In conclusion, we suggest that the L plantarum GKM3 supplement may have beneficial antiobesity and uric acid-lowering effects.
Collapse
Affiliation(s)
- Chin-Lin Hsu
- School of Nutrition, Chung Shan Medical University , Taichung City , Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital , Taichung City , Taiwan
| | | | | | | | - Bo-Yi Jhou
- Grape King Bio Ltd , Taoyuan City , Taiwan
| | - Chin-Chu Chen
- Grape King Bio Ltd , Taoyuan City , Taiwan.,Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih Chien University , Taipei City , Taiwan.,Institute of Food Science and Technology, National Taiwan University , Taipei City , Taiwan.,Department of Bioscience Technology, Chung Yuan Christian University , Taoyuan City , Taiwan
| | | |
Collapse
|
10
|
Zhai Q, Chen W. Functional Evaluation Model for Lactic Acid Bacteria. LACTIC ACID BACTERIA 2019:183-237. [DOI: 10.1007/978-981-13-7832-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Anti-Obesity Effect of Fructus Pyri Pyrifoliae Extract Fermented by Lactic-Acid Bacteria on Rats. Appl Microsc 2018. [DOI: 10.9729/am.2018.48.3.62] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Paray BA, Rather IA, Al-Sadoon MK, Fanar Hamad AS. Pharmaceutical significance of Leuconostoc mesenteroides KS-TN11 isolated from Nile Tilapia, Oreochromis niloticus. Saudi Pharm J 2018; 26:509-514. [PMID: 29844722 PMCID: PMC5961753 DOI: 10.1016/j.jsps.2018.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/05/2018] [Indexed: 11/24/2022] Open
Abstract
Aquatic animals are known for their myriad of beneficial bacteria with diverse biologically active compounds. The current study was aimed to isolate and characterize potentially beneficial lactic acid bacteria from Nile Tilapia and evaluate their pharmaceutical applications. The fish samples were dissected and stomach, intestine, and gills were collected and serially diluted for the isolation of lactic acid bacteria (LAB) on BCP agar media. Identification of isolate was carried by biochemical and molecular characterization using API kit and 16S rRNA gene sequencing analysis, respectively. Further, KS-TN11 was assessed for α-glucosidase inhibitory potential using the chromogenic method. A lactic acid bacterium KS-TN11 was isolated from the stomach of Nile Tilapia and identified as Leuconostoc mesenteroides. Effect of KS-TN11 on lipid accumulation in adipocytes was done by using Oil Red O staining. The isolate showed strong antibacterial activity against a number of pathogenic bacteria in vitro. In addition, L. mesenteroides KS-TN11 KS-TN11 (50 mg/ml and 100 mg/ml) tends to inhibit adipogenesis in 3T3-L1 adipocytes and thus may have possible anti-obesity effects. Moreover, L. mesenteroides KS-TN11 exhibited substantial α–glucosidase inhibitory activities by 41.33% at 50 mg/ml and 64% at 100 mg/ml, respectively. The bacterium showed potent antibacterial activity against a number of pathogenic bacteria; in addition to alpha-glucosidase activity, and inhibition of lipid accumulation in 3T3-L1 cell line. These results reinforce KS-TN11 as a novel bacterium with an impending pharmaceutical application.
