1
|
Bruni S, Mauro FL, Proietti CJ, Cordo-Russo RI, Rivas MA, Inurrigarro G, Dupont A, Rocha D, Fernández EA, Deza EG, Lopez Della Vecchia D, Barchuk S, Figurelli S, Lasso D, Friedrich AD, Santilli MC, Regge MV, Lebersztein G, Levit C, Anfuso F, Castiglione T, Elizalde PV, Mercogliano MF, Schillaci R. Blocking soluble TNFα sensitizes HER2-positive breast cancer to trastuzumab through MUC4 downregulation and subverts immunosuppression. J Immunother Cancer 2023; 11:jitc-2022-005325. [PMID: 36889811 PMCID: PMC10016294 DOI: 10.1136/jitc-2022-005325] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND The success of HER2-positive (HER2+) breast cancer treatment with trastuzumab, an antibody that targets HER2, relies on immune response. We demonstrated that TNFα induces mucin 4 (MUC4) expression, which shields the trastuzumab epitope on the HER2 molecule decreasing its therapeutic effect. Here, we used mouse models and samples from HER2+ breast cancer patients to unravel MUC4 participation in hindering trastuzumab effect by fostering immune evasion. METHODS We used a dominant negative TNFα inhibitor (DN) selective for soluble TNFα (sTNFα) together with trastuzumab. Preclinical experiments were performed using two models of conditionally MUC4-silenced tumors to characterize the immune cell infiltration. A cohort of 91 patients treated with trastuzumab was used to correlate tumor MUC4 with tumor-infiltrating lymphocytes. RESULTS In mice bearing de novo trastuzumab-resistant HER2+ breast tumors, neutralizing sTNFα with DN induced MUC4 downregulation. Using the conditionally MUC4-silenced tumor models, the antitumor effect of trastuzumab was reinstated and the addition of TNFα-blocking agents did not further decrease tumor burden. DN administration with trastuzumab modifies the immunosuppressive tumor milieu through M1-like phenotype macrophage polarization and NK cells degranulation. Depletion experiments revealed a cross-talk between macrophages and NK cells necessary for trastuzumab antitumor effect. In addition, tumor cells treated with DN are more susceptible to trastuzumab-dependent cellular phagocytosis. Finally, MUC4 expression in HER2+ breast cancer is associated with immune desert tumors. CONCLUSIONS These findings provide rationale to pursue sTNFα blockade combined with trastuzumab or trastuzumab drug conjugates for MUC4+ and HER2+ breast cancer patients to overcome trastuzumab resistance.
Collapse
Affiliation(s)
- Sofia Bruni
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Florencia L Mauro
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Cecilia J Proietti
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Rosalia I Cordo-Russo
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Martin A Rivas
- Division of Hematology & Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | | | - Agustina Dupont
- Servicio de Patología, Sanatorio Mater Dei, Buenos Aires, Argentina
| | - Dario Rocha
- Bioscience Data Mining Group at CIDIE-CONICET-UCC, Córdoba, Argentina
| | - Elmer A Fernández
- Bioscience Data Mining Group at CIDIE-CONICET-UCC, Córdoba, Argentina
| | | | | | - Sabrina Barchuk
- Sección Patología Mamaria Hospital General de Agudos "Juan A Fernández, Buenos Aires, Argentina
| | - Silvina Figurelli
- Servicio de Patología, Hospital General de Agudos "Juan A. Fernández,", Buenos Aires, Argentina
| | - David Lasso
- Hospital Oncológico Provincial de Córdoba, Córdoba, Argentina
| | - Adrián D Friedrich
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María C Santilli
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - María V Regge
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | | | - Claudio Levit
- Servicio de Cirugía, Sanatorio Sagrado Corazón, Buenos Aires, Argentina
| | - Fabiana Anfuso
- Servicio de Cirugía, Sanatorio Sagrado Corazón, Buenos Aires, Argentina
| | | | - Patricia V Elizalde
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Maria F Mercogliano
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Roxana Schillaci
- Laboratorio de Mecanismos Moleculares de Carcinogénesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| |
Collapse
|
2
|
Teufl M, Zajc CU, Traxlmayr MW. Engineering Strategies to Overcome the Stability-Function Trade-Off in Proteins. ACS Synth Biol 2022; 11:1030-1039. [PMID: 35258287 PMCID: PMC8938945 DOI: 10.1021/acssynbio.1c00512] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
In addition to its
biological function, the stability of a protein
is a major determinant for its applicability. Unfortunately, engineering
proteins for improved functionality usually results in destabilization
of the protein. This so-called stability–function trade-off
can be explained by the simple fact that the generation of a novel
protein function—or the improvement of an existing one—necessitates
the insertion of mutations, i.e., deviations from
the evolutionarily optimized wild-type sequence. In fact, it was demonstrated
that gain-of-function mutations are not more destabilizing than other
random mutations. The stability–function trade-off is a universal
phenomenon during protein evolution that has been observed with completely
different types of proteins, including enzymes, antibodies, and engineered
binding scaffolds. In this review, we discuss three types of strategies
that have been successfully deployed to overcome this omnipresent
obstacle in protein engineering approaches: (i) using highly stable
parental proteins, (ii) minimizing the extent of destabilization during
functional engineering (by library optimization and/or coselection
for stability and function), and (iii) repairing damaged mutants through
stability engineering. The implementation of these strategies in protein
engineering campaigns will facilitate the efficient generation of
protein variants that are not only functional but also stable and
therefore better-suited for subsequent applications.
