1
|
Balducci E, Papi F, Capialbi DE, Del Bino L. Polysaccharides' Structures and Functions in Biofilm Architecture of Antimicrobial-Resistant (AMR) Pathogens. Int J Mol Sci 2023; 24:ijms24044030. [PMID: 36835442 PMCID: PMC9965654 DOI: 10.3390/ijms24044030] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Bacteria and fungi have developed resistance to the existing therapies such as antibiotics and antifungal drugs, and multiple mechanisms are mediating this resistance. Among these, the formation of an extracellular matrix embedding different bacterial cells, called biofilm, is an effective strategy through which bacterial and fungal cells are establishing a relationship in a unique environment. The biofilm provides them the possibility to transfer genes conferring resistance, to prevent them from desiccation and to impede the penetration of antibiotics or antifungal drugs. Biofilms are formed of several constituents including extracellular DNA, proteins and polysaccharides. Depending on the bacteria, different polysaccharides form the biofilm matrix in different microorganisms, some of them involved in the first stage of cells' attachment to surfaces and to each other, and some responsible for giving the biofilm structure resistance and stability. In this review, we describe the structure and the role of different polysaccharides in bacterial and fungal biofilms, we revise the analytical methods to characterize them quantitatively and qualitatively and finally we provide an overview of potential new antimicrobial therapies able to inhibit biofilm formation by targeting exopolysaccharides.
Collapse
Affiliation(s)
| | | | - Daniela Eloisa Capialbi
- GSK, 53100 Siena, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | | |
Collapse
|
2
|
Weaver AJ, Borgogna TR, O’Shea-Stone G, Peters TR, Copié V, Voyich J, Teintze M. 18β-Glycyrrhetinic Acid Induces Metabolic Changes and Reduces Staphylococcus aureus Bacterial Cell-to-Cell Interactions. Antibiotics (Basel) 2022; 11:antibiotics11060781. [PMID: 35740189 PMCID: PMC9220049 DOI: 10.3390/antibiotics11060781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/04/2022] Open
Abstract
The rise in bacterial resistance to common antibiotics has raised an increased need for alternative treatment strategies. The natural antibacterial product, 18β-glycyrrhetinic acid (GRA) has shown efficacy against community-associated methicillin-resistant Staphylococcus aureus (MRSA), although its interactions against planktonic and biofilm modes of growth remain poorly understood. This investigation utilized biochemical and metabolic approaches to further elucidate the effects of GRA on MRSA. Prolonged exposure of planktonic MRSA cell cultures to GRA resulted in increased production of staphyloxanthin, a pigment known to exhibit antioxidant and membrane-stabilizing functions. Then, 1D 1H NMR analyses of intracellular metabolite extracts from MRSA treated with GRA revealed significant changes in intracellular polar metabolite profiles, including increased levels of succinate and citrate, and significant reductions in several amino acids, including branch chain amino acids. These changes reflect the MRSA response to GRA exposure, including potentially altering its membrane composition, which consumes branched chain amino acids and leads to significant energy expenditure. Although GRA itself had no significant effect of biofilm viability, it seems to be an effective biofilm disruptor. This may be related to interference with cell–cell aggregation, as treatment of planktonic MRSA cultures with GRA leads to a significant reduction in micro-aggregation. The dispersive nature of GRA on MRSA biofilms may prove valuable for treatment of such infections and could be used to increase susceptibility to complementary antibiotic therapeutics.
Collapse
Affiliation(s)
- Alan J. Weaver
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.J.W.J.); (G.O.-S.); (T.R.P.)
| | - Timothy R. Borgogna
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Galen O’Shea-Stone
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.J.W.J.); (G.O.-S.); (T.R.P.)
| | - Tami R. Peters
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.J.W.J.); (G.O.-S.); (T.R.P.)
| | - Valérie Copié
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.J.W.J.); (G.O.-S.); (T.R.P.)
- Correspondence: (V.C.); (J.V.); (M.T.); Tel.: +406-994-7244 (V.C.); +406-994-7184 (J.V.); +406-994-6515 (M.T.)
| | - Jovanka Voyich
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT 59717, USA;
- Correspondence: (V.C.); (J.V.); (M.T.); Tel.: +406-994-7244 (V.C.); +406-994-7184 (J.V.); +406-994-6515 (M.T.)
| | - Martin Teintze
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, USA; (A.J.W.J.); (G.O.-S.); (T.R.P.)
- Correspondence: (V.C.); (J.V.); (M.T.); Tel.: +406-994-7244 (V.C.); +406-994-7184 (J.V.); +406-994-6515 (M.T.)
| |
Collapse
|
3
|
Mohd Kamal K, Mahamad Maifiah MH, Abdul Rahim N, Hashim YZHY, Abdullah Sani MS, Azizan KA. Bacterial Metabolomics: Sample Preparation Methods. Biochem Res Int 2022; 2022:9186536. [PMID: 35465444 PMCID: PMC9019480 DOI: 10.1155/2022/9186536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/31/2022] [Indexed: 12/03/2022] Open
Abstract
Metabolomics is a comprehensive analysis of metabolites existing in biological systems. As one of the important "omics" tools, the approach has been widely employed in various fields in helping to better understand the complex cellular metabolic states and changes. Bacterial metabolomics has gained a significant interest as bacteria serve to provide a better subject or model at systems level. The approach in metabolomics is categorized into untargeted and targeted which serves different paradigms of interest. Nevertheless, the bottleneck in metabolomics has been the sample or metabolite preparation method. A custom-made method and design for a particular species or strain of bacteria might be necessary as most studies generally refer to other bacteria or even yeast and fungi that may lead to unreliable analysis. The paramount aspect of metabolomics design comprises sample harvesting, quenching, and metabolite extraction procedures. Depending on the type of samples and research objective, each step must be at optimal conditions which are significantly important in determining the final output. To date, there are no standardized nor single designated protocols that have been established for a specific bacteria strain for untargeted and targeted approaches. In this paper, the existing and current developments of sample preparation methods of bacterial metabolomics used in both approaches are reviewed. The review also highlights previous literature of optimized conditions used to propose the most ideal methods for metabolite preparation, particularly for bacterial cells. Advantages and limitations of methods are discussed for future improvement of bacterial metabolomics.
