1
|
Yusim EJ, Zarecki R, Medina S, Carmi G, Mousa S, Hassanin M, Ronen Z, Wu Z, Jiang J, Baransi-Karkaby K, Avisar D, Sabbah I, Yanuka-Golub K, Freilich S. Integrated use of electrochemical anaerobic reactors and genomic based modeling for characterizing methanogenic activity in microbial communities exposed to BTEX contamination. ENVIRONMENTAL RESEARCH 2025; 268:120691. [PMID: 39746623 DOI: 10.1016/j.envres.2024.120691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/03/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved. A reactor system, comprising an Anaerobic Bioreactor (AB) and two Microbial Electrolysis Cell (MEC) chambers, designed to represent different spatial zones along the redox gradient, operated for 160 days with intermittent exposure to BTEX. The functional differentiation of each chamber was reflected by the gas emission profiles: 50%, 12% and 84% methane in the AB, anode and cathode chambers, respectively. The taxonomic profiling, assessed using 16S amplicon sequencing, led to the identification chamber-characteristic taxonomic groups. To translate the taxonomic shift into a functional shift, community dynamics was transformed into a simulative platform based on genome scale metabolic models constructed for 21 species that capture both key functionalities and taxonomies. Representatives include BTEX degraders, fermenters, iron reducers acetoclastic and hydrogenotrophic methanogens. Functionality was inferred according to the identification of the functional gene bamA as a biomarker for anaerobic BTEX degradation, taxonomy and literature support. Comparison of the predicted performances of the reactor-specific communities confirmed that the simulation successfully captured the experimentally recorded functional variation. Variations in the predicted exchange profiles between chambers capture reported and novel competitive and cooperative interactions between methanogens and non-methanogens. Examples include the exchange profiles of hypoxanthine (HYXN) and acetate between fermenters and methanogens, suggesting mechanisms underlying the supportive/repressive effect of taxonomic divergence on methanogenesis. Hence, the platform represents a pioneering attempt to capture the full spectrum of community activity in methanogenic hydrocarbon biodegradation while supporting the future design of optimization strategies.
Collapse
Affiliation(s)
- Evgenia Jenny Yusim
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel; The Water Research Center, The Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 66978, Israel.
| | - Raphy Zarecki
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Shlomit Medina
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel
| | - Gon Carmi
- Bioinformatics Unit, Institute of Plant Sciences, Newe Ya'ar Research Center, Agricultural Research Organization (ARO) - Volcani Institute, Ramat Yishay, Israel
| | - Sari Mousa
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Mahdi Hassanin
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, The Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Sede-Boqer 8499000, Israel
| | - Zhiming Wu
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing Agricultural University, Nanjing 210095, China
| | - Katie Baransi-Karkaby
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; School of Environmental Sciences, University of Haifa, Haifa 3498838, Israel
| | - Dror Avisar
- The Water Research Center, The Porter School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 66978, Israel
| | - Isam Sabbah
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel; Department of Biotechnology Engineering, Braude College of Engineering, Karmiel, Israel
| | - Keren Yanuka-Golub
- The Galilee Society Institute of Applied Research, Shefa-Amr, 20200, Israel
| | - Shiri Freilich
- Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat Yishay 30095, Israel.
| |
Collapse
|
2
|
Vieira V, Ferreira J, Rocha M. A pipeline for the reconstruction and evaluation of context-specific human metabolic models at a large-scale. PLoS Comput Biol 2022; 18:e1009294. [PMID: 35749559 PMCID: PMC9278738 DOI: 10.1371/journal.pcbi.1009294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/13/2022] [Accepted: 04/15/2022] [Indexed: 11/18/2022] Open
Abstract
Constraint-based (CB) metabolic models provide a mathematical framework and scaffold for in silico cell metabolism analysis and manipulation. In the past decade, significant efforts have been done to model human metabolism, enabled by the increased availability of multi-omics datasets and curated genome-scale reconstructions, as well as the development of several algorithms for context-specific model (CSM) reconstruction. Although CSM reconstruction has revealed insights on the deregulated metabolism of several pathologies, the process of reconstructing representative models of human tissues still lacks benchmarks and appropriate integrated software frameworks, since many tools required for this process are still disperse across various software platforms, some of which are proprietary. In this work, we address this challenge by assembling a scalable CSM reconstruction pipeline capable of integrating transcriptomics data in CB models. We combined omics preprocessing methods inspired by previous efforts with in-house implementations of existing CSM algorithms and new model refinement and validation routines, all implemented in the Troppo Python-based open-source framework. The pipeline was validated with multi-omics datasets from the Cancer Cell Line Encyclopedia (CCLE), also including reference fluxomics measurements for the MCF7 cell line. We reconstructed over 6000 models based on the Human-GEM template model for 733 cell lines featured in the CCLE, using MCF7 models as reference to find the best parameter combinations. These reference models outperform earlier studies using the same template by comparing gene essentiality and fluxomics experiments. We also analysed the heterogeneity of breast cancer cell lines, identifying key changes in metabolism related to cancer aggressiveness. Despite the many challenges in CB modelling, we demonstrate using our pipeline that combining transcriptomics data in metabolic models can be used to investigate key metabolic shifts. Significant limitations were found on these models ability for reliable quantitative flux prediction, thus motivating further work in genome-wide phenotype prediction. Genome-scale models of human metabolism are promising tools capable of contextualising large omics datasets within a framework that enables analysis and manipulation of metabolic phenotypes. Despite various successes in applying these methods to provide mechanistic hypotheses for deregulated metabolism in disease, there is no standardized workflow to extract these models using existing methods and the tools required to do so are mostly implemented using proprietary software. We have assembled a generic pipeline to extract and validate context-specific metabolic models using multi-omics datasets and implemented it using the troppo framework. We first validate our pipeline using MCF7 cell line models and assess their ability to predict lethal gene knockouts as well as flux activity using multi-omics data. We also demonstrate how this approach can be generalized for large-scale transcriptomics datasets and used to generate insights on the metabolic heterogeneity of cancer and relevant features for other data mining approaches. The pipeline is available as part of an open-source framework that is generic for a variety of applications.
Collapse
Affiliation(s)
- Vítor Vieira
- Centre of Biological Engineering (CEB), Universidade do Minho, Braga, Portugal
| | - Jorge Ferreira
- Centre of Biological Engineering (CEB), Universidade do Minho, Braga, Portugal
| | - Miguel Rocha
- Centre of Biological Engineering (CEB), Universidade do Minho, Braga, Portugal
- LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
- * E-mail:
| |
Collapse
|
3
|
Insights on the Advancements of In Silico Metabolic Studies of Succinic Acid Producing Microorganisms: A Review with Emphasis on Actinobacillus succinogenes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Succinic acid (SA) is one of the top candidate value-added chemicals that can be produced from biomass via microbial fermentation. A considerable number of cell factories have been proposed in the past two decades as native as well as non-native SA producers. Actinobacillus succinogenes is among the best and earliest known natural SA producers. However, its industrial application has not yet been realized due to various underlying challenges. Previous studies revealed that the optimization of environmental conditions alone could not entirely resolve these critical problems. On the other hand, microbial in silico metabolic modeling approaches have lately been the center of attention and have been applied for the efficient production of valuable commodities including SA. Then again, literature survey results indicated the absence of up-to-date reviews assessing this issue, specifically concerning SA production. Hence, this review was designed to discuss accomplishments and future perspectives of in silico studies on the metabolic capabilities of SA producers. Herein, research progress on SA and A. succinogenes, pathways involved in SA production, metabolic models of SA-producing microorganisms, and status, limitations and prospects on in silico studies of A. succinogenes were elaborated. All in all, this review is believed to provide insights to understand the current scenario and to develop efficient mathematical models for designing robust SA-producing microbial strains.
Collapse
|
4
|
Wilmanski T, Rappaport N, Diener C, Gibbons SM, Price ND. From taxonomy to metabolic output: what factors define gut microbiome health? Gut Microbes 2021; 13:1-20. [PMID: 33890557 PMCID: PMC8078686 DOI: 10.1080/19490976.2021.1907270] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 02/04/2023] Open
Abstract
Many studies link the composition of the human gut microbiome to aberrant health states. However, our understanding of what constitutes a 'healthy' gut ecosystem, and how to effectively monitor and maintain it, are only now emerging. Here, we review current approaches to defining and monitoring gut microbiome health, and outline directions for developing targeted ecological therapeutics. We emphasize the importance of identifying which ecological features of the gut microbiome are most resonant with host molecular phenotypes, and highlight certain gut microbial metabolites as potential biomarkers of gut microbiome health. We further discuss how multi-omic measurements of host phenotypes, dietary information, and gut microbiome profiles can be integrated into increasingly sophisticated host-microbiome mechanistic models that can be leveraged to design personalized interventions. Overall, we summarize current progress on defining microbiome health and highlight a number of paths forward for engineering the ecology of the gut to promote wellness.