Collapse
Affiliation(s)
- Magdalena Teufl
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| | - Charlotte U. Zajc
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| | - Michael W. Traxlmayr
- Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, 1190 Vienna, Austria
- CD Laboratory for Next Generation CAR T Cells, 1190 Vienna, Austria
| |
Collapse
|
3
|
Benedetti F, Stadlbauer K, Stadlmayr G, Rüker F, Wozniak-Knopp G. A Tetravalent Biparatopic Antibody Causes Strong HER2 Internalization and Inhibits Cellular Proliferation. Life (Basel) 2021; 11:life11111157. [PMID: 34833033 PMCID: PMC8624325 DOI: 10.3390/life11111157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
The overexpression of tyrosine kinase HER2 in numerous cancers, connected with fierce signaling and uncontrolled proliferation, makes it a suitable target for immunotherapy. The acquisition of resistance to currently used compounds and the multiplicity of signaling pathways involved prompted research into the discovery of novel binders as well as treatment options with multiple targeting and multispecific agents. Here we constructed an anti-HER2 tetravalent and biparatopic symmetrical IgG-like molecule by combining the Fab of pertuzumab with a HER2-specific Fcab (Fc fragment with antigen binding), which recognizes an epitope overlapping with trastuzumab. In the strongly HER2-positive cell line SK-BR-3, the molecule induced a rapid and efficient reduction in surface HER2 levels. A potent anti-proliferative effect, specific for the HER2-positive cell line, was observed in vitro, following the induction of apoptosis, and this could not be achieved with treatment with the mixture of pertuzumab and the parental Fcab. The inhibitory cytotoxic effect of our antibody as a single agent makes it a promising contribution to the armory of anti-cancer molecules directed against HER2-addicted cells.
Collapse
|
4
|
Jäger S, Wagner TR, Rasche N, Kolmar H, Hecht S, Schröter C. Generation and Biological Evaluation of Fc Antigen Binding Fragment-Drug Conjugates as a Novel Antibody-Based Format for Targeted Drug Delivery. Bioconjug Chem 2021; 32:1699-1710. [PMID: 34185508 DOI: 10.1021/acs.bioconjchem.1c00240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fragment crystallizable (Fc) antigen binding fragments (Fcabs) represent a novel antibody format comprising a homodimeric Fc region with an engineered antigen binding site. In contrast to their full-length antibody offspring, Fcabs combine Fc-domain-mediated and antigen binding functions at only one-third of the size. Their reduced size is accompanied by elevated tissue penetration capabilities, which is an attractive feature for the treatment of solid tumors. In the present study, we explored for the first time Fcabs as a novel scaffold for antibody-drug conjugates (ADCs). As model, various HER2-targeting Fcab variants coupled to a pH-sensitive dye were used in internalization experiments. A selective binding on HER2-expressing tumor cells and receptor-mediated endocytosis could be confirmed for selected variants, indicating that these Fcabs meet the basic prerequisite for an ADC approach. Subsequently, Fcabs were site-specifically coupled to cytotoxic monomethyl auristatin E yielding homogeneous conjugates. The conjugates retained HER2 and FcRn binding behavior of the parent Fcabs, showed a selective in vitro cell killing and conjugation site-dependent serum stability. Moreover, Fcab conjugates showed elevated penetration in a spheroid model, compared to their full-length antibody and Trastuzumab counterparts. Altogether, the presented results emphasize the potential of Fcabs as a novel scaffold for targeted drug delivery in solid cancers and pave the way for future in vivo translation.