Collapse
Affiliation(s)
- Khairunnisa Mohd Kamal
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | - Mohd Hafidz Mahamad Maifiah
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | | | - Yumi Zuhanis Has-Yun Hashim
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | - Muhamad Shirwan Abdullah Sani
- International Institute for Halal Research and Training (INHART), Level 3, KICT Building, International Islamic University Malaysia (IIUM), Jalan Gombak, Selangor 53100, Malaysia
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM, Bangi, Selangor 43600, Malaysia
| |
Collapse
|
4
|
1H NMR based metabolic profiling distinguishes the differential impact of capture techniques on wild bighorn sheep. Sci Rep 2021; 11:11308. [PMID: 34050238 PMCID: PMC8163747 DOI: 10.1038/s41598-021-90931-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022] Open
Abstract
Environmental metabolomics has the potential to facilitate the establishment of a new suite of tools for assessing the physiological status of important wildlife species. A first step in developing such tools is to evaluate the impacts of various capture techniques on metabolic profiles as capture is necessary to obtain the biological samples required for assays. This study employed 1H nuclear magnetic resonance (NMR)-based metabolite profiling of 562 blood serum samples from wild bighorn sheep to identify characteristic molecular serum makers of three capture techniques (dart, dropnet, and helicopter-based captures) to inform future sampling protocols for metabolomics studies, and to provide insights into the physiological impacts of capture. We found that different capture techniques induce distinct changes in amino acid serum profiles, the urea cycle, and glycolysis, and attribute the differences in metabolic patterns to differences in physical activity and stress caused by the different capture methods. These results suggest that when designing experiments involving the capture of wild animals, it may be prudent to employ a single capture technique to reduce confounding factors. Our results also supports administration of tranquilizers as soon as animals are restrained to mitigate short-term physiological and metabolic responses when using pursuit and physical restraint capture techniques.
Collapse
|
5
|
Microbial Metabolomics: From Methods to Translational Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33791977 DOI: 10.1007/978-3-030-51652-9_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Most microbe-associated infectious diseases severely affect human health. However, clinical diagnosis of pathogenic diseases remains challenging due to the lack of specific and highly reliable methods. To better understand the diagnosis, pathogenesis, and treatment of these diseases, systems biology-driven metabolomics goes beyond the annotated phenotype and better targets the functions than conventional approaches. As a novel strategy for analysis of metabolomes in microbes, microbial metabolomics has been recently used to study many diseases, such as obesity, urinary tract infection (UTI), and hepatitis C. In this chapter, we attempt to introduce various microbial metabolomics methods to better interpret the microbial metabolism underlying a diversity of infectious diseases and inspire scientists to pay more attention to microbial metabolomics, enabling broadly and efficiently its translational applications to infectious diseases, from molecular diagnosis to therapeutic discovery.
Collapse
|
6
|
Shen F, Ge C, Yuan P. Metabolomics Study Reveals Inhibition and Metabolic Dysregulation in Staphylococcus aureus Planktonic Cells and Biofilms Induced by Carnosol. Front Microbiol 2020; 11:538572. [PMID: 33072009 PMCID: PMC7530940 DOI: 10.3389/fmicb.2020.538572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus aureus (S. aureus) is a global health threat accompanied by increasing in drug resistance. To combat this challenge, there is an urgent need to find alternative antimicrobial agents against S. aureus. This study investigated the antimicrobial efficacy of carnosol against S. aureus using an in vitro model. The effects of carnosol were determined based on the antimicrobial effects or formation and disruption of biofilms. Finally, metabolomics of S. aureus grown as planktonic cells and biofilms with carnosol treatment were analyzed using gas chromatography-mass spectrometry. The minimum inhibitory concentrations (MICs) of carnosol were 32 to 256 μg/mL against the sixteen tested S. aureus strains. Among the biofilms, we observed a reduction in bacterial motility of the S. aureus, biofilm development and preformed biofilm after carnosol treatment. Moreover, the significantly altered metabolic pathways upon carnosol treatment in S. aureus planktonic cells and biofilms were highly associated with the perturbation of glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism, arginine and proline metabolism, alanine, aspartate and glutamate metabolism, arginine biosynthesis, and aminoacyl-tRNA biosynthesis. In addition, glutathione metabolism, D-glutamine and D-glutamate metabolism were significantly changed in the biofilms. This study establishes the antibacterial and antibiofilm properties of carnosol, and will provide an alternative strategy for overcoming the drug resistance of S. aureus.