Collapse
Affiliation(s)
- Bilal Ahmad Paray
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Irfan A Rather
- Department of Applied Microbiology and Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, South Korea
| | - Mohammad K Al-Sadoon
- Zoology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Al-Shammari Fanar Hamad
- Department of Applied Microbiology and Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 712-749, South Korea
| |
Collapse
|
13
|
Lactobacillus plantarum Strain Ln4 Attenuates Diet-Induced Obesity, Insulin Resistance, and Changes in Hepatic mRNA Levels Associated with Glucose and Lipid Metabolism. Nutrients 2018; 10:nu10050643. [PMID: 29783731 PMCID: PMC5986522 DOI: 10.3390/nu10050643] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 05/09/2018] [Accepted: 05/17/2018] [Indexed: 12/30/2022] Open
Abstract
The prevalence of obesity and associated metabolic disorders, including diabetes and cardiovascular disease, is rapidly becoming a severe global health problem. Recent reports have suggested that the alteration of the gut ecosystem through the consumption of probiotics and fermented foods, such as yogurt and Kimchi, can significantly impact obesity and Type 2 diabetes (T2D)-related biomarkers. In this study, we screened over 400 strains of lactic acid bacteria (LAB) that were isolated from fermented foods to identify potent anti-obesogenic and diabetic probiotics in vitro. Of the strains tested, Lactobacillus plantarum Ln4 (Ln4), which was obtained from napa cabbage kimchi, significantly reduced lipid accumulation and stimulated glucose uptake in 3T3-L1 adipocytes. Oral administration of Ln4 reduced weight gain and epididymal fat mass in mice fed on a high-fat diet (HFD). Total plasma triglyceride level was significantly lower in mice that were treated Ln4 as compared with mice fed HFD. The protein levels of adipokines such as C-reactive protein (CRP), insulin-like growth factor binding proteins-3 (IGFBP-3), and monocyte chemoattractant protein-1 (MCP-1) decreased in white adipose tissues of Ln4-treated mice. Furthermore, these mice exhibited a significant reduction of insulin resistance index (HOMA-IR) and the improvement of glucose tolerance (OGTT) and insulin response (ITT) following Ln4 administration. This was associated with changes in several hepatic gene expressions (increased mRNA levels of IRS2, Akt2, AMPK, LPL, and reduced CD36) that regulate glucose and lipid metabolism. Taken together, these results indicate that in vitro and in vivo Ln4 treatment attenuates diet-induced obesity and T2D biomarkers, highlighting the potential of Ln4 as a therapeutic probiotic agent for metabolic disorders.
Collapse
|
14
|
Lactic Acid Bacteria Isolated from Japanese Fermented Fish (Funa-Sushi) Inhibit Mesangial Proliferative Glomerulonephritis by Alcohol Intake with Stress. J Nutr Metab 2018; 2018:6491907. [PMID: 29607219 PMCID: PMC5828048 DOI: 10.1155/2018/6491907] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/25/2017] [Accepted: 12/12/2017] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to examine the effect of heat-killed Lactobacillus paracasei NFRI 7415 on kidney and bone in mice fed an ethanol-containing diet with stress. Eight-week-old Cril : CD1 mice were fed a control diet (CD), an alcohol diet (AD) (35.8% of total energy from ethanol), or an alcohol diet containing 20% heat-killed Lb. paracasei NFRI 7415 (107 CFU/g) (LD) for 4 weeks. Mice in the AD and LD groups also underwent restraint stress for two weeks from 13 days. The mice were placed in a 50 mL plastic tube, which had a small hole drilled around its base to allow ventilation, and restrained for 1 h every day. High final body weight was in the following order: CD, LD, and AD (p < 0.05). The heat-killed Lb. paracasei NFRI 7415 lowered liver total cholesterol concentration and plasma glutamic-oxaloacetic transaminase (GOT) level. In addition, fecal bile acids of the LD group were higher than in the AD group (p < 0.05). The glomerulus of the kidney in the AD group was observed to be more fibrotic than in the CD and LD groups with azan stain. Immunostaining confirmed that brown areas indicating the existence of mesangial cells were increased in the AD group, but not in the CD and LD groups. These results indicated that the heat-killed Lb. paracasei NFRI 7415 inhibited mesangial proliferative glomerulonephritis by alcohol intake with stress.
Collapse
|
15
|
Evaluation of ginsenoside bioconversion of lactic acid bacteria isolated from kimchi. J Ginseng Res 2016; 41:524-530. [PMID: 29021699 PMCID: PMC5628348 DOI: 10.1016/j.jgr.2016.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022] Open
Abstract
Background Panax ginseng is a physiologically active plant widely used in traditional medicine that is characterized by the presence of ginsenosides. Rb1, a major ginsenoside, is used as the starting material for producing ginsenoside derivatives with enhanced pharmaceutical potentials through chemical, enzymatic, or microbial transformation. Methods To investigate the bioconversion of ginsenoside Rb1, we prepared kimchi originated bacterial strains Leuconostoc mensenteroides WiKim19, Pediococcus pentosaceus WiKim20, Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49 and analyzed bioconversion products using LC-MS/MS mass spectrometer. Results L. mesenteroides WiKim19 and Pediococcus pentosaceus WiKim20 converted ginsenoside Rb1 into the ginsenoside Rg3 approximately five times more than Lactobacillus brevis WiKim47, Leuconostoc lactis WiKim48, and Lactobacillus sakei WiKim49. L mesenteroides WIKim19 showed positive correlation with β-glucosidase activity and higher transformation ability of ginsenoside Rb1 into Rg3 than the other strains whereas, P. pentosaceus WiKim20 showed an elevated production of Rb3 even with lack of β-glucosidase activity but have the highest acidity among the five lactic acid bacteria (LAB). Conclusion Ginsenoside Rg5 concentration of five LABs have ranged from ∼2.6 μg/mL to 6.5 μg/mL and increased in accordance with the incubation periods. Our results indicate that the enzymatic activity along with acidic condition contribute to the production of minor ginsenoside from lactic acid bacteria.