Collapse
Affiliation(s)
- Sebastian Jäger
- ADCs & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.,Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Tim R Wagner
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Nicolas Rasche
- ADCs & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Stefan Hecht
- ADCs & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Christian Schröter
- ADCs & Targeted NBE Therapeutics, Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| |
Collapse
|
5
|
Kariolis MS, Wells RC, Getz JA, Kwan W, Mahon CS, Tong R, Kim DJ, Srivastava A, Bedard C, Henne KR, Giese T, Assimon VA, Chen X, Zhang Y, Solanoy H, Jenkins K, Sanchez PE, Kane L, Miyamoto T, Chew KS, Pizzo ME, Liang N, Calvert MEK, DeVos SL, Baskaran S, Hall S, Sweeney ZK, Thorne RG, Watts RJ, Dennis MS, Silverman AP, Zuchero YJY. Brain delivery of therapeutic proteins using an Fc fragment blood-brain barrier transport vehicle in mice and monkeys. Sci Transl Med 2021; 12:12/545/eaay1359. [PMID: 32461332 DOI: 10.1126/scitranslmed.aay1359] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 02/10/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Effective delivery of protein therapeutics to the central nervous system (CNS) has been greatly restricted by the blood-brain barrier (BBB). We describe the development of a BBB transport vehicle (TV) comprising an engineered Fc fragment that exploits receptor-mediated transcytosis for CNS delivery of biotherapeutics by binding a highly expressed brain endothelial cell target. TVs were engineered using directed evolution to bind the apical domain of the human transferrin receptor (hTfR) without the use of amino acid insertions, deletions, or unnatural appendages. A crystal structure of the TV-TfR complex revealed the TV binding site to be away from transferrin and FcRn binding sites, which was further confirmed experimentally in vitro and in vivo. Recombinant expression of TVs fused to anti-β-secretase (BACE1) Fabs yielded antibody transport vehicle (ATV) molecules with native immunoglobulin G (IgG) structure and stability. Peripheral administration of anti-BACE1 ATVs to hTfR-engineered mice and cynomolgus monkeys resulted in substantially improved CNS uptake and sustained pharmacodynamic responses. The TV platform readily accommodates numerous additional configurations, including bispecific antibodies and protein fusions, yielding a highly modular CNS delivery platform.
Collapse
Affiliation(s)
- Mihalis S Kariolis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| | - Robert C Wells
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Jennifer A Getz
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Wanda Kwan
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Cathal S Mahon
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Raymond Tong
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Do Jin Kim
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Ankita Srivastava
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Catherine Bedard
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Kirk R Henne
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Tina Giese
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Victoria A Assimon
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Xiaocheng Chen
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Yin Zhang
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Hilda Solanoy
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Katherine Jenkins
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Pascal E Sanchez
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Lesley Kane
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Takashi Miyamoto
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Kylie S Chew
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Michelle E Pizzo
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Nicholas Liang
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Meredith E K Calvert
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Sarah L DeVos
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | | | - Sejal Hall
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Zachary K Sweeney
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Robert G Thorne
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Ryan J Watts
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Mark S Dennis
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Adam P Silverman
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Y Joy Yu Zuchero
- Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA.
| |
Collapse
|
6
|
Surowka M, Schaefer W, Klein C. Ten years in the making: application of CrossMab technology for the development of therapeutic bispecific antibodies and antibody fusion proteins. MAbs 2021; 13:1967714. [PMID: 34491877 PMCID: PMC8425689 DOI: 10.1080/19420862.2021.1967714] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
Bispecific antibodies have recently attracted intense interest. CrossMab technology was described in 2011 as novel approach enabling correct antibody light-chain association with their respective heavy chain in bispecific antibodies, together with methods enabling correct heavy-chain association using existing pairs of antibodies. Since the original description, CrossMab technology has evolved in the past decade into one of the most mature, versatile, and broadly applied technologies in the field, and nearly 20 bispecific antibodies based on CrossMab technology developed by Roche and others have entered clinical trials. The most advanced of these are the Ang-2/VEGF bispecific antibody faricimab, currently undergoing regulatory review, and the CD20/CD3 T cell bispecific antibody glofitamab, currently in pivotal Phase 3 trials. In this review, we introduce the principles of CrossMab technology, including its application for the generation of bi-/multispecific antibodies with different geometries and mechanisms of action, and provide an overview of CrossMab-based therapeutics in clinical trials.