Collapse
Affiliation(s)
- Fengge Shen
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Chunpo Ge
- Xinxiang Key Laboratory of Molecular Neurology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Peng Yuan
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
7
|
Mortelé O, Iturrospe E, Breynaert A, Verdickt E, Xavier BB, Lammens C, Malhotra-Kumar S, Jorens PG, Pieters L, van Nuijs ALN, Hermans N. Optimization of an in vitro gut microbiome biotransformation platform with chlorogenic acid as model compound: From fecal sample to biotransformation product identification. J Pharm Biomed Anal 2019; 175:112768. [PMID: 31398630 DOI: 10.1016/j.jpba.2019.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 12/11/2022]
Abstract
Recent data clearly show that the gut microbiota plays a significant role in the biotransformation of many endogenous molecules and xenobiotics, leading to a potential influence of this microbiotic metabolism on activation, inactivation and possible toxicity of these compounds. To study the colonic biotransformation of xenobiotics by the gut microbiome, in vitro models are often used as they allow dynamic and multiple sampling overtime. However, the pre-analytical phase should be carefully optimized to enable biotransformation product identification representative for the in vivo situation. During this study, chlorogenic acid was used as a model compound to optimize a ready-to-use gut microbiome biotransformation platform using an in vitro gastrointestinal dialysis-model with colon phase together with an instrumental platform using liquid chromatography coupled to high resolution mass spectrometry (LC-QTOF-MS). Identification of the biotransformation products of chlorogenic acid was performed using complementary suspect and non-targeted data analysis approaches (MZmine + R and MPP workflow). Concerning the pre-analytical phase, (i) the influence of different incubation media (Wilkins-Chalgren Anaerobic Broth (WCB) and (versus) phosphate buffer) and different incubation times (prior to implementation in the colonic stage of the dialysis model) on fecal bacterial composition and concentration were investigated and (ii) four different sample preparation methods (centrifugation, extraction, sonication and freeze-drying) were evaluated targeting colonic biotransformation of chlorogenic acid. WCB as incubation medium showed to introduce substantial variation in the bacterial composition of the fecal samples, while the sterile phosphate buffer guaranteed a closer resemblance to the in vivo composition. Furthermore, incubation during 24 h in sterile phosphate buffer as medium showed no significant increase or decrease in anaerobic bacterial concentration, concluding that incubation prior to the colonic stage is not needed. Concerning sample preparation, centrifugation, sonication and extraction gave similar results, while freeze-drying appeared to be inferior. The extraction method was selected as an optimal sample preparation method given the quick execution together with a good instrumental sensitivity. This study optimized a ready-to-use platform to investigate colonic biotransformation of xenobiotics by using chlorogenic acid as a model compound. This platform can be used in the future to study differences in colonic biotransformation of xenobiotics using fecal samples of different patient groups.
Collapse
Affiliation(s)
- Olivier Mortelé
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium; Natural Products and Food - Research & Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Elias Iturrospe
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Annelies Breynaert
- Natural Products and Food - Research & Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Eline Verdickt
- Natural Products and Food - Research & Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Basil Britto Xavier
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Christine Lammens
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | - Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital, Clinical pharmacotherapy and toxicology, University of Antwerp, Edegem, Belgium
| | - Luc Pieters
- Natural Products and Food - Research & Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium
| | | | - Nina Hermans
- Natural Products and Food - Research & Analysis (NatuRA), University of Antwerp, Universiteitsplein 1, 2610 Antwerp, Belgium.
| |
Collapse
|
8
|
Weaver AJ, Peters TR, Tripet B, Van Vuren A, Rakesh, Lee RE, Copié V, Teintze M. Exposure of Methicillin-Resistant Staphylococcus aureus to Low Levels of the Antibacterial THAM-3ΦG Generates a Small Colony Drug-Resistant Phenotype. Sci Rep 2018; 8:9850. [PMID: 29959441 PMCID: PMC6026174 DOI: 10.1038/s41598-018-28283-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/20/2018] [Indexed: 12/18/2022] Open
Abstract
This study investigated resistance against trishexylaminomelamine trisphenylguanide (THAM-3ΦG), a novel antibacterial compound with selective microbicidal activity against Staphylococcus aureus. Resistance development was examined by culturing methicillin resistant S. aureus (MRSA) with sub-lethal doses of THAM-3ΦG. This quickly resulted in the formation of normal (WT) and small colonies (SC) of S. aureus exhibiting minimal inhibitory concentrations (MICs) 2× and 4× greater than the original MIC. Continuous cell passaging with increasing concentrations of THAM-3ΦG resulted in an exclusively SC phenotype with MIC >64 mg/L. Nuclear magnetic resonance (NMR)-based metabolomics and multivariate statistical analysis revealed three distinct metabolic profiles for THAM-3ΦG treated WT, untreated WT, and SC (both treated and untreated). The metabolome patterns of the SC sample groups match those reported for other small colony variants (SCV) of S. aureus. Supplementation of the SCV with menadione resulted in almost complete recovery of growth rate. This auxotrophism was corroborated by NMR analysis revealing the absence of menaquinone production in the SCV. In conclusion, MRSA rapidly acquires resistance to THAM-3ΦG through selection of a slow-growing menaquinone auxotroph. This study highlights the importance of evaluating and monitoring resistance to novel antibacterials during development.
Collapse
Affiliation(s)
- Alan J Weaver
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
- Dental and Craniofacial Trauma Research and Tissue Regeneration Directorate, U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, Texas, United States of America
| | - Tami R Peters
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Brian Tripet
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Abigail Van Vuren
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Rakesh
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Valérie Copié
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America
| | - Martin Teintze
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, Montana, United States of America.
| |
Collapse
|
9
|
Extracellular Microbial Metabolomics: The State of the Art. Metabolites 2017; 7:metabo7030043. [PMID: 28829385 PMCID: PMC5618328 DOI: 10.3390/metabo7030043] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 02/04/2023] Open
Abstract
Microorganisms produce and secrete many primary and secondary metabolites to the surrounding environment during their growth. Therefore, extracellular metabolites provide important information about the changes in microbial metabolism due to different environmental cues. The determination of these metabolites is also comparatively easier than the extraction and analysis of intracellular metabolites as there is no need for cell rupture. Many analytical methods are already available and have been used for the analysis of extracellular metabolites from microorganisms over the last two decades. Here, we review the applications and benefits of extracellular metabolite analysis. We also discuss different sample preparation protocols available in the literature for both types (e.g., metabolites in solution and in gas) of extracellular microbial metabolites. Lastly, we evaluate the authenticity of using extracellular metabolomics data in the metabolic modelling of different industrially important microorganisms.