Collapse
Affiliation(s)
| | | | | | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, WA, USA
- Onegevity Health, New York, NY, USA
| |
Collapse
|
5
|
Anand S, Mukherjee K, Padmanabhan P. An insight to flux-balance analysis for biochemical networks. Biotechnol Genet Eng Rev 2020; 36:32-55. [PMID: 33292061 DOI: 10.1080/02648725.2020.1847440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Systems biology is one of the integrated ways to study biological systems and is more favourable than the earlier used approaches. It includes metabolic pathway analysis, modelling, and regulatory as well as signal transduction for getting insights into cellular behaviour. Among the various techniques of modelling, simulation, analysis of networks and pathways, flux-based analysis (FBA) has been recognised because of its extensibility as well as simplicity. It is widely accepted because it is not like a mechanistic simulation which depends on accurate kinetic data. The study of fluxes through the network is informative and can give insights even in the absence of kinetic data. FBA is one of the widely used tools to study biochemical networks and needs information of reaction stoichiometry, growth requirements, specific measurement parameters of the biological system, in particular the reconstruction of the metabolic network for the genome-scale, many of which have already been built previously. It defines the boundaries of flux distributions which are possible and achievable with a defined set of genes. This review article gives an insight into FBA, from the extension of flux balancing to mathematical representation followed by a discussion about the formulation of flux-balance analysis problems, defining constraints for the stoichiometry of the pathways and the tools that can be used in FBA such as FASIMA, COBRA toolbox, and OptFlux. It also includes broader areas in terms of applications which can be covered by FBA as well as the queries which can be addressed through FBA.
Collapse
Affiliation(s)
- Shreya Anand
- Department of Bio-Engineering, Birla Institute of Technology , Ranchi, JH, India
| | - Koel Mukherjee
- Department of Bio-Engineering, Birla Institute of Technology , Ranchi, JH, India
| | - Padmini Padmanabhan
- Department of Bio-Engineering, Birla Institute of Technology , Ranchi, JH, India
| |
Collapse
|
6
|
Robinson JL, Kocabaş P, Wang H, Cholley PE, Cook D, Nilsson A, Anton M, Ferreira R, Domenzain I, Billa V, Limeta A, Hedin A, Gustafsson J, Kerkhoven EJ, Svensson LT, Palsson BO, Mardinoglu A, Hansson L, Uhlén M, Nielsen J. An atlas of human metabolism. Sci Signal 2020; 13:13/624/eaaz1482. [PMID: 32209698 DOI: 10.1126/scisignal.aaz1482] [Citation(s) in RCA: 217] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Genome-scale metabolic models (GEMs) are valuable tools to study metabolism and provide a scaffold for the integrative analysis of omics data. Researchers have developed increasingly comprehensive human GEMs, but the disconnect among different model sources and versions impedes further progress. We therefore integrated and extensively curated the most recent human metabolic models to construct a consensus GEM, Human1. We demonstrated the versatility of Human1 through the generation and analysis of cell- and tissue-specific models using transcriptomic, proteomic, and kinetic data. We also present an accompanying web portal, Metabolic Atlas (https://www.metabolicatlas.org/), which facilitates further exploration and visualization of Human1 content. Human1 was created using a version-controlled, open-source model development framework to enable community-driven curation and refinement. This framework allows Human1 to be an evolving shared resource for future studies of human health and disease.
Collapse
Affiliation(s)
- Jonathan L Robinson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Pınar Kocabaş
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Hao Wang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden.,Wallenberg Center for Molecular and Translational Medicine, University of Gothenburg, Kemivägen 10, SE-41258 Gothenburg, Sweden.,Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Pierre-Etienne Cholley
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Daniel Cook
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Avlant Nilsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Mihail Anton
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Iván Domenzain
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Virinchi Billa
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Angelo Limeta
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Alex Hedin
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Johan Gustafsson
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden.,Wallenberg Center for Protein Research, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Eduard J Kerkhoven
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - L Thomas Svensson
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden
| | - Bernhard O Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.,Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adil Mardinoglu
- Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, SE-10044 Stockholm, Sweden.,Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London WC2R 2LS, UK
| | - Lena Hansson
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden.,Novo Nordisk Research Centre Oxford, Oxford OX3 7FZ, UK
| | - Mathias Uhlén
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.,Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, SE-10044 Stockholm, Sweden.,Wallenberg Center for Protein Research, KTH-Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden. .,Wallenberg Center for Protein Research, Chalmers University of Technology, Kemivägen 10, SE-41258 Gothenburg, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.,BioInnovation Institute, Ole Maaløes Vej 3, DK-2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Roell GW, Zha J, Carr RR, Koffas MA, Fong SS, Tang YJ. Engineering microbial consortia by division of labor. Microb Cell Fact 2019; 18:35. [PMID: 30736778 PMCID: PMC6368712 DOI: 10.1186/s12934-019-1083-3] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 01/31/2019] [Indexed: 12/22/2022] Open
Abstract
During microbial applications, metabolic burdens can lead to a significant drop in cell performance. Novel synthetic biology tools or multi-step bioprocessing (e.g., fermentation followed by chemical conversions) are therefore needed to avoid compromised biochemical productivity from over-burdened cells. A possible solution to address metabolic burden is Division of Labor (DoL) via natural and synthetic microbial consortia. In particular, consolidated bioprocesses and metabolic cooperation for detoxification or cross feeding (e.g., vitamin C fermentation) have shown numerous successes in industrial level applications. However, distributing a metabolic pathway among proper hosts remains an engineering conundrum due to several challenges: complex subpopulation dynamics/interactions with a short time-window for stable production, suboptimal cultivation of microbial communities, proliferation of cheaters or low-producers, intermediate metabolite dilution, transport barriers between species, and breaks in metabolite channeling through biosynthesis pathways. To develop stable consortia, optimization of strain inoculations, nutritional divergence and crossing feeding, evolution of mutualistic growth, cell immobilization, and biosensors may potentially be used to control cell populations. Another opportunity is direct integration of non-bioprocesses (e.g., microbial electrosynthesis) to power cell metabolism and improve carbon efficiency. Additionally, metabolic modeling and 13C-metabolic flux analysis of mixed culture metabolism and cross-feeding offers a computational approach to complement experimental research for improved consortia performance.
Collapse
Affiliation(s)
- Garrett W Roell
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA
| | - Jian Zha
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
| | - Rhiannon R Carr
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA
| | - Mattheos A Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY, 12180, USA
| | - Stephen S Fong
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Yinjie J Tang
- Department of Energy, Environmental and Chemical Engineering, Washington University, Saint Louis, MO, 63130, USA.
| |
Collapse
|
8
|
Eetemadi A, Tagkopoulos I. Genetic Neural Networks: an artificial neural network architecture for capturing gene expression relationships. Bioinformatics 2018; 35:2226-2234. [DOI: 10.1093/bioinformatics/bty945] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/27/2018] [Accepted: 11/16/2018] [Indexed: 01/16/2023] Open
Abstract
Abstract
Motivation
Gene expression prediction is one of the grand challenges in computational biology. The availability of transcriptomics data combined with recent advances in artificial neural networks provide an unprecedented opportunity to create predictive models of gene expression with far reaching applications.
Results
We present the Genetic Neural Network (GNN), an artificial neural network for predicting genome-wide gene expression given gene knockouts and master regulator perturbations. In its core, the GNN maps existing gene regulatory information in its architecture and it uses cell nodes that have been specifically designed to capture the dependencies and non-linear dynamics that exist in gene networks. These two key features make the GNN architecture capable to capture complex relationships without the need of large training datasets. As a result, GNNs were 40% more accurate on average than competing architectures (MLP, RNN, BiRNN) when compared on hundreds of curated and inferred transcription modules. Our results argue that GNNs can become the architecture of choice when building predictors of gene expression from exponentially growing corpus of genome-wide transcriptomics data.
Availability and implementation
https://github.com/IBPA/GNN
Supplementary information
Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Ameen Eetemadi
- Department of Computer Science, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
| | - Ilias Tagkopoulos
- Department of Computer Science, University of California, Davis, CA, USA
- Genome Center, University of California, Davis, CA, USA
| |
Collapse
|
9
|
Lieven C, Herrgård MJ, Sonnenschein N. Microbial Methylotrophic Metabolism: Recent Metabolic Modeling Efforts and Their Applications In Industrial Biotechnology. Biotechnol J 2018; 13:e1800011. [PMID: 29917330 DOI: 10.1002/biot.201800011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/31/2018] [Indexed: 11/08/2022]
Abstract
Developing methylotrophic bacteria into cell factories that meet the chemical demand of the future could be both economical and environmentally friendly. Methane is not only an abundant, low-cost resource but also a potent greenhouse gas, the capture of which could help to reduce greenhouse gas emissions. Rational strain design workflows rely on the availability of carefully combined knowledge often in the form of genome-scale metabolic models to construct high-producer organisms. In this review, the authors present the most recent genome-scale metabolic models in aerobic methylotrophy and their applications. Further, the authors present models for the study of anaerobic methanotrophy through reverse methanogenesis and suggest organisms that may be of interest for expanding one-carbon industrial biotechnology. Metabolic models of methylotrophs are scarce, yet they are important first steps toward rational strain-design in these organisms.
Collapse
Affiliation(s)
- Christian Lieven
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Markus J Herrgård
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nikolaus Sonnenschein
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Patakova P, Kolek J, Sedlar K, Koscova P, Branska B, Kupkova K, Paulova L, Provaznik I. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol Adv 2018; 36:721-738. [DOI: 10.1016/j.biotechadv.2017.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/24/2022]
|
11
|
Constraint-based modeling in microbial food biotechnology. Biochem Soc Trans 2018; 46:249-260. [PMID: 29588387 PMCID: PMC5906707 DOI: 10.1042/bst20170268] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 12/19/2022]
Abstract
Genome-scale metabolic network reconstruction offers a means to leverage the value of the exponentially growing genomics data and integrate it with other biological knowledge in a structured format. Constraint-based modeling (CBM) enables both the qualitative and quantitative analyses of the reconstructed networks. The rapid advancements in these areas can benefit both the industrial production of microbial food cultures and their application in food processing. CBM provides several avenues for improving our mechanistic understanding of physiology and genotype–phenotype relationships. This is essential for the rational improvement of industrial strains, which can further be facilitated through various model-guided strain design approaches. CBM of microbial communities offers a valuable tool for the rational design of defined food cultures, where it can catalyze hypothesis generation and provide unintuitive rationales for the development of enhanced community phenotypes and, consequently, novel or improved food products. In the industrial-scale production of microorganisms for food cultures, CBM may enable a knowledge-driven bioprocess optimization by rationally identifying strategies for growth and stability improvement. Through these applications, we believe that CBM can become a powerful tool for guiding the areas of strain development, culture development and process optimization in the production of food cultures. Nevertheless, in order to make the correct choice of the modeling framework for a particular application and to interpret model predictions in a biologically meaningful manner, one should be aware of the current limitations of CBM.