Collapse
|
16
|
Cheng MC, Tsai TY, Pan TM. Anti-obesity activity of the water extract of Lactobacillus paracasei subsp. paracasei NTU 101 fermented soy milk products. Food Funct 2015; 6:3522-30. [PMID: 26299532 DOI: 10.1039/c5fo00531k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The anti-obesity activity of the water extract of soy milk fermented with Lactobacillus paracasei subsp. paracasei NTU 101 (W101) was investigated. A high-fat diet (HFD) was used to induce obesity in rats, and the effects of daily W101 feeding (8 weeks) were observed. The rats fed the HFD and supplemented with low-dose W101 (LW101, 15 mg per kg body weight per day) or high-dose W101 (HW101, 150 mg per kg body weight per day) had significantly reduced final body weight in comparison with that of the HFD group. W101 decreased the formation of lipid plaques in the aorta, reduced the adipocyte cross-sectional area and diameter, and reduced the levels of CCAAT/enhancer-binding protein β (C/EBPβ), peroxisome proliferator associated receptor γ (PPARγ), and C/EBPα. Regarding lipogenesis regulation in adipocytes, W101 suppressed heparin-releasable lipoprotein lipase (HR-LPL) in adipose tissues and inhibited lipid absorption, thereby reducing lipogenesis. Lactobacillus paracasei subsp. paracasei NTU 101-fermented soy milk may be used to develop health foods that prevent obesity.
Collapse
Affiliation(s)
- Meng-Chun Cheng
- Department of Biochemical Science & Technology, National Taiwan University, Taipei, Taiwan.
| | | | | |
Collapse
|
17
|
Park KY, Jeong JK, Lee YE, Daily JW. Health benefits of kimchi (Korean fermented vegetables) as a probiotic food. J Med Food 2014; 17:6-20. [PMID: 24456350 DOI: 10.1089/jmf.2013.3083] [Citation(s) in RCA: 213] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Kimchi is a traditional Korean food manufactured by fermenting vegetables with probiotic lactic acid bacteria (LAB). Many bacteria are involved in the fermentation of kimchi, but LAB become dominant while the putrefactive bacteria are suppressed during salting of baechu cabbage and the fermentation. The addition of other subingredients and formation of fermentation byproducts of LAB promote the fermentation process of LAB to eventually lead to eradication of putrefactive- and pathogenic bacteria, and also increase the functionalities of kimchi. Accordingly, kimchi can be considered a vegetable probiotic food that contributes health benefits in a similar manner as yogurt as a dairy probiotic food. Further, the major ingredients of kimchi are cruciferous vegetables; and other healthy functional foods such as garlic, ginger, red pepper powder, and so on are added to kimchi as subingredients. As all of these ingredients undergo fermentation by LAB, kimchi is regarded as a source of LAB; and the fermentative byproducts from the functional ingredients significantly boost its functionality. Because kimchi is both tasty and highly functional, it is typically served with steamed rice at every Korean meal. Health functionality of kimchi, based upon our research and that of other, includes anticancer, antiobesity, anticonstipation, colorectal health promotion, probiotic properties, cholesterol reduction, fibrolytic effect, antioxidative and antiaging properties, brain health promotion, immune promotion, and skin health promotion. In this review we describe the method of kimchi manufacture, fermentation, health functionalities of kimchi and the probiotic properties of its LAB.
Collapse
Affiliation(s)
- Kun-Young Park
- 1 Department of Food Science and Nutrition, Pusan National University , Busan, Korea
| | | | | | | |
Collapse
|
18
|
Anti-obesity effects of gut microbiota are associated with lactic acid bacteria. Appl Microbiol Biotechnol 2014; 98:1-10. [PMID: 24232731 DOI: 10.1007/s00253-013-5346-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/16/2013] [Accepted: 10/17/2013] [Indexed: 12/16/2022]
Abstract
The prevalence of obesity is rapidly becoming endemic in industrialized countries and continues to increase in developing countries worldwide. Obesity predisposes people to an increased risk of developing metabolic syndrome. Recent studies have described an association between obesity and certain gut microbiota, suggesting that gut microbiota might play a critical role in the development of obesity. Although probiotics have many beneficial health effects in humans and animals, attention has only recently been drawn to manipulating the gut microbiota, such as lactic acid bacteria (LAB), to influence the development of obesity. In this review, we first describe the causes of obesity, including the genetic and environmental factors. We then describe the relationship between the gut microbiota and obesity, and the mechanisms by which the gut microbiota influence energy metabolism and inflammation in obesity. Lastly, we focus on the potential role of LAB in mediating the effects of the gut microbiota in the development of obesity.