Collapse
|
10
|
Liu J, Yu S, Han B, Chen J. Effects of benzalkonium chloride and ethanol on dual-species biofilms of Serratia liquefaciens S1 and Shewanella putrefaciens S4. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Bordag N, Janakiraman V, Nachtigall J, González Maldonado S, Bethan B, Laine JP, Fux E. Fast Filtration of Bacterial or Mammalian Suspension Cell Cultures for Optimal Metabolomics Results. PLoS One 2016; 11:e0159389. [PMID: 27438065 PMCID: PMC4954723 DOI: 10.1371/journal.pone.0159389] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 07/03/2016] [Indexed: 01/08/2023] Open
Abstract
The metabolome offers real time detection of the adaptive, multi-parametric response of the organisms to environmental changes, pathophysiological stimuli or genetic modifications and thus rationalizes the optimization of cell cultures in bioprocessing. In bioprocessing the measurement of physiological intracellular metabolite levels is imperative for successful applications. However, a sampling method applicable to all cell types with little to no validation effort which simultaneously offers high recovery rates, high metabolite coverage and sufficient removal of extracellular contaminations is still missing. Here, quenching, centrifugation and fast filtration were compared and fast filtration in combination with a stabilizing washing solution was identified as the most promising sampling method. Different influencing factors such as filter type, vacuum pressure, washing solutions were comprehensively tested. The improved fast filtration method (MxP® FastQuench) followed by routine lipid/polar extraction delivers a broad metabolite coverage and recovery reflecting well physiological intracellular metabolite levels for different cell types, such as bacteria (Escherichia coli) as well as mammalian cells chinese hamster ovary (CHO) and mouse myeloma cells (NS0).The proposed MxP® FastQuench allows sampling, i.e. separation of cells from medium with washing and quenching, in less than 30 seconds and is robustly designed to be applicable to all cell types. The washing solution contains the carbon source respectively the 13C-labeled carbon source to avoid nutritional stress during sampling. This method is also compatible with automation which would further reduce sampling times and the variability of metabolite profiling data.
Collapse
Affiliation(s)
| | - Vijay Janakiraman
- Biogen Idec Inc., Raleigh-Durham, North Carolina, United States of America
| | | | | | | | | | - Elie Fux
- Metanomics GmbH, Berlin, Germany
- * E-mail:
| |
Collapse
|
12
|
Fuchs A, Tripet BP, Ammons MCB, Copié V. Optimization of Metabolite Extraction Protocols for the Identification and Profiling of Small Molecule Metabolites from Planktonic and Biofilm Pseudomonas aeruginosa Cultures. ACTA ACUST UNITED AC 2016; 4:141-147. [PMID: 34046294 DOI: 10.2174/2213235x04666151126203043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Metabolomics aims to characterize the metabolic phenotype and metabolic pathways utilized by microorganisms or other cellular systems. A crucial component to metabolomics research as it applies to microbial metabolism is the development of robust and reproducible methods for extraction of intracellular metabolites. The goal is to extract all metabolites in a non-biased and consistent manner; however, most methods used thus far are targeted to specific metabolite classes and use harsh conditions that may contribute to metabolite degradation. Metabolite extraction methodologies need to be optimized for each microorganism of interest due to different cellular characteristics contributing to lysis resistance. Methods Three cell pellet wash solutions were compared for the potential to influence intracellular metabolite leakage of P. aeruginosa. We also compared four different extraction methods using (i) methanol:chloroform (2:1); (ii) 50% methanol; (iii) 100% methanol; or (iv) 100% water to extract intracellular metabolites from P. aeruginosa planktonic and biofilm cultures. Results Intracellular metabolite extraction efficiency was found to be dependent on the extraction method and varies between microbial modes of growth. Methods using the 60% methanol wash produced the greatest amount of intracellular material leakage. Quantification of intracellular metabolites via 1H NMR showed that extraction protocols using 100% water or 50% methanol achieved the greatest extraction efficiencies, while addition of sonication to facilitate cell lysis to the 50% methanol extraction method resulted in at least a two-fold increase in signal intensities for approximately half of the metabolites identified. Phosphate buffered saline (PBS) was determined to be the most appropriate wash solution, yielding little intracellular metabolite leakage from cells. Conclusion We determined that washing in 1X PBS and extracting intracellular metabolites with 50% methanol is the most appropriate metabolite extraction protocol because (a) leakage is minimal; (b) a broad range of metabolites present at sufficiently high concentrations is detectable by NMR; and (c) this method proved suitable for metabolite extraction of both planktonic and biofilm P. aeruginosa cultures.
Collapse
Affiliation(s)
- Amanda Fuchs
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, 59717, Montana, USA
| | - Brian P Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, 59717, Montana, USA
| | - Mary Cloud B Ammons
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, 59717, Montana, USA
| | - Valérie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, 59717, Montana, USA
| |
Collapse
|
13
|
Stipetic LH, Dalby MJ, Davies RL, Morton FR, Ramage G, Burgess KEV. A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples. Metabolomics 2016; 12:75. [PMID: 27013931 PMCID: PMC4783440 DOI: 10.1007/s11306-016-1002-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/16/2016] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Bacterial cell characteristics change significantly during differentiation between planktonic and biofilm states. While established methods exist to detect and identify transcriptional and proteomic changes, metabolic fluctuations that distinguish these developmental stages have been less amenable to investigation. OBJECTIVES The objectives of the study were to develop a robust reproducible sample preparation methodology for high throughput biofilm analysis and to determine differences between Staphylococcus aureus in planktonic and biofilm states. METHODS The method uses bead beating in a chloroform/methanol/water extraction solvent to both disrupt cells and quench metabolism. Verification of the method was performed using liquid-chromatography-mass spectrometry. Raw mass-spectrometry data was analysed using an in-house bioinformatics pipe-line incorporating XCMS, MzMatch and in-house R-scripts, with identifications matched to internal standards and metabolite data-base entries. RESULTS We have demonstrated a novel mechanical bead beating method that has been optimised for the extraction of the metabolome from cells of a clinical Staphylococcus aureus strain existing in a planktonic or biofilm state. This high-throughput method is fast and reproducible, allowing for direct comparison between different bacterial growth states. Significant changes in arginine biosynthesis were identified between the two cell populations. CONCLUSIONS The method described herein represents a valuable tool in studying microbial biochemistry at a molecular level. While the methodology is generally applicable to the lysis and extraction of metabolites from Gram positive bacteria, it is particularly applicable to biofilms. Bacteria that exist as a biofilm are shown to be highly distinct metabolically from their 'free living' counterparts, thus highlighting the need to study microbes in different growth states. Metabolomics can successfully distinguish between a planktonic and biofilm growth state. Importantly, this study design, incorporating metabolomics, could be optimised for studying the effects of antimicrobials and drug modes of action, potentially providing explanations and mechanisms of antibiotic resistance and to help devise new antimicrobials.