Collapse
|
12
|
Loira N, Mendoza S, Paz Cortés M, Rojas N, Travisany D, Genova AD, Gajardo N, Ehrenfeld N, Maass A. Reconstruction of the microalga Nannochloropsis salina genome-scale metabolic model with applications to lipid production. BMC SYSTEMS BIOLOGY 2017; 11:66. [PMID: 28676050 PMCID: PMC5496344 DOI: 10.1186/s12918-017-0441-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/09/2017] [Indexed: 11/10/2022]
Abstract
Background Nannochloropsis salina (= Eustigmatophyceae) is a marine microalga which has become a biotechnological target because of its high capacity to produce polyunsaturated fatty acids and triacylglycerols. It has been used as a source of biofuel, pigments and food supplements, like Omega 3. Only some Nannochloropsis species have been sequenced, but none of them benefit from a genome-scale metabolic model (GSMM), able to predict its metabolic capabilities. Results We present iNS934, the first GSMM for N. salina, including 2345 reactions, 934 genes and an exhaustive description of lipid and nitrogen metabolism. iNS934 has a 90% of accuracy when making simple growth/no-growth predictions and has a 15% error rate in predicting growth rates in different experimental conditions. Moreover, iNS934 allowed us to propose 82 different knockout strategies for strain optimization of triacylglycerols. Conclusions iNS934 provides a powerful tool for metabolic improvement, allowing predictions and simulations of N. salina metabolism under different media and genetic conditions. It also provides a systemic view of N. salina metabolism, potentially guiding research and providing context to -omics data. Electronic supplementary material The online version of this article (doi:10.1186/s12918-017-0441-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicolás Loira
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile. .,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile.
| | - Sebastian Mendoza
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - María Paz Cortés
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile.,Universidad Adolfo Ibáñez, Diagonal Las Torres 2640, Santiago, Chile
| | - Natalia Rojas
- Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Dante Travisany
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Alex Di Genova
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| | - Natalia Gajardo
- Centro de Investigación Austral Biotech, Universidad Santo Tomás, Avenida Ejercito 146, Santiago, Chile
| | - Nicole Ehrenfeld
- Centro de Investigación Austral Biotech, Universidad Santo Tomás, Avenida Ejercito 146, Santiago, Chile
| | - Alejandro Maass
- Mathomics, Center for Mathematical Modeling, Universidad de Chile, Beauchef 851, 7th Floor, Santiago, Chile.,Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Blanco Encalada 2085, Santiago, Chile
| |
Collapse
|
13
|
Abstract
Constraint-based metabolic modelling (CBMM) consists in the use of computational methods and tools to perform genome-scale simulations and predict metabolic features at the whole cellular level. This approach is rapidly expanding in microbiology, as it combines reliable predictive abilities with conceptually and technically simple frameworks. Among the possible outcomes of CBMM, the capability to i) guide a focused planning of metabolic engineering experiments and ii) provide a system-level understanding of (single or community-level) microbial metabolic circuits also represent primary aims in present-day marine microbiology. In this work we briefly introduce the theoretical formulation behind CBMM and then review the most recent and effective case studies of CBMM of marine microbes and communities. Also, the emerging challenges and possibilities in the use of such methodologies in the context of marine microbiology/biotechnology are discussed. As the potential applications of CBMM have a very broad range, the topics presented in this review span over a large plethora of fields such as ecology, biotechnology and evolution.
Collapse
Affiliation(s)
- Marco Fondi
- Dep. of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| | - Renato Fani
- Dep. of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy
| |
Collapse
|
14
|
Exploring Hydrogenotrophic Methanogenesis: a Genome Scale Metabolic Reconstruction of Methanococcus maripaludis. J Bacteriol 2016; 198:3379-3390. [PMID: 27736793 PMCID: PMC5116941 DOI: 10.1128/jb.00571-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/22/2016] [Indexed: 02/03/2023] Open
Abstract
Hydrogenotrophic methanogenesis occurs in multiple environments, ranging from the intestinal tracts of animals to anaerobic sediments and hot springs. Energy conservation in hydrogenotrophic methanogens was long a mystery; only within the last decade was it reported that net energy conservation for growth depends on electron bifurcation. In this work, we focus on Methanococcus maripaludis, a well-studied hydrogenotrophic marine methanogen. To better understand hydrogenotrophic methanogenesis and compare it with methylotrophic methanogenesis that utilizes oxidative phosphorylation rather than electron bifurcation, we have built iMR539, a genome scale metabolic reconstruction that accounts for 539 of the 1,722 protein-coding genes of M. maripaludis strain S2. Our reconstructed metabolic network uses recent literature to not only represent the central electron bifurcation reaction but also incorporate vital biosynthesis and assimilation pathways, including unique cofactor and coenzyme syntheses. We show that our model accurately predicts experimental growth and gene knockout data, with 93% accuracy and a Matthews correlation coefficient of 0.78. Furthermore, we use our metabolic network reconstruction to probe the implications of electron bifurcation by showing its essentiality, as well as investigating the infeasibility of aceticlastic methanogenesis in the network. Additionally, we demonstrate a method of applying thermodynamic constraints to a metabolic model to quickly estimate overall free-energy changes between what comes in and out of the cell. Finally, we describe a novel reconstruction-specific computational toolbox we created to improve usability. Together, our results provide a computational network for exploring hydrogenotrophic methanogenesis and confirm the importance of electron bifurcation in this process. IMPORTANCE Understanding and applying hydrogenotrophic methanogenesis is a promising avenue for developing new bioenergy technologies around methane gas. Although a significant portion of biological methane is generated through this environmentally ubiquitous pathway, existing methanogen models portray the more traditional energy conservation mechanisms that are found in other methanogens. We have constructed a genome scale metabolic network of Methanococcus maripaludis that explicitly accounts for all major reactions involved in hydrogenotrophic methanogenesis. Our reconstruction demonstrates the importance of electron bifurcation in central metabolism, providing both a window into hydrogenotrophic methanogenesis and a hypothesis-generating platform to fuel metabolic engineering efforts.
Collapse
|
15
|
Balagurunathan B, Jain VK, Tear CJY, Lim CY, Zhao H. In silico design of anaerobic growth-coupled product formation in Escherichia coli: experimental validation using a simple polyol, glycerol. Bioprocess Biosyst Eng 2016; 40:361-372. [PMID: 27796571 DOI: 10.1007/s00449-016-1703-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/25/2016] [Indexed: 12/11/2022]
Abstract
Integrated approaches using in silico model-based design and advanced genetic tools have enabled efficient production of fuels, chemicals and functional ingredients using microbial cell factories. In this study, using a recently developed genome-scale metabolic model for Escherichia coli iJO1366, a mutant strain has been designed in silico for the anaerobic growth-coupled production of a simple polyol, glycerol. Computational complexity was significantly reduced by systematically reducing the target reactions used for knockout simulations. One promising penta knockout E. coli mutant (E. coli ΔadhE ΔldhA ΔfrdC ΔtpiA ΔmgsA) was selected from simulation study and was constructed experimentally by sequentially deleting five genes. The penta mutant E. coli bearing the Saccharomyces cerevisiae glycerol production pathway was able to grow anaerobically and produce glycerol as the major metabolite with up to 90% of theoretical yield along with stoichiometric quantities of acetate and formate. Using the penta mutant E. coli strain we have demonstrated that the ATP formation from the acetate pathway was essential for growth under anaerobic conditions. The general workflow developed can be easily applied to anaerobic production of other platform chemicals using E. coli as the cell factory.
Collapse
Affiliation(s)
- Balaji Balagurunathan
- Bioprocess Engineering Center, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Vishist Kumar Jain
- Industrial Biotechnology Division, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Crystal Jing Ying Tear
- Industrial Biotechnology Division, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Chan Yuen Lim
- Industrial Biotechnology Division, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore
| | - Hua Zhao
- Industrial Biotechnology Division, Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, 627833, Singapore.
| |
Collapse
|
16
|
Reimonn TM, Park SY, Agarabi CD, Brorson KA, Yoon S. Effect of amino acid supplementation on titer and glycosylation distribution in hybridoma cell cultures-Systems biology-based interpretation using genome-scale metabolic flux balance model and multivariate data analysis. Biotechnol Prog 2016; 32:1163-1173. [PMID: 27452371 DOI: 10.1002/btpr.2335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/17/2016] [Indexed: 01/24/2023]
Abstract
Genome-scale flux balance analysis (FBA) is a powerful systems biology tool to characterize intracellular reaction fluxes during cell cultures. FBA estimates intracellular reaction rates by optimizing an objective function, subject to the constraints of a metabolic model and media uptake/excretion rates. A dynamic extension to FBA, dynamic flux balance analysis (DFBA), can calculate intracellular reaction fluxes as they change during cell cultures. In a previous study by Read et al. (2013), a series of informed amino acid supplementation experiments were performed on twelve parallel murine hybridoma cell cultures, and this data was leveraged for further analysis (Read et al., Biotechnol Prog. 2013;29:745-753). In order to understand the effects of media changes on the model murine hybridoma cell line, a systems biology approach is applied in the current study. Dynamic flux balance analysis was performed using a genome-scale mouse metabolic model, and multivariate data analysis was used for interpretation. The calculated reaction fluxes were examined using partial least squares and partial least squares discriminant analysis. The results indicate media supplementation increases product yield because it raises nutrient levels extending the growth phase, and the increased cell density allows for greater culture performance. At the same time, the directed supplementation does not change the overall metabolism of the cells. This supports the conclusion that product quality, as measured by glycoform assays, remains unchanged because the metabolism remains in a similar state. Additionally, the DFBA shows that metabolic state varies more at the beginning of the culture but less by the middle of the growth phase, possibly due to stress on the cells during inoculation. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1163-1173, 2016.