Collapse
|
19
|
Geetha R, Yogalakshmi B, Sreeja S, Bhavani K, Anuradha CV. Troxerutin suppresses lipid abnormalities in the heart of high-fat–high-fructose diet-fed mice. Mol Cell Biochem 2013; 387:123-34. [DOI: 10.1007/s11010-013-1877-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 10/18/2013] [Indexed: 12/28/2022]
|
20
|
Park JE, Oh SH, Cha YS. Lactobacillus plantarum LG42 isolated from gajami sik-hae decreases body and fat pad weights in diet-induced obese mice. J Appl Microbiol 2013; 116:145-56. [PMID: 24131682 DOI: 10.1111/jam.12354] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/10/2013] [Accepted: 09/15/2013] [Indexed: 12/24/2022]
Abstract
AIMS This study investigated the antiobesity effect of lactic acid bacteria (Lactobacillus plantarum LG42) isolated from gajami sik-hae. METHODS AND RESULTS Male C57BL/6J mice were divided into four groups (n = 10); NDC (normal diet & DW), HDC (high-fat diet & DW), LGLAB (high-fat diet & Lactobacillus plantarum LG42, 1 × 10(7) CFU per mouse), HGLAB (high-fat diet & L. plantarum LG42, 1 × 10(9) CFU per mouse). After 12 weeks, GLAB supplemented groups showed lower body weight, with a significant reduction in epididymal and back fat. Serum and hepatic triglyceride, serum insulin and leptin levels were significantly lowered in GLAB supplemented groups. The hepatic mRNA expression of PPARα and CPT-I were significantly increased in GLAB groups, whereas the level of ACC, SREBP-1 and LXRα were significantly decreased in GLAB groups compared with HDC group. Additionally, GLAB reduces the expression of PPARγ in the epididymal adipose tissue resulting in inhibition of genes regulated by PPARγ. CONCLUSION These results suggest that the Lactobacillus plantarum LG42 has antiobesity effects in high-fat-diet-induced obese mice. SIGNIFICANCE AND IMPACT OF THE STUDY These results may contribute to nutraceutical and food industries in developing functional food and probiotics based therapies for the treatment and prevention of obesity.
Collapse
Affiliation(s)
- J-E Park
- Department of Food Science and Human Nutrition, Chonbuk National University, Jeonju, Korea; Jeonju Makgeolli Research Center, Chonbuk National University, Jeonju, Korea
| | | | | |
Collapse
|
21
|
Huang HY, Korivi M, Tsai CH, Yang JH, Tsai YC. Supplementation of Lactobacillus plantarum K68 and Fruit-Vegetable Ferment along with High Fat-Fructose Diet Attenuates Metabolic Syndrome in Rats with Insulin Resistance. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2013; 2013:943020. [PMID: 23690866 PMCID: PMC3652198 DOI: 10.1155/2013/943020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 03/05/2013] [Indexed: 01/22/2023]
Abstract
Lactobacillus plantarum K68 (isolated from fu-tsai) and fruit-vegetable ferment (FVF) have been tested for antidiabetic, anti-inflammatory, and antioxidant properties in a rat model of insulin resistance, induced by chronic high fat-fructose diet. Fifty rats were equally assigned into control (CON), high fat-fructose diet (HFFD), HFFD plus K68, HFFD plus FVF, and HFFD plus both K68 and FVF (MIX) groups. Respective groups were orally administered with K68 (1 × 10(9) CFU/0.5 mL) or FVF (180 mg/kg) or MIX for 8 weeks. We found that HFFD-induced increased bodyweights were prevented, and progressively increased fasting blood glucose and insulin levels were reversed (P < 0.01) by K68 and FVF treatments. Elevated glycated hemoglobin (HbA1c) and HOMA-IR values were controlled in supplemented groups. Furthermore, dyslipidemia, characterized by elevated total cholesterol (TC), triglyceride (TG), and low-density lipoproteins (LDLs) with HFFD, was significantly (P < 0.01) attenuated with MIX. Elevated pro-inflammatory cytokines, interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α), were controlled (P < 0.01) by K68, FVF, and MIX treatments. Moreover, decreased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) activities were substantially (P < 0.01) restored by all treatments. Experimental evidences demonstrate that K68 and FVF may be effective alternative medicine to prevent HFFD-induced hyperglycemia, hyperinsulinemia, and hyperlipidemia, possibly associated with anti-inflammatory and antioxidant efficacies.