Collapse
Affiliation(s)
- Laurence H. Stipetic
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| | - Matthew J. Dalby
- />Institute of Molecular Cell and Systems Biology, The University of Glasgow, Glasgow, UK
| | - Robert L. Davies
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Fraser R. Morton
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| | - Gordon Ramage
- />Infection and Immunity Research Group, Glasgow Dental School, School of Medicine, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
| | - Karl E. V. Burgess
- />Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, The University of Glasgow, Glasgow, UK
- />Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, The University of Glasgow, Garscube Estate, Bearsden, Scotland G61 1QH UK
| |
Collapse
|
14
|
Hamerly T, Tripet BP, Tigges M, Giannone RJ, Wurch L, Hettich RL, Podar M, Copié V, Bothner B. Untargeted metabolomics studies employing NMR and LC-MS reveal metabolic coupling between Nanoarcheum equitans and its archaeal host Ignicoccus hospitalis. Metabolomics 2015; 11:895-907. [PMID: 26273237 PMCID: PMC4529127 DOI: 10.1007/s11306-014-0747-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interspecies interactions are the basis of microbial community formation and infectious diseases. Systems biology enables the construction of complex models describing such interactions, leading to a better understanding of disease states and communities. However, before interactions between complex organisms can be understood, metabolic and energetic implications of simpler real-world host-microbe systems must be worked out. To this effect, untargeted metabolomics experiments were conducted and integrated with proteomics data to characterize key molecular-level interactions between two hyperthermophilic microbial species, both of which have reduced genomes. Metabolic changes and transfer of metabolites between the archaea Ignicoccus hospitalis and Nanoarcheum equitans were investigated using integrated LC-MS and NMR metabolomics. The study of such a system is challenging, as no genetic tools are available, growth in the laboratory is challenging, and mechanisms by which they interact are unknown. Together with information about relative enzyme levels obtained from shotgun proteomics, the metabolomics data provided useful insights into metabolic pathways and cellular networks of I. hospitalis that are impacted by the presence of N. equitans, including arginine, isoleucine, and CTP biosynthesis. On the organismal level, the data indicate that N. equitans exploits metabolites generated by I. hospitalis to satisfy its own metabolic needs. This finding is based on N. equitans's consumption of a significant fraction of the metabolite pool in I. hospitalis that cannot solely be attributed to increased biomass production for N. equitans. Combining LC-MS and NMR metabolomics datasets improved coverage of the metabolome and enhanced the identification and quantitation of cellular metabolites.
Collapse
Affiliation(s)
- Timothy Hamerly
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Brian P. Tripet
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | - Michelle Tigges
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
| | | | - Louie Wurch
- Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996
| | | | - Mircea Podar
- Oak Ridge National Laboratory, Oak Ridge, TN 37831
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996
| | - Valerie Copié
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717
- Thermal Biology Institute, Montana State University, Bozeman, MT 59717
| |
Collapse
|
15
|
Yan Z, Zheng XW, Han BZ, Yan YZ, Zhang X, Chen JY. 1H NMR-based metabolomics approach for understanding the fermentation behaviour ofBacillus licheniformis. JOURNAL OF THE INSTITUTE OF BREWING 2015. [DOI: 10.1002/jib.238] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zheng Yan
- Beijing Laboratory for Food Quality and Safety; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Chinese Academy of Agricultural Engineering; Beijing China
| | - Xiao-Wei Zheng
- Beijing Laboratory for Food Quality and Safety; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
- Laboratory of Food Microbiology; Wageningen University; Wageningen The Netherlands
| | - Bei-Zhong Han
- Beijing Laboratory for Food Quality and Safety; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
| | - Yin-Zhuo Yan
- Beijing Laboratory for Food Quality and Safety; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
| | - Xin Zhang
- Technology Centre; Shanxi Xinghuacun Fenjiu Distillery Co. Ltd; Fenyang China
| | - Jing-Yu Chen
- Beijing Laboratory for Food Quality and Safety; College of Food Science and Nutritional Engineering; China Agricultural University; Beijing China
| |
Collapse
|
16
|
Ganaie SU, Abbasi T, Abbasi SA. Green Synthesis of Silver Nanoparticles Using an Otherwise Worthless Weed Mimosa (Mimosa pudica): Feasibility and Process Development Toward Shape/Size Control. PARTICULATE SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1080/02726351.2015.1016644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Wong HS, Maker GL, Trengove RD, O'Handley RM. Gas chromatography-mass spectrometry-based metabolite profiling of Salmonella enterica serovar Typhimurium differentiates between biofilm and planktonic phenotypes. Appl Environ Microbiol 2015; 81:2660-6. [PMID: 25636852 PMCID: PMC4375307 DOI: 10.1128/aem.03658-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/27/2015] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to utilize gas chromatography coupled with mass spectrometry (GC-MS) to compare and identify patterns of biochemical change between Salmonella cells grown in planktonic and biofilm phases and Salmonella biofilms of different ages. Our results showed a clear separation between planktonic and biofilm modes of growth. The majority of metabolites contributing to variance between planktonic and biofilm supernatants were identified as amino acids, including alanine, glutamic acid, glycine, and ornithine. Metabolites contributing to variance in intracellular profiles were identified as succinic acid, putrescine, pyroglutamic acid, and N-acetylglutamic acid. Principal-component analysis revealed no significant differences between the various ages of intracellular profiles, which would otherwise allow differentiation of biofilm cells on the basis of age. A shifting pattern across the score plot was illustrated when analyzing extracellular metabolites sampled from different days of biofilm growth, and amino acids were again identified as the metabolites contributing most to variance. An understanding of biofilm-specific metabolic responses to perturbations, especially antibiotics, can lead to the identification of novel drug targets and potential therapies for combating biofilm-associated diseases. We concluded that under the conditions of this study, GC-MS can be successfully applied as a high-throughput technique for "bottom-up" metabolomic biofilm research.