Collapse
Affiliation(s)
- Thomas M Reimonn
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell
| | - Seo-Young Park
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell
| | - Cyrus D Agarabi
- Division II, Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA, Silver Springs, MD, USA
| | - Kurt A Brorson
- Division II, Office of Biotechnology Products, Office of Pharmaceutical Quality, CDER, FDA, Silver Springs, MD, USA
| | - Seongkyu Yoon
- Department of Chemical Engineering, University of Massachusetts Lowell, Lowell.
| |
Collapse
|
17
|
Perez-Garcia O, Lear G, Singhal N. Metabolic Network Modeling of Microbial Interactions in Natural and Engineered Environmental Systems. Front Microbiol 2016; 7:673. [PMID: 27242701 PMCID: PMC4870247 DOI: 10.3389/fmicb.2016.00673] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/25/2016] [Indexed: 12/14/2022] Open
Abstract
We review approaches to characterize metabolic interactions within microbial communities using Stoichiometric Metabolic Network (SMN) models for applications in environmental and industrial biotechnology. SMN models are computational tools used to evaluate the metabolic engineering potential of various organisms. They have successfully been applied to design and optimize the microbial production of antibiotics, alcohols and amino acids by single strains. To date however, such models have been rarely applied to analyze and control the metabolism of more complex microbial communities. This is largely attributed to the diversity of microbial community functions, metabolisms, and interactions. Here, we firstly review different types of microbial interaction and describe their relevance for natural and engineered environmental processes. Next, we provide a general description of the essential methods of the SMN modeling workflow including the steps of network reconstruction, simulation through Flux Balance Analysis (FBA), experimental data gathering, and model calibration. Then we broadly describe and compare four approaches to model microbial interactions using metabolic networks, i.e., (i) lumped networks, (ii) compartment per guild networks, (iii) bi-level optimization simulations, and (iv) dynamic-SMN methods. These approaches can be used to integrate and analyze diverse microbial physiology, ecology and molecular community data. All of them (except the lumped approach) are suitable for incorporating species abundance data but so far they have been used only to model simple communities of two to eight different species. Interactions based on substrate exchange and competition can be directly modeled using the above approaches. However, interactions based on metabolic feedbacks, such as product inhibition and synthropy require extensions to current models, incorporating gene regulation and compounding accumulation mechanisms. SMN models of microbial interactions can be used to analyze complex “omics” data and to infer and optimize metabolic processes. Thereby, SMN models are suitable to capitalize on advances in high-throughput molecular and metabolic data generation. SMN models are starting to be applied to describe microbial interactions during wastewater treatment, in-situ bioremediation, microalgae blooms methanogenic fermentation, and bioplastic production. Despite their current challenges, we envisage that SMN models have future potential for the design and development of novel growth media, biochemical pathways and synthetic microbial associations.
Collapse
Affiliation(s)
- Octavio Perez-Garcia
- Department of Civil and Environmental Engineering, University of Auckland Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, The University of Auckland Auckland, New Zealand
| | - Naresh Singhal
- Department of Civil and Environmental Engineering, University of Auckland Auckland, New Zealand
| |
Collapse
|
18
|
Improving the flux distributions simulated with genome-scale metabolic models of Saccharomyces cerevisiae. Metab Eng Commun 2016; 3:153-163. [PMID: 29468121 PMCID: PMC5779720 DOI: 10.1016/j.meteno.2016.05.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/17/2016] [Accepted: 05/10/2016] [Indexed: 01/23/2023] Open
Abstract
Genome-scale metabolic models (GEMs) can be used to evaluate genotype-phenotype relationships and their application to microbial strain engineering is increasing in popularity. Some of the algorithms used to simulate the phenotypes of mutant strains require the determination of a wild-type flux distribution. However, the accuracy of this reference, when calculated with flux balance analysis, has not been studied in detail before. Here, the wild-type simulations of selected GEMs for Saccharomyces cerevisiae have been analysed and most of the models tested predicted erroneous fluxes in central pathways, especially in the pentose phosphate pathway. Since the problematic fluxes were mostly related to areas of the metabolism consuming or producing NADPH/NADH, we have manually curated all reactions including these cofactors by forcing the use of NADPH/NADP+ in anabolic reactions and NADH/NAD+ for catabolic reactions. The curated models predicted more accurate flux distributions and performed better in the simulation of mutant phenotypes. The flux distributions of the genome-scale models of Saccharomyces cerevisiae were evaluated Most of the tested models showed fluxes inconsistent with experimental data A manual curation process was performed on all reactions including NADH or NADPH The curated models showed flux distributions more consistent with experimental data Phenotype simulations improved when the curated flux distributions were used
Collapse
|
19
|
Sørensen MES, Cameron DD, Brockhurst MA, Wood AJ. Metabolic constraints for a novel symbiosis. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150708. [PMID: 27069664 PMCID: PMC4821275 DOI: 10.1098/rsos.150708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
Ancient evolutionary events are difficult to study because their current products are derived forms altered by millions of years of adaptation. The primary endosymbiotic event formed the first photosynthetic eukaryote resulting in both plants and algae, with vast consequences for life on Earth. The evolutionary time that passed since this event means the dominant mechanisms and changes that were required are obscured. Synthetic symbioses such as the novel interaction between Paramecium bursaria and the cyanobacterium Synechocystis PC6803, recently established in the laboratory, permit a unique window on the possible early trajectories of this critical evolutionary event. Here, we apply metabolic modelling, using flux balance analysis (FBA), to predict the metabolic adaptations necessary for this previously free-living symbiont to transition to the endosymbiotic niche. By enforcing reciprocal nutrient trading, we are able to predict the most efficient exchange nutrients for both host and symbiont. During the transition from free-living to obligate symbiosis, it is likely that the trading parameters will change over time, which leads in our model to discontinuous changes in the preferred exchange nutrients. Our results show the applicability of FBA modelling to ancient evolutionary transitions driven by metabolic exchanges, and predict how newly established endosymbioses, governed by conflict, will differ from a well-developed one that has reached a mutual-benefit state.
Collapse
Affiliation(s)
| | - Duncan D. Cameron
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | | | - A. Jamie Wood
- Department of Biology, University of York, York YO10 5GG, UK
- Department of Mathematics, University of York, York YO10 5GG, UK
| |
Collapse
|
20
|
Sohrabi-Jahromi S, Marashi SA, Kalantari S. A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis. Mamm Genome 2016; 27:158-67. [PMID: 26923795 DOI: 10.1007/s00335-016-9622-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/31/2016] [Indexed: 01/02/2023]
Abstract
Focal Segmental Glomerulosclerosis (FSGS) is a type of nephrotic syndrome which accounts for 20 and 40 % of such cases in children and adults, respectively. The high prevalence of FSGS makes it the most common primary glomerular disorder causing end-stage renal disease. Although the pathogenesis of this disorder has been widely investigated, the exact mechanism underlying this disease is still to be discovered. Current therapies seek to stop the progression of FSGS and often fail to cure the patients since progression to end-stage renal failure is usually inevitable. In the present work, we use a kidney-specific metabolic network model to study FSGS. The model was obtained by merging two previously published kidney-specific metabolic network models. The validity of the new model was checked by comparing the inactivating reaction genes identified in silico to the list of kidney disease implicated genes. To model the disease state, we used a complete list of FSGS metabolic biomarkers extracted from transcriptome and proteome profiling of patients as well as genetic deficiencies known to cause FSGS. We observed that some specific pathways including chondroitin sulfate degradation, eicosanoid metabolism, keratan sulfate biosynthesis, vitamin B6 metabolism, and amino acid metabolism tend to show variations in FSGS model compared to healthy kidney. Furthermore, we computationally searched for the potential drug targets that can revert the diseased metabolic state to the healthy state. Interestingly, only one drug target, N-acetylgalactosaminidase, was found whose inhibition could alter cellular metabolism towards healthy state.
Collapse
Affiliation(s)
| | - Sayed-Amir Marashi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.
| | - Shiva Kalantari
- Chronic Kidney Disease Research Center (CKDRC), Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
Dash S, Ng CY, Maranas CD. Metabolic modeling of clostridia: current developments and applications. FEMS Microbiol Lett 2016; 363:fnw004. [PMID: 26755502 DOI: 10.1093/femsle/fnw004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 12/12/2022] Open
Abstract
Anaerobic Clostridium spp. is an important bioproduction microbial genus that can produce solvents and utilize a broad spectrum of substrates including cellulose and syngas. Genome-scale metabolic (GSM) models are increasingly being put forth for various clostridial strains to explore their respective metabolic capabilities and suitability for various bioconversions. In this study, we have selected representative GSM models for six different clostridia (Clostridium acetobutylicum, C. beijerinckii, C. butyricum, C. cellulolyticum, C. ljungdahlii and C. thermocellum) and performed a detailed model comparison contrasting their metabolic repertoire. We also discuss various applications of these GSM models to guide metabolic engineering interventions as well as assessing cellular physiology.