Collapse
Affiliation(s)
- Hui-Yu Huang
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih-Chien University, Taipei City 10462, Taiwan
| | - Mallikarjuna Korivi
- Division of Mental Health and Addiction Medicine, Institute of Population Health Sciences, National Health Research Institutes, Zhunan 35053, Taiwan
- Department of Sports Sciences, TPEC, Taipei City 11153, Taiwan
| | - Chun-Han Tsai
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih-Chien University, Taipei City 10462, Taiwan
| | - Jo-Hsuan Yang
- Department of Food Science, Nutrition, and Nutraceutical Biotechnology, Shih-Chien University, Taipei City 10462, Taiwan
| | - Ying-Chieh Tsai
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei City 11221, Taiwan
| |
Collapse
|
22
|
Lactobacillus plantarum LG42 isolated from gajami sik-hae inhibits adipogenesis in 3T3-L1 adipocyte. BIOMED RESEARCH INTERNATIONAL 2013; 2013:460927. [PMID: 23555088 PMCID: PMC3600254 DOI: 10.1155/2013/460927] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 12/17/2012] [Indexed: 01/19/2023]
Abstract
We investigated whether lactic acid bacteria isolated from gajami sik-hae (GLAB) are capable of reducing the intracellular lipid accumulation by downregulating the expression of adipogenesis-related genes in differentiated 3T3-L1 cells. The GLAB, Lactobacillus plantarum LG42, significantly decreased the intracellular triglyceride storage and the glycerol-3-phosphate dehydrogenase (GPDH) activity in a dose-dependent manner. mRNA expression of transcription factors like peroxisome proliferator-activated receptor (PPAR) γ and CCAAT/enhancer-binding protein (C/EBP) α involved in adipogenesis was markedly decreased by the GLAB treatment. Moreover, the GLAB also decreased the expression level of adipogenic markers like adipocyte fatty acid binding protein (aP2), leptin, GPDH, and fatty acid translocase (CD36) significantly. These results suggest that the GLAB inhibits lipid accumulation in the differentiated adipocyte through downregulating the expression of adipogenic transcription factors and other specific genes involved in lipid metabolism.
Collapse
|
23
|
Chiang SS, Pan TM. Beneficial effects of Lactobacillus paracasei subsp. paracasei NTU 101 and its fermented products. Appl Microbiol Biotechnol 2011; 93:903-16. [DOI: 10.1007/s00253-011-3753-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 11/07/2011] [Accepted: 11/21/2011] [Indexed: 12/20/2022]
|
24
|
Park DY, Ahn YT, Huh CS, Jeon SM, Choi MS. The inhibitory effect of Lactobacillus plantarum KY1032 cell extract on the adipogenesis of 3T3-L1 Cells. J Med Food 2011; 14:670-5. [PMID: 21554138 DOI: 10.1089/jmf.2010.1355] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Some probiotics and their cell components are known to modulate lipid metabolism in vitro and/or in vivo. This study was carried out to investigate possible anti-adipogenic action of a probiotic cell extract, Lactobacillus plantarum KY1032 cell extract (KY1032-CE), in vitro using 3T3-L1 cells. Lipid regulation in the cell culture system was assessed by AdipoRed assay and Oil red O staining of intracellular lipids and real-time polymerase chain reaction and western blot analysis of adipogenesis-related factors. AdipoRed assay revealed that KY1032-CE treatment significantly decreased lipid accumulation in maturing 3T3-L1 preadipocytes in a dose-dependent manner. Oil red O staining demonstrated that KY1032-CE reduced the number of lipid-containing rounded cells. KY1032-CE down-regulated the mRNA and protein expression of four adipocyte-specific genes: peroxisome proliferator-activated receptor-γ2, CCAAT/enhancer binding protein-α, fatty acid synthase, and adipocyte-fatty acid binding protein. Accordingly, these results indicate that KY1032-CE can reduce fat mass by modulating adipogenesis in maturing preadipocytes. Further studies are needed to elucidate its mode of actions in efficacy tests of KY1032-CE in vivo.
Collapse
|