Collapse
Affiliation(s)
- Hui San Wong
- The University of Adelaide, School of Animal and Veterinary Science, Adelaide, South Australia, Australia Murdoch University, School of Veterinary and Life Sciences, Perth, Western Australia, Australia
| | - Garth L Maker
- Murdoch University, School of Veterinary and Life Sciences, Perth, Western Australia, Australia Murdoch University, Metabolomics Australia, Perth, Western Australia, Australia
| | - Robert D Trengove
- Murdoch University, Metabolomics Australia, Perth, Western Australia, Australia
| | - Ryan M O'Handley
- The University of Adelaide, School of Animal and Veterinary Science, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Ammons MCB, Tripet BP, Carlson RP, Kirker KR, Gross MA, Stanisich JJ, Copié V. Quantitative NMR metabolite profiling of methicillin-resistant and methicillin-susceptible Staphylococcus aureus discriminates between biofilm and planktonic phenotypes. J Proteome Res 2014; 13:2973-85. [PMID: 24809402 PMCID: PMC4059261 DOI: 10.1021/pr500120c] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Wound bioburden in the form of colonizing biofilms is a major contributor to nonhealing wounds. Staphylococcus aureus is a Gram-positive, facultative anaerobe commonly found in chronic wounds; however, much remains unknown about the basic physiology of this opportunistic pathogen, especially with regard to the biofilm phenotype. Transcriptomic and proteomic analysis of S. aureus biofilms have suggested that S. aureus biofilms exhibit an altered metabolic state relative to the planktonic phenotype. Herein, comparisons of extracellular and intracellular metabolite profiles detected by (1)H NMR were conducted for methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) S. aureus strains grown as biofilm and planktonic cultures. Principal component analysis distinguished the biofilm phenotype from the planktonic phenotype, and factor loadings analysis identified metabolites that contributed to the statistical separation of the biofilm from the planktonic phenotype, suggesting that key features distinguishing biofilm from planktonic growth include selective amino acid uptake, lipid catabolism, butanediol fermentation, and a shift in metabolism from energy production to assembly of cell-wall components and matrix deposition. These metabolite profiles provide a basis for the development of metabolite biomarkers that distinguish between biofilm and planktonic phenotypes in S. aureus and have the potential for improved diagnostic and therapeutic use in chronic wounds.
Collapse
Affiliation(s)
- Mary Cloud B Ammons
- The Department of Chemistry and Biochemistry, ‡Department of Chemical and Biological Engineering, and §The Center for Biofilm Engineering, Montana State University , Bozeman, Montana 59717, United States
| | | | | | | | | | | | | |
Collapse
|
19
|
Arockiya Aarthi Rajathi F, Arumugam R, Saravanan S, Anantharaman P. Phytofabrication of gold nanoparticles assisted by leaves of Suaeda monoica and its free radical scavenging property. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 135:75-80. [PMID: 24811828 DOI: 10.1016/j.jphotobiol.2014.03.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/16/2014] [Accepted: 03/17/2014] [Indexed: 11/28/2022]
Abstract
Development of biologically inspired experimental processes for the synthesis of nanoparticles is evolving into an important branch of nanotechnology. An eco-friendly synthesis of inorganic nanoparticle is a fast growing research in the limb of nanotechnology. In the present study, it is reported that Suaeda monoica leaf mediated synthesis of gold nanoparticles by the reduction of gold ions. The formation of gold nanoparticle was confirmed by color changes from turbid brown to deep purple violet color and a characteristic peak at 535 nm. The morphology and structure of synthesized gold nanoparticles were characterized on Scanning Electron Microscopy (SEM) equipped with a Thermo EDAX attachment, Transmission Electron Microscopy (TEM), X-ray diffraction (XRD), (FT-IR), Dynamic Light Scattering (DLS) which reveals that the Au nanoparticles are spherical and the average particle size is 12.96 nm. Crystalline nature of the nanoparticles is confirmed from the XRD pattern. FTIR spectrum indicates that the biomolecules of carboxyl, amine and hydroxyl functional groups involved in the reduction of gold nanoparticles. The biosynthesized gold nanoparticles displayed considerable antioxidant capacity.