Collapse
Affiliation(s)
- Satyakam Dash
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802-1503, USA
| | - Chiam Yu Ng
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802-1503, USA
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802-1503, USA
| |
Collapse
|
22
|
Abstract
Most natural microbial systems have evolved to function in environments with temporal and spatial variations. A major limitation to understanding such complex systems is the lack of mathematical modelling frameworks that connect the genomes of individual species and temporal and spatial variations in the environment to system behaviour. The goal of this review is to introduce the emerging field of spatiotemporal metabolic modelling based on genome-scale reconstructions of microbial metabolism. The extension of flux balance analysis (FBA) to account for both temporal and spatial variations in the environment is termed spatiotemporal FBA (SFBA). Following a brief overview of FBA and its established dynamic extension, the SFBA problem is introduced and recent progress is described. Three case studies are reviewed to illustrate the current state-of-the-art and possible future research directions are outlined. The author posits that SFBA is the next frontier for microbial metabolic modelling and a rapid increase in methods development and system applications is anticipated.
Collapse
Affiliation(s)
- Michael A Henson
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, U.S.A.
| |
Collapse
|
23
|
Imam S, Schäuble S, Valenzuela J, de Lomana ALG, Carter W, Price ND, Baliga NS. A refined genome-scale reconstruction of Chlamydomonas metabolism provides a platform for systems-level analyses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1239-56. [PMID: 26485611 PMCID: PMC4715634 DOI: 10.1111/tpj.13059] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 09/30/2015] [Accepted: 10/09/2015] [Indexed: 05/11/2023]
Abstract
Microalgae have reemerged as organisms of prime biotechnological interest due to their ability to synthesize a suite of valuable chemicals. To harness the capabilities of these organisms, we need a comprehensive systems-level understanding of their metabolism, which can be fundamentally achieved through large-scale mechanistic models of metabolism. In this study, we present a revised and significantly improved genome-scale metabolic model for the widely-studied microalga, Chlamydomonas reinhardtii. The model, iCre1355, represents a major advance over previous models, both in content and predictive power. iCre1355 encompasses a broad range of metabolic functions encoded across the nuclear, chloroplast and mitochondrial genomes accounting for 1355 genes (1460 transcripts), 2394 and 1133 metabolites. We found improved performance over the previous metabolic model based on comparisons of predictive accuracy across 306 phenotypes (from 81 mutants), lipid yield analysis and growth rates derived from chemostat-grown cells (under three conditions). Measurement of macronutrient uptake revealed carbon and phosphate to be good predictors of growth rate, while nitrogen consumption appeared to be in excess. We analyzed high-resolution time series transcriptomics data using iCre1355 to uncover dynamic pathway-level changes that occur in response to nitrogen starvation and changes in light intensity. This approach enabled accurate prediction of growth rates, the cessation of growth and accumulation of triacylglycerols during nitrogen starvation, and the temporal response of different growth-associated pathways to increased light intensity. Thus, iCre1355 represents an experimentally validated genome-scale reconstruction of C. reinhardtii metabolism that should serve as a useful resource for studying the metabolic processes of this and related microalgae.
Collapse
Affiliation(s)
- Saheed Imam
- Institute for Systems Biology, Seattle, WA, USA
| | - Sascha Schäuble
- Institute for Systems Biology, Seattle, WA, USA
- Jena University Language & Information Engineering (JULIE) Lab, Friedrich-Schiller-University Jena, Jena, Germany
- Research Group Theoretical Systems Biology, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | | | | | | | - Nathan D. Price
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Bioengineering and Computer Science & Engineering, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Biology and Microbiology, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
- Lawrence Berkeley National Lab, Berkeley, CA
- Correspondence: Nitin S. Baliga, Institute for Systems Biology, 401 Terry Ave N., Seattle, WA 98109, Telephone: 206.732.1266, Fax: 206.732.1299,
| |
Collapse
|
24
|
Heavner BD, Price ND. Comparative Analysis of Yeast Metabolic Network Models Highlights Progress, Opportunities for Metabolic Reconstruction. PLoS Comput Biol 2015; 11:e1004530. [PMID: 26566239 PMCID: PMC4643975 DOI: 10.1371/journal.pcbi.1004530] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 08/28/2015] [Indexed: 11/18/2022] Open
Abstract
We have compared 12 genome-scale models of the Saccharomyces cerevisiae metabolic network published since 2003 to evaluate progress in reconstruction of the yeast metabolic network. We compared the genomic coverage, overlap of annotated metabolites, predictive ability for single gene essentiality with a selection of model parameters, and biomass production predictions in simulated nutrient-limited conditions. We have also compared pairwise gene knockout essentiality predictions for 10 of these models. We found that varying approaches to model scope and annotation reflected the involvement of multiple research groups in model development; that single-gene essentiality predictions were affected by simulated medium, objective function, and the reference list of essential genes; and that predictive ability for single-gene essentiality did not correlate well with predictive ability for our reference list of synthetic lethal gene interactions (R = 0.159). We conclude that the reconstruction of the yeast metabolic network is indeed gradually improving through the iterative process of model development, and there remains great opportunity for advancing our understanding of biology through continued efforts to reconstruct the full biochemical reaction network that constitutes yeast metabolism. Additionally, we suggest that there is opportunity for refining the process of deriving a metabolic model from a metabolic network reconstruction to facilitate mechanistic investigation and discovery. This comparative study lays the groundwork for developing improved tools and formalized methods to quantitatively assess metabolic network reconstructions independently of any particular model application, which will facilitate ongoing efforts to advance our understanding of the relationship between genotype and cellular phenotype.
Collapse
Affiliation(s)
- Benjamin D. Heavner
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
25
|
Ganter M, Kaltenbach HM, Stelling J. Predicting network functions with nested patterns. Nat Commun 2015; 5:3006. [PMID: 24398547 DOI: 10.1038/ncomms4006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 11/24/2013] [Indexed: 12/20/2022] Open
Abstract
Identifying suitable patterns in complex biological interaction networks helps understanding network functions and allows for predictions at the pattern level: by recognizing a known pattern, one can assign its previously established function. However, current approaches fail for previously unseen patterns, when patterns overlap and when they are embedded into a new network context. Here we show how to conceptually extend pattern-based approaches. We define metabolite patterns in metabolic networks that formalize co-occurrences of metabolites. Our probabilistic framework decodes the implicit information in the networks' metabolite patterns to predict metabolic functions. We demonstrate the predictive power by identifying 'indicator patterns', for instance, for enzyme classification, by predicting directions of novel reactions and of known reactions in new network contexts, and by ranking candidate network extensions for gap filling. Beyond their use in improving genome annotations and metabolic network models, we expect that the concepts transfer to other network types.
Collapse
Affiliation(s)
- Mathias Ganter
- 1] Department of Biosystems Science & Engineering and Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, 4058 Basel, Switzerland [2]
| | - Hans-Michael Kaltenbach
- 1] Department of Biosystems Science & Engineering and Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, 4058 Basel, Switzerland [2]
| | - Jörg Stelling
- Department of Biosystems Science & Engineering and Swiss Institute of Bioinformatics, ETH Zurich, Mattenstr. 26, 4058 Basel, Switzerland
| |
Collapse
|
26
|
Imam S, Schäuble S, Brooks AN, Baliga NS, Price ND. Data-driven integration of genome-scale regulatory and metabolic network models. Front Microbiol 2015; 6:409. [PMID: 25999934 PMCID: PMC4419725 DOI: 10.3389/fmicb.2015.00409] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 04/20/2015] [Indexed: 12/21/2022] Open
Abstract
Microbes are diverse and extremely versatile organisms that play vital roles in all ecological niches. Understanding and harnessing microbial systems will be key to the sustainability of our planet. One approach to improving our knowledge of microbial processes is through data-driven and mechanism-informed computational modeling. Individual models of biological networks (such as metabolism, transcription, and signaling) have played pivotal roles in driving microbial research through the years. These networks, however, are highly interconnected and function in concert-a fact that has led to the development of a variety of approaches aimed at simulating the integrated functions of two or more network types. Though the task of integrating these different models is fraught with new challenges, the large amounts of high-throughput data sets being generated, and algorithms being developed, means that the time is at hand for concerted efforts to build integrated regulatory-metabolic networks in a data-driven fashion. In this perspective, we review current approaches for constructing integrated regulatory-metabolic models and outline new strategies for future development of these network models for any microbial system.