Collapse
Affiliation(s)
- F Arockiya Aarthi Rajathi
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, India.
| | - R Arumugam
- Department of Plant Biology and Plant Biotechnology, AVC College, Mannampandal, Mayiladuthurai, Tamil Nadu, India
| | - S Saravanan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, India
| | - P Anantharaman
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, India
| |
Collapse
|
20
|
Xu YJ, Wang C, Ho WE, Ong CN. Recent developments and applications of metabolomics in microbiological investigations. Trends Analyt Chem 2014. [DOI: 10.1016/j.trac.2013.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Liebeke M, Lalk M. Staphylococcus aureus metabolic response to changing environmental conditions - a metabolomics perspective. Int J Med Microbiol 2013; 304:222-9. [PMID: 24439195 DOI: 10.1016/j.ijmm.2013.11.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 10/30/2013] [Accepted: 11/25/2013] [Indexed: 01/16/2023] Open
Abstract
Microorganisms preserve their metabolic function against a wide range of external perturbations including biotic or abiotic factors by utilizing cellular adaptations to maintain cell homeostasis. Functional genomics aims to detect such adaptive alterations on the level of transcriptome, proteome and metabolome to understand system wide changes and to identify interactions between the different levels of biochemical organization. Microbial metabolomics measures metabolites, the direct biochemical response to the environment, and is pivotal to the understanding of the variability and dynamics of bacterial cell metabolism. Metabolomics can measure many different types of compounds including primary metabolites, secondary metabolites, second messengers, quorum sensing compounds and others, which all contribute to the complex bacterial response to an environmental change. Recent data confirmed that many metabolic processes in pathogenic bacteria are linked to virulence and invasive capabilities. Deciphering bacterial metabolism in response to specific environmental conditions and in specific genetic backgrounds will help map the complex network between the metabolome and the other "-omes". Here, we will review a selection of case studies for the pathogenic Gram-positive bacterium Staphylococcus aureus and summarize the current state of metabolomics literature covering staphylococci metabolism under different physiological states.
Collapse
Affiliation(s)
- Manuel Liebeke
- Biomolecular Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK.
| | - Michael Lalk
- Institute of Biochemistry, Ernst-Moritz-Arndt-University of Greifswald, 17487 Greifswald, Germany
| |
Collapse
|
22
|
Halouska S, Zhang B, Gaupp R, Lei S, Snell E, Fenton RJ, Barletta RG, Somerville GA, Powers R. Revisiting Protocols for the NMR Analysis of Bacterial Metabolomes. JOURNAL OF INTEGRATED OMICS 2013; 3:120-137. [PMID: 26078915 PMCID: PMC4465129 DOI: 10.5584/jiomics.v3i2.139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past decade, metabolomics has emerged as an important technique for systems biology. Measuring all the metabolites in a biological system provides an invaluable source of information to explore various cellular processes, and to investigate the impact of environmental factors and genetic modifications. Nuclear magnetic resonance (NMR) spectroscopy is an important method routinely employed in metabolomics. NMR provides comprehensive structural and quantitative information useful for metabolomics fingerprinting, chemometric analysis, metabolite identification and metabolic pathway construction. A successful metabolomics study relies on proper experimental protocols for the collection, handling, processing and analysis of metabolomics data. Critically, these protocols should eliminate or avoid biologically-irrelevant changes to the metabolome. We provide a comprehensive description of our NMR-based metabolomics procedures optimized for the analysis of bacterial metabolomes. The technical details described within this manuscript should provide a useful guide to reliably apply our NMR-based metabolomics methodology to systems biology studies.
Collapse
Affiliation(s)
- Steven Halouska
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Bo Zhang
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Rosmarie Gaupp
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0905
| | - Shulei Lei
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Emily Snell
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| | - Robert J. Fenton
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0905
| | - Raul G. Barletta
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0905
| | - Greg A. Somerville
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0905
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588-0304
| |
Collapse
|
23
|
Arockiya Aarthi Rajathi F, Parthiban C, Ganesh Kumar V, Anantharaman P. Biosynthesis of antibacterial gold nanoparticles using brown alga, Stoechospermum marginatum (kützing). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2012; 99:166-73. [PMID: 23063860 DOI: 10.1016/j.saa.2012.08.081] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Revised: 08/13/2012] [Accepted: 08/31/2012] [Indexed: 06/01/2023]
Abstract
Biological synthesis of gold nanoparticles by brown alga, Stoechospermum marginatum biomasses through a green route was reported in this study. The formation of the gold nanoparticles was observed within 10 min. The properties of prepared nanoparticles were characterized by photoluminescence spectra, Fourier Transform Infrared Spectroscopy, scanning electron microscopy, Transmission Electron Microscopy, X-ray diffraction, particle size analysis and quantified by Wavelength Dispersive X-ray Fluorescence Spectrophotometer. The synthesized gold nanoparticles were found to be photoluminescent. The formation of gold nanoparticles was confirmed by the presence of an absorption peak at 550 nm using UV-visible spectrophotometer. TEM image revealed that most of the particles are spherical in shape and some are hexagonal and triangle with size ranged from 18.7 to 93.7 nm. The nanoparticles were crystalline in nature and it was confirmed by XRD pattern and the presence of elemental gold (45.92%) was confirmed by WD-XRF. From the FTIR measurements it is noticed that the reduction has been carried out by hydroxyl groups present in the diterpenoids of the brown seaweed. Furthermore the biologically synthesized gold nanoparticles were found to be effective against bacterial pathogens.
Collapse
Affiliation(s)
- F Arockiya Aarthi Rajathi
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamilnadu, India.