Collapse
Affiliation(s)
- Saheed Imam
- Institute for Systems Biology Seattle, WA, USA
| | - Sascha Schäuble
- Institute for Systems Biology Seattle, WA, USA ; Jena University Language and Information Engineering Lab, Friedrich-Schiller-University Jena Jena, Germany
| | | | - Nitin S Baliga
- Institute for Systems Biology Seattle, WA, USA ; Departments of Biology and Microbiology, University of Washington Seattle, WA, USA ; Molecular and Cellular Biology Program, University of Washington Seattle, WA, USA ; Lawrence Berkeley National Lab Berkeley, CA, USA
| | | |
Collapse
|
27
|
Geman D, Ochs M, Price ND, Tomasetti C, Younes L. An argument for mechanism-based statistical inference in cancer. Hum Genet 2015; 134:479-95. [PMID: 25381197 PMCID: PMC4612627 DOI: 10.1007/s00439-014-1501-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 10/14/2014] [Indexed: 01/07/2023]
Abstract
Cancer is perhaps the prototypical systems disease, and as such has been the focus of extensive study in quantitative systems biology. However, translating these programs into personalized clinical care remains elusive and incomplete. In this perspective, we argue that realizing this agenda—in particular, predicting disease phenotypes, progression and treatment response for individuals—requires going well beyond standard computational and bioinformatics tools and algorithms. It entails designing global mathematical models over network-scale configurations of genomic states and molecular concentrations, and learning the model parameters from limited available samples of high-dimensional and integrative omics data. As such, any plausible design should accommodate: biological mechanism, necessary for both feasible learning and interpretable decision making; stochasticity, to deal with uncertainty and observed variation at many scales; and a capacity for statistical inference at the patient level. This program, which requires a close, sustained collaboration between mathematicians and biologists, is illustrated in several contexts, including learning biomarkers, metabolism, cell signaling, network inference and tumorigenesis.
Collapse
Affiliation(s)
- Donald Geman
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD, 21210, USA,
| | | | | | | | | |
Collapse
|
28
|
Cardoso JGR, Andersen MR, Herrgård MJ, Sonnenschein N. Analysis of genetic variation and potential applications in genome-scale metabolic modeling. Front Bioeng Biotechnol 2015; 3:13. [PMID: 25763369 PMCID: PMC4329917 DOI: 10.3389/fbioe.2015.00013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/22/2015] [Indexed: 11/13/2022] Open
Abstract
Genetic variation is the motor of evolution and allows organisms to overcome the environmental challenges they encounter. It can be both beneficial and harmful in the process of engineering cell factories for the production of proteins and chemicals. Throughout the history of biotechnology, there have been efforts to exploit genetic variation in our favor to create strains with favorable phenotypes. Genetic variation can either be present in natural populations or it can be artificially created by mutagenesis and selection or adaptive laboratory evolution. On the other hand, unintended genetic variation during a long term production process may lead to significant economic losses and it is important to understand how to control this type of variation. With the emergence of next-generation sequencing technologies, genetic variation in microbial strains can now be determined on an unprecedented scale and resolution by re-sequencing thousands of strains systematically. In this article, we review challenges in the integration and analysis of large-scale re-sequencing data, present an extensive overview of bioinformatics methods for predicting the effects of genetic variants on protein function, and discuss approaches for interfacing existing bioinformatics approaches with genome-scale models of cellular processes in order to predict effects of sequence variation on cellular phenotypes.
Collapse
Affiliation(s)
- João G. R. Cardoso
- The Novo Nordisk Foundation Center of Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | | | - Markus J. Herrgård
- The Novo Nordisk Foundation Center of Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Nikolaus Sonnenschein
- The Novo Nordisk Foundation Center of Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| |
Collapse
|
29
|
Transparency in metabolic network reconstruction enables scalable biological discovery. Curr Opin Biotechnol 2015; 34:105-9. [PMID: 25562137 DOI: 10.1016/j.copbio.2014.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 12/19/2022]
Abstract
Reconstructing metabolic pathways has long been a focus of active research. Now, draft models can be generated from genomic annotation and used to simulate metabolic fluxes of mass and energy at the whole-cell scale. This approach has led to an explosion in the number of functional metabolic network models. However, more models have not led to expanded coverage of metabolic reactions known to occur in the biosphere. Thus, there exists opportunity to reconsider the process of reconstruction and model derivation to better support the less-scalable investigative processes of biocuration and experimentation. Realizing this opportunity to improve our knowledge of metabolism requires developing new tools that make reconstructions more useful by highlighting metabolic network knowledge limitations to guide future research.
Collapse
|
30
|
Senger RS, Yen JY, Fong SS. A review of genome-scale metabolic flux modeling of anaerobiosis in biotechnology. Curr Opin Chem Eng 2014. [DOI: 10.1016/j.coche.2014.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Benedict MN, Mundy MB, Henry CS, Chia N, Price ND. Likelihood-based gene annotations for gap filling and quality assessment in genome-scale metabolic models. PLoS Comput Biol 2014; 10:e1003882. [PMID: 25329157 PMCID: PMC4199484 DOI: 10.1371/journal.pcbi.1003882] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 08/25/2014] [Indexed: 12/27/2022] Open
Abstract
Genome-scale metabolic models provide a powerful means to harness information from genomes to deepen biological insights. With exponentially increasing sequencing capacity, there is an enormous need for automated reconstruction techniques that can provide more accurate models in a short time frame. Current methods for automated metabolic network reconstruction rely on gene and reaction annotations to build draft metabolic networks and algorithms to fill gaps in these networks. However, automated reconstruction is hampered by database inconsistencies, incorrect annotations, and gap filling largely without considering genomic information. Here we develop an approach for applying genomic information to predict alternative functions for genes and estimate their likelihoods from sequence homology. We show that computed likelihood values were significantly higher for annotations found in manually curated metabolic networks than those that were not. We then apply these alternative functional predictions to estimate reaction likelihoods, which are used in a new gap filling approach called likelihood-based gap filling to predict more genomically consistent solutions. To validate the likelihood-based gap filling approach, we applied it to models where essential pathways were removed, finding that likelihood-based gap filling identified more biologically relevant solutions than parsimony-based gap filling approaches. We also demonstrate that models gap filled using likelihood-based gap filling provide greater coverage and genomic consistency with metabolic gene functions compared to parsimony-based approaches. Interestingly, despite these findings, we found that likelihoods did not significantly affect consistency of gap filled models with Biolog and knockout lethality data. This indicates that the phenotype data alone cannot necessarily be used to discriminate between alternative solutions for gap filling and therefore, that the use of other information is necessary to obtain a more accurate network. All described workflows are implemented as part of the DOE Systems Biology Knowledgebase (KBase) and are publicly available via API or command-line web interface.
Collapse
Affiliation(s)
- Matthew N. Benedict
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Michael B. Mundy
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Christopher S. Henry
- Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Nicholas Chia
- Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Physiology and Bioengineering, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail: (NC); (NDP)
| | - Nathan D. Price
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Institute for Systems Biology, Seattle, Washington, United States of America
- * E-mail: (NC); (NDP)
| |
Collapse
|
32
|
A review of metabolic and enzymatic engineering strategies for designing and optimizing performance of microbial cell factories. Comput Struct Biotechnol J 2014; 11:91-9. [PMID: 25379147 PMCID: PMC4212277 DOI: 10.1016/j.csbj.2014.08.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Microbial cell factories (MCFs) are of considerable interest to convert low value renewable substrates to biofuels and high value chemicals. This review highlights the progress of computational models for the rational design of an MCF to produce a target bio-commodity. In particular, the rational design of an MCF involves: (i) product selection, (ii) de novo biosynthetic pathway identification (i.e., rational, heterologous, or artificial), (iii) MCF chassis selection, (iv) enzyme engineering of promiscuity to enable the formation of new products, and (v) metabolic engineering to ensure optimal use of the pathway by the MCF host. Computational tools such as (i) de novo biosynthetic pathway builders, (ii) docking, (iii) molecular dynamics (MD) and steered MD (SMD), and (iv) genome-scale metabolic flux modeling all play critical roles in the rational design of an MCF. Genome-scale metabolic flux models are of considerable use to the design process since they can reveal metabolic capabilities of MCF hosts. These can be used for host selection as well as optimizing precursors and cofactors of artificial de novo biosynthetic pathways. In addition, recent advances in genome-scale modeling have enabled the derivation of metabolic engineering strategies, which can be implemented using the genomic tools reviewed here as well.
Collapse
|
33
|
Badsha MB, Tsuboi R, Kurata H. Complementary elementary modes for fast and efficient analysis of metabolic networks. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2014.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
34
|
Chiu HC, Levy R, Borenstein E. Emergent biosynthetic capacity in simple microbial communities. PLoS Comput Biol 2014; 10:e1003695. [PMID: 24992662 PMCID: PMC4084645 DOI: 10.1371/journal.pcbi.1003695] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 05/16/2014] [Indexed: 12/22/2022] Open
Abstract
Microbes have an astonishing capacity to transform their environments. Yet, the metabolic capacity of a single species is limited and the vast majority of microorganisms form complex communities and join forces to exhibit capabilities far exceeding those achieved by any single species. Such enhanced metabolic capacities represent a promising route to many medical, environmental, and industrial applications and call for the development of a predictive, systems-level understanding of synergistic microbial capacity. Here we present a comprehensive computational framework, integrating high-quality metabolic models of multiple species, temporal dynamics, and flux variability analysis, to study the metabolic capacity and dynamics of simple two-species microbial ecosystems. We specifically focus on detecting emergent biosynthetic capacity--instances in which a community growing on some medium produces and secretes metabolites that are not secreted by any member species when growing in isolation on that same medium. Using this framework to model a large collection of two-species communities on multiple media, we demonstrate that emergent biosynthetic capacity is highly prevalent. We identify commonly observed emergent metabolites and metabolic reprogramming patterns, characterizing typical mechanisms of emergent capacity. We further find that emergent secretion tends to occur in two waves, the first as soon as the two organisms are introduced, and the second when the medium is depleted and nutrients become limited. Finally, aiming to identify global community determinants of emergent capacity, we find a marked association between the level of emergent biosynthetic capacity and the functional/phylogenetic distance between community members. Specifically, we demonstrate a "Goldilocks" principle, where high levels of emergent capacity are observed when the species comprising the community are functionally neither too close, nor too distant. Taken together, our results demonstrate the potential to design and engineer synthetic communities capable of novel metabolic activities and point to promising future directions in environmental and clinical bioengineering.