| | | | | | | |
Collapse
|
24
|
Abstract
Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After decades of extensive research into the morphology, physiology and genomics of biofilm formation, attention has recently been directed toward the analysis of the cellular metabolome in order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an invaluable role in enhancing our understanding of the underlying biological processes related to the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic pathways or processes responsible for regulating this 'social structure' of microorganisms may provide critical insights into biofilm-related drug resistance and lead to novel treatments. This review will discuss the development of NMR-based metabolomics as a technology to study medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript have shown the potential of metabolomics to shed light on numerous biological problems related to biofilms.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, 722 Hamilton Hall, Lincoln, NE 68588-0304, USA
| |
Collapse
|
25
|
Sun JL, Zhang SK, Chen JY, Han BZ. Metabolic profiling of Staphylococcus aureus cultivated under aerobic and anaerobic conditions with (1)H NMR-based nontargeted analysis. Can J Microbiol 2012; 58:709-18. [PMID: 22571732 DOI: 10.1139/w2012-046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a major pathogen in the medical area and food-producing sector. Detailed analyses of its basic cell physiology will help comprehensively understand this pathogen, which will be useful for developing novel diagnostic and treatment tools. Oxygen is one of the most crucial growth-limiting factors for S. aureus. In this study, to characterize and distinguish metabolic profiles of S. aureus cultivated under aerobic and anaerobic conditions, nontargeted analyses of both types of cultures were carried out using (1)H nuclear magnetic resonance spectroscopy. Fifty compounds were identified by Chenomx software. Characteristics of metabolic profiles were achieved by using principal components analysis. During aerobic growth, S. aureus mainly consumed glucose, alanine, arginine, glycine, isoleucine, leucine, phenylalanine, and acetate. Meanwhile, it accumulated 17 metabolites, mainly 2-oxoglutarate, isobutyrate, isovalerate, succinate, and ethanol. Under anaerobic condition, S. aureus mainly consumed glucose, arginine, and threonine. Meanwhile, it accumulated 13 metabolites, mainly ethanol, lactate, and ornithine. The representative metabolites that could most significantly differentiate metabolic profiles of S. aureus were isobutyrate, isovalerate, and succinate in aerobic cultivation; and lactate, ethanol, and ornithine in anaerobic cultivation. Among these metabolites, isobutyrate and ornithine were present only in aerobic and anaerobic culture, respectively.
Collapse
Affiliation(s)
- Ji-Lu Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Beijing 100083, People's Republic of China
| | | | | | | |
Collapse
|
26
|
Sun JL, Zhang SK, Chen JY, Han BZ. Efficacy of acidic and basic electrolyzed water in eradicating Staphylococcus aureus biofilm. Can J Microbiol 2012; 58:448-54. [PMID: 22439611 DOI: 10.1139/w2012-005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a major pathogen. It can form biofilm on the surfaces of medical devices and food equipment, which makes it more difficult to eradicate. To develop a novel method to eradicate S. aureus biofilm, the effects of electrolyzed water on removing and killing S. aureus biofilm were investigated in this study. By using a biofilm biomass assay with safranin staining and visualization of biofilm architecture with scanning electron microscopy, it was shown that basic electrolyzed water (BEW) could effectively remove established biofilm. The pH of electrolyzed water affected removal efficacy. Using a biofilm viability assay with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining, acidic electrolyzed water (AEW) efficiently killed biofilm-imbedded S. aureus. The available chlorine in AEW may be a main contributing factor for bactericidal activity. Additionally, BEW had a removal efficacy for S. aureus biofilm equivalent to 2% NaOH, and AEW had a bactericidal capability for S. aureus in biofilm equivalent to 2% HCl. These data suggested that AEW and BEW could be applied as a bactericide and removing agent for S. aureus in biofilm, respectively.
Collapse
Affiliation(s)
- Ji-Lu Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | | | | | | |
Collapse
|
27
|
Development of quenching and washing protocols for quantitative intracellular metabolite analysis of uninfected and baculovirus-infected insect cells. Methods 2011; 56:396-407. [PMID: 22166686 DOI: 10.1016/j.ymeth.2011.11.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/25/2011] [Accepted: 11/28/2011] [Indexed: 11/21/2022] Open
Abstract
Metabolomics refer to the global analysis of small molecule metabolites in a biological system, and can be a powerful tool to elucidate and optimize cellular processes, particularly when integrated into a systems biology framework. Determining the endometabolome in cultured animal cells is especially challenging, due to the conflicting demands for rapid quenching of metabolism and retention of membrane integrity, while cells are separated from the complex medium. The challenge is magnified in virus infected cells due to increased membrane fragility. This paper describes an effective methodology for quantitative intracellular metabolite analysis of the baculovirus-insect cell expression system, an important platform for the production of heterologous proteins and baculovirus-based biopesticides. These two applications were represented by Spodoptera frugiperda (Sf9) and Helicoverpa zea (HzAM1) cells infected with recombinant Autographa californica and wild-type Helicoverpa armigera nucleopolyhedroviruses (AcMNPV and HaSNPV), respectively. Specifically, an ice-cold quenching solution comprising 1.1% w/v NaCl and 0.2% w/v Pluronic® F-68 (NaCl+P) was found to be efficacious in preserving cell viability and minimizing cell leakage during quenching and centrifugation-based washing procedures (prior to extraction using cold 50% v/v acetonitrile). Good recoveries of intracellular adenosine triphosphate, total adenosine phosphates and amino acids were obtained after just one wash step, for both uninfected and infected insect cells. The ability to implement wash steps is critical, as insect cell media are metabolites-rich, while infected insect cells are much more fragile than their uninfected counterparts. Hence, a promising methodology has been developed to facilitate endometabolomic analysis of insect cell-baculovirus systems for bioprocess optimization.
Collapse
|
28
|
Booth SC, Workentine ML, Weljie AM, Turner RJ. Metabolomics and its application to studying metal toxicity. Metallomics 2011; 3:1142-52. [PMID: 21922109 DOI: 10.1039/c1mt00070e] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here we explain the omics approach of metabolomics and how it can be applied to study a physiological response to toxic metal exposure. This review aims to educate the metallomics field to the tool of metabolomics. Metabolomics is becoming an increasingly used tool to compare natural and challenged states of various organisms, from disease states in humans to toxin exposure to environmental systems. This approach is key to understanding and identifying the cellular or biochemical targets of metals and the underlying physiological response. Metabolomics steps are described and overviews of its application to metal toxicity to organisms are given. As this approach is very new there are yet only a small number of total studies and therefore only a brief overview of some metal metabolomics studies is described. A frank critical evaluation of the approach is given to provide newcomers to the method a clear idea of the challenges and the rewards of applying metabolomics to their research.
Collapse
Affiliation(s)
- Sean C Booth
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
29
|
|