Collapse
Affiliation(s)
- Hsuan-Chao Chiu
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Roie Levy
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Department of Computer Science and Engineering, University of Washington, Seattle, Washington, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
35
|
Weaver DS, Keseler IM, Mackie A, Paulsen IT, Karp PD. A genome-scale metabolic flux model of Escherichia coli K-12 derived from the EcoCyc database. BMC SYSTEMS BIOLOGY 2014; 8:79. [PMID: 24974895 PMCID: PMC4086706 DOI: 10.1186/1752-0509-8-79] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 06/19/2014] [Indexed: 12/14/2022]
Abstract
BACKGROUND Constraint-based models of Escherichia coli metabolic flux have played a key role in computational studies of cellular metabolism at the genome scale. We sought to develop a next-generation constraint-based E. coli model that achieved improved phenotypic prediction accuracy while being frequently updated and easy to use. We also sought to compare model predictions with experimental data to highlight open questions in E. coli biology. RESULTS We present EcoCyc-18.0-GEM, a genome-scale model of the E. coli K-12 MG1655 metabolic network. The model is automatically generated from the current state of EcoCyc using the MetaFlux software, enabling the release of multiple model updates per year. EcoCyc-18.0-GEM encompasses 1445 genes, 2286 unique metabolic reactions, and 1453 unique metabolites. We demonstrate a three-part validation of the model that breaks new ground in breadth and accuracy: (i) Comparison of simulated growth in aerobic and anaerobic glucose culture with experimental results from chemostat culture and simulation results from the E. coli modeling literature. (ii) Essentiality prediction for the 1445 genes represented in the model, in which EcoCyc-18.0-GEM achieves an improved accuracy of 95.2% in predicting the growth phenotype of experimental gene knockouts. (iii) Nutrient utilization predictions under 431 different media conditions, for which the model achieves an overall accuracy of 80.7%. The model's derivation from EcoCyc enables query and visualization via the EcoCyc website, facilitating model reuse and validation by inspection. We present an extensive investigation of disagreements between EcoCyc-18.0-GEM predictions and experimental data to highlight areas of interest to E. coli modelers and experimentalists, including 70 incorrect predictions of gene essentiality on glucose, 80 incorrect predictions of gene essentiality on glycerol, and 83 incorrect predictions of nutrient utilization. CONCLUSION Significant advantages can be derived from the combination of model organism databases and flux balance modeling represented by MetaFlux. Interpretation of the EcoCyc database as a flux balance model results in a highly accurate metabolic model and provides a rigorous consistency check for information stored in the database.
Collapse
Affiliation(s)
- Daniel S Weaver
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| | - Ingrid M Keseler
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| | - Amanda Mackie
- Department of Chemistry and Biomolecular Science, Macquarie University, Balaclava Rd, North Ryde NSW 2109, Australia
| | - Ian T Paulsen
- Department of Chemistry and Biomolecular Science, Macquarie University, Balaclava Rd, North Ryde NSW 2109, Australia
| | - Peter D Karp
- Bioinformatics Research Group, SRI International, 333 Ravenswood Ave., 94025 Menlo Park, CA, USA
| |
Collapse
|
36
|
Fondi M, Maida I, Perrin E, Mellera A, Mocali S, Parrilli E, Tutino ML, Liò P, Fani R. Genome-scale metabolic reconstruction and constraint-based modelling of the Antarctic bacteriumPseudoalteromonas haloplanktis TAC125. Environ Microbiol 2014; 17:751-66. [DOI: 10.1111/1462-2920.12513] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/13/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Marco Fondi
- Laboratory of Microbial and Molecular Evolution; Department of Biology; University of Florence; Via Madonna del Piano 6, Sesto Fiorentino Florence 50019 Italy
- ComBo; Florence Computational Biology Group; University of Florence; Via Madonna del Piano 6, Sesto Fiorentino Florence 50019 Italy
| | - Isabel Maida
- Laboratory of Microbial and Molecular Evolution; Department of Biology; University of Florence; Via Madonna del Piano 6, Sesto Fiorentino Florence 50019 Italy
| | - Elena Perrin
- Laboratory of Microbial and Molecular Evolution; Department of Biology; University of Florence; Via Madonna del Piano 6, Sesto Fiorentino Florence 50019 Italy
| | - Alessandra Mellera
- Laboratory of Microbial and Molecular Evolution; Department of Biology; University of Florence; Via Madonna del Piano 6, Sesto Fiorentino Florence 50019 Italy
- ComBo; Florence Computational Biology Group; University of Florence; Via Madonna del Piano 6, Sesto Fiorentino Florence 50019 Italy
| | - Stefano Mocali
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura; Centro di Ricerca per l'Agrobiologia e la Pedologia (CRA-ABP); Firenze Italy
| | | | - Maria Luisa Tutino
- Department of Chemical Sciences; University of Naples Federico II; Naples Italy
| | - Pietro Liò
- Computer Laboratory; Cambridge University; Cambridge UK
| | - Renato Fani
- Laboratory of Microbial and Molecular Evolution; Department of Biology; University of Florence; Via Madonna del Piano 6, Sesto Fiorentino Florence 50019 Italy
- ComBo; Florence Computational Biology Group; University of Florence; Via Madonna del Piano 6, Sesto Fiorentino Florence 50019 Italy
| |
Collapse
|
37
|
Can M, Armstrong F, Ragsdale SW. Structure, function, and mechanism of the nickel metalloenzymes, CO dehydrogenase, and acetyl-CoA synthase. Chem Rev 2014; 114:4149-74. [PMID: 24521136 PMCID: PMC4002135 DOI: 10.1021/cr400461p] [Citation(s) in RCA: 415] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Mehmet Can
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Fraser
A. Armstrong
- Inorganic
Chemistry Laboratory, University of Oxford Oxford, OX1 3QR, United Kingdom
| | - Stephen W. Ragsdale
- Department
of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
38
|
Robaina Estévez S, Nikoloski Z. Generalized framework for context-specific metabolic model extraction methods. FRONTIERS IN PLANT SCIENCE 2014; 5:491. [PMID: 25285097 PMCID: PMC4168813 DOI: 10.3389/fpls.2014.00491] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 09/03/2014] [Indexed: 05/21/2023]
Abstract
Genome-scale metabolic models (GEMs) are increasingly applied to investigate the physiology not only of simple prokaryotes, but also eukaryotes, such as plants, characterized with compartmentalized cells of multiple types. While genome-scale models aim at including the entirety of known metabolic reactions, mounting evidence has indicated that only a subset of these reactions is active in a given context, including: developmental stage, cell type, or environment. As a result, several methods have been proposed to reconstruct context-specific models from existing genome-scale models by integrating various types of high-throughput data. Here we present a mathematical framework that puts all existing methods under one umbrella and provides the means to better understand their functioning, highlight similarities and differences, and to help users in selecting a most suitable method for an application.
Collapse
Affiliation(s)
| | - Zoran Nikoloski
- *Correspondence: Zoran Nikoloski, Systems Biology and Mathematical Modeling Group, Max-Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14424 Potsdam, Germany e-mail:
| |
Collapse
|
39
|
Greenblum S, Chiu HC, Levy R, Carr R, Borenstein E. Towards a predictive systems-level model of the human microbiome: progress, challenges, and opportunities. Curr Opin Biotechnol 2013; 24:810-20. [PMID: 23623295 PMCID: PMC3732493 DOI: 10.1016/j.copbio.2013.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/28/2013] [Accepted: 04/01/2013] [Indexed: 01/15/2023]
Abstract
The human microbiome represents a vastly complex ecosystem that is tightly linked to our development, physiology, and health. Our increased capacity to generate multiple channels of omic data from this system, brought about by recent advances in high throughput molecular technologies, calls for the development of systems-level methods and models that take into account not only the composition of genes and species in a microbiome but also the interactions between these components. Such models should aim to study the microbiome as a community of species whose metabolisms are tightly intertwined with each other and with that of the host, and should be developed with a view towards an integrated, comprehensive, and predictive modeling framework. Here, we review recent work specifically in metabolic modeling of the human microbiome, highlighting both novel methodologies and pressing challenges. We discuss various modeling approaches that lay the foundation for a full-scale predictive model, focusing on models of interactions between microbial species, metagenome-scale models of community-level metabolism, and models of the interaction between the microbiome and the host. Continued development of such models and of their integration into a multi-scale model of the microbiome will lead to a deeper mechanistic understanding of how variation in the microbiome impacts the host, and will promote the discovery of clinically relevant and ecologically relevant insights from the rich trove of data now available.
Collapse
Affiliation(s)
- Sharon Greenblum
- Department of Genome Sciences, University of Washington, Seattle WA 98102, USA
| | - Hsuan-Chao Chiu
- Department of Genome Sciences, University of Washington, Seattle WA 98102, USA
| | - Roie Levy
- Department of Genome Sciences, University of Washington, Seattle WA 98102, USA
| | - Rogan Carr
- Department of Genome Sciences, University of Washington, Seattle WA 98102, USA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle WA 98102, USA
- Department of Computer Science and Engineering, University of Washington, Seattle WA 98102, USA
- Santa Fe Institute, Santa Fe NM 87501, USA
| |
Collapse
|
40
|
Establishment, in silico analysis, and experimental verification of a large-scale metabolic network of the xanthan producing Xanthomonas campestris pv. campestris strain B100. J Biotechnol 2013; 167:123-34. [DOI: 10.1016/j.jbiotec.2013.01.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 11/20/2022]
|
41
|
|
42
|
Yen JY, Nazem-Bokaee H, Freedman BG, Athamneh AIM, Senger RS. Deriving metabolic engineering strategies from genome-scale modeling with flux ratio constraints. Biotechnol J 2013; 8:581-94. [DOI: 10.1002/biot.201200234] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 02/14/2013] [Accepted: 03/01/2013] [Indexed: 11/07/2022]
|
43
|
Ngo LT, Okogun JI, Folk WR. 21st century natural product research and drug development and traditional medicines. Nat Prod Rep 2013; 30:584-92. [PMID: 23450245 PMCID: PMC3652390 DOI: 10.1039/c3np20120a] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural products and related structures are essential sources of new pharmaceuticals, because of the immense variety of functionally relevant secondary metabolites of microbial and plant species. Furthermore, the development of powerful analytical tools based upon genomics, proteomics, metabolomics, bioinformatics and other 21st century technologies are greatly expediting identification and characterization of these natural products. Here we discuss the synergistic and reciprocal benefits of linking these 'omics technologies with robust ethnobotanical and ethnomedical studies of traditional medicines, to provide critically needed improved medicines and treatments that are inexpensive, accessible, safe and reliable. However, careless application of modern technologies can challenge traditional knowledge and biodiversity that are the foundation of traditional medicines. To address such challenges while fulfilling the need for improved (and new) medicines, we encourage the development of Regional Centres of 'omics Technologies functionally linked with Regional Centres of Genetic Resources, especially in regions of the world where use of traditional medicines is prevalent and essential for health.
Collapse
Affiliation(s)
- Linh T Ngo
- Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
44
|
Mukherjee S, Sambarey A, Prashanthi K, Chandra N. Current trends in modeling host–pathogen interactions. WIRES DATA MINING AND KNOWLEDGE DISCOVERY 2013; 3:109-128. [DOI: 10.1002/widm.1085] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractThe rapid emergence of infectious diseases calls for immediate attention to determine practical solutions for intervention strategies. To this end, it becomes necessary to obtain a holistic view of the complex host–pathogen interactome. Advances in omics and related technology have resulted in massive generation of data for the interacting systems at unprecedented levels of detail. Systems‐level studies with the aid of mathematical tools contribute to a deeper understanding of biological systems, where intuitive reasoning alone does not suffice. In this review, we discuss different aspects of host–pathogen interactions (HPIs) and the available data resources and tools used to study them. We discuss in detail models of HPIs at various levels of abstraction, along with their applications and limitations. We also enlist a few case studies, which incorporate different modeling approaches, providing significant insights into disease. © 2013 Wiley Periodicals, Inc.This article is categorized under:
Algorithmic Development > Biological Data Mining
Collapse
|
45
|
Senger RS, Nazem-Bokaee H. Resolving cell composition through simple measurements, genome-scale modeling, and a genetic algorithm. Methods Mol Biol 2013; 985:85-101. [PMID: 23417800 DOI: 10.1007/978-1-62703-299-5_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The biochemical composition of a cell is very complex and dynamic. It varies greatly among different organisms and environmental conditions. Inclusion of proper cell composition data is critical for accurate genome-scale metabolic flux modeling using flux balance analysis (FBA). However, determining cell composition experimentally is currently time-consuming and resource intensive. In this chapter, a method for predicting cell composition using a genome-scale model and "easy to measure" culture data (e.g., glucose uptake rate, and specific growth rate) is presented. The method makes use of a genetic algorithm for nonlinear optimization of a biomass equation (a mathematical description of cell composition). As a case study, the method was used to optimize a biomass equation for Escherichia coli MG1655 under multiple growth environments. The availability of experimentally determined (13)C flux data allowed a direct comparison with FBA predicted fluxes through the TCA cycle. Results showed dramatic improvement upon optimization of the biomass equation. In a second case study, biomass equation optimization was also applied to Clostridium acetobutylicum, an organism with less available biochemical cell composition data in the literature. The method produced a biomass equation highly similar to one determined experimentally for the closely related Gram-positive Bacillus subtilis.
Collapse
Affiliation(s)
- Ryan S Senger
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, VA, USA.
| | | |
Collapse
|
46
|
Xu N, Liu L, Zou W, Liu J, Hua Q, Chen J. Reconstruction and analysis of the genome-scale metabolic network of Candida glabrata. ACTA ACUST UNITED AC 2013; 9:205-16. [DOI: 10.1039/c2mb25311a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
47
|
Xu C, Liu L, Zhang Z, Jin D, Qiu J, Chen M. Genome-scale metabolic model in guiding metabolic engineering of microbial improvement. Appl Microbiol Biotechnol 2012. [DOI: 10.1007/s00253-012-4543-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
Höffner K, Harwood SM, Barton PI. A reliable simulator for dynamic flux balance analysis. Biotechnol Bioeng 2012; 110:792-802. [DOI: 10.1002/bit.24748] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 09/21/2012] [Accepted: 09/25/2012] [Indexed: 12/16/2022]
|
49
|
Collakova E, Yen JY, Senger RS. Are we ready for genome-scale modeling in plants? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 191-192:53-70. [PMID: 22682565 DOI: 10.1016/j.plantsci.2012.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/17/2012] [Accepted: 04/18/2012] [Indexed: 05/02/2023]
Abstract
As it is becoming easier and faster to generate various types of high-throughput data, one would expect that by now we should have a comprehensive systems-level understanding of biology, biochemistry, and physiology at least in major prokaryotic and eukaryotic model systems. Despite the wealth of available data, we only get a glimpse of what is going on at the molecular level from the global perspective. The major reason is the high level of cellular complexity and our limited ability to identify all (or at least important) components and their interactions in virtually infinite number of internal and external conditions. Metabolism can be modeled mathematically by the use of genome-scale models (GEMs). GEMs are in silico metabolic flux models derived from available genome annotation. These models predict the combination of flux values of a defined metabolic network given the influence of internal and external signals. GEMs have been successfully implemented to model bacterial metabolism for over a decade. However, it was not until 2009 when the first GEM for Arabidopsis thaliana cell-suspension cultures was generated. Genome-scale modeling ("GEMing") in plants brings new challenges primarily due to the missing components and complexity of plant cells represented by the existence of: (i) photosynthesis; (ii) compartmentation; (iii) variety of cell and tissue types; and (iv) diverse metabolic responses to environmental and developmental cues as well as pathogens, insects, and competing weeds. This review presents a critical discussion of the advantages of existing plant GEMs, while identifies key targets for future improvements. Plant GEMs tend to be accurate in predicting qualitative changes in selected aspects of central carbon metabolism, while secondary metabolism is largely neglected mainly due to the missing (unknown) genes and metabolites. As such, these models are suitable for exploring metabolism in plants grown in favorable conditions, but not in field-grown plants that have to cope with environmental changes in complex ecosystems. AraGEM is the first GEM describing a photosynthetic and photorespiring plant cell (Arabidopsis thaliana). We demonstrate the use of AraGEM given the current (limited) knowledge of plant metabolism and reveal the unexpected robustness of AraGEM by a series of in silico simulations. The major focus of these simulations is on the assessment of the: (i) network connectivity; (ii) influence of CO₂ and photon uptake rates on cellular growth rates and production of individual biomass components; and (iii) stability of plant central carbon metabolism with internal pH changes.
Collapse
Affiliation(s)
- Eva Collakova
- Department of Plant Pathology, Physiology, and Weed Science, 308 Latham Hall, Virginia Tech, Blacksburg, VA, USA.
| | | | | |
Collapse
|
50
|
McAnulty MJ, Yen JY, Freedman BG, Senger RS. Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. BMC SYSTEMS BIOLOGY 2012; 6:42. [PMID: 22583864 PMCID: PMC3495714 DOI: 10.1186/1752-0509-6-42] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Accepted: 05/14/2012] [Indexed: 11/10/2022]
Abstract
BACKGROUND Genome-scale metabolic networks and flux models are an effective platform for linking an organism genotype to its phenotype. However, few modeling approaches offer predictive capabilities to evaluate potential metabolic engineering strategies in silico. RESULTS A new method called "flux balance analysis with flux ratios (FBrAtio)" was developed in this research and applied to a new genome-scale model of Clostridium acetobutylicum ATCC 824 (iCAC490) that contains 707 metabolites and 794 reactions. FBrAtio was used to model wild-type metabolism and metabolically engineered strains of C. acetobutylicum where only flux ratio constraints and thermodynamic reversibility of reactions were required. The FBrAtio approach allowed solutions to be found through standard linear programming. Five flux ratio constraints were required to achieve a qualitative picture of wild-type metabolism for C. acetobutylicum for the production of: (i) acetate, (ii) lactate, (iii) butyrate, (iv) acetone, (v) butanol, (vi) ethanol, (vii) CO2 and (viii) H2. Results of this simulation study coincide with published experimental results and show the knockdown of the acetoacetyl-CoA transferase increases butanol to acetone selectivity, while the simultaneous over-expression of the aldehyde/alcohol dehydrogenase greatly increases ethanol production. CONCLUSIONS FBrAtio is a promising new method for constraining genome-scale models using internal flux ratios. The method was effective for modeling wild-type and engineered strains of C. acetobutylicum.
Collapse
Affiliation(s)
- Michael J McAnulty
- Biological Systems Engineering Department, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | | | |
Collapse
|