Collapse
|
7
|
Wang C, Wu Y, Wang L, Hong B, Jin Y, Hu D, Chen G, Kong Y, Huang A, Hua G, Ying T. Engineered Soluble Monomeric IgG1 Fc with Significantly Decreased Non-Specific Binding. Front Immunol 2017; 8:1545. [PMID: 29181008 PMCID: PMC5693891 DOI: 10.3389/fimmu.2017.01545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2017] [Accepted: 10/30/2017] [Indexed: 01/28/2023] Open
Abstract
Due to the long serum half-life provided by the neonatal Fc receptor (FcRn) recycling, the IgG1 Fc has been pursued as the fusion partner to develop therapeutic Fc-fusion proteins, or as the antibody-derived scaffold that could be engineered with antigen-binding capabilities. In previous studies, we engineered the monomeric Fc by mutating critical residues located on the IgG1 Fc dimerization interface. Comparing with the wild-type dimeric Fc, monomeric Fc might possess substantial advantages conferred by its smaller size, but also suffers the disadvantage of non-specific binding to some unrelated antigens, raising considerable concerns over its potential clinical development. Here, we describe a phage display-based strategy to examine the effects of multiple mutations of IgG1 monomeric Fc and, simultaneously, to identify new Fc monomers with desired properties. Consequently, we identified a novel monomeric Fc that displayed significantly decreased non-specificity. In addition, it exhibited higher thermal stability and comparable pH-dependent FcRn binding to the previous reported monomeric Fc. These results provide baseline to understand the mechanism underlying the generation of soluble IgG1 Fc monomers and warrant the further clinical development of monomeric Fc-based fusion proteins as well as antigen binders.
Collapse
Affiliation(s)
- Chunyu Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanling Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lili Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Binbin Hong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yujia Jin
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dan Hu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Gang Chen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Kong
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ailing Huang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guoqiang Hua
- Institute of Radiation Medicine, Fudan University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Lobner E, Humm AS, Mlynek G, Kubinger K, Kitzmüller M, Traxlmayr MW, Djinović-Carugo K, Obinger C. Two-faced Fcab prevents polymerization with VEGF and reveals thermodynamics and the 2.15 Å crystal structure of the complex. MAbs 2017; 9:1088-1104. [PMID: 28816592 PMCID: PMC5627596 DOI: 10.1080/19420862.2017.1364825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Fcabs (Fc domain with antigen-binding sites) are promising novel therapeutics. By engineering of the C-terminal loops of the CH3 domains, 2 antigen binding sites can be inserted in close proximity. To elucidate the binding mode(s) between homodimeric Fcabs and small homodimeric antigens, the interaction between the Fcabs 448 and CT6 (having the AB, CD and EF loops and the C-termini engineered) with homodimeric VEGF was investigated. The crystal structures of these Fcabs, which form polymers with the antigen VEGF in solution, were determined. However, construction of heterodimeric Fcabs (JanusFcabs: one chain Fc-wt, one chain VEGF-binding) results in formation of distinct JanusFcab–VEGF complexes (2:1), which allowed elucidation of the crystal structure of the JanusCT6–VEGF complex at 2.15 Å resolution. VEGF binding to Janus448 and JanusCT6 is shown to be entropically unfavorable, but enthalpically favorable. Structure-function relationships are discussed with respect to Fcab design and engineering strategies.
Collapse
Affiliation(s)
- Elisabeth Lobner
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Anne-Sophie Humm
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria
| | - Georg Mlynek
- c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria
| | - Konstantin Kubinger
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Michael Kitzmüller
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Michael W Traxlmayr
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| | - Kristina Djinović-Carugo
- c Department for Structural and Computational Biology , Max F. Perutz Laboratories, University of Vienna , Dr. Bohr-Gasse 9, Vienna , Austria.,d Department of Biochemistry, Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113, Ljubljana , Slovenia
| | - Christian Obinger
- a Christian Doppler Laboratory for Antibody Engineering , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria.,b Department of Chemistry, Division of Biochemistry , BOKU - University of Natural Resources and Life Sciences , Muthgasse 18, Vienna , Austria
| |
Collapse
|
9
|
Fcab-HER2 Interaction: a Ménage à Trois. Lessons from X-Ray and Solution Studies. Structure 2017; 25:878-889.e5. [PMID: 28528777 DOI: 10.1016/j.str.2017.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 04/10/2017] [Accepted: 04/28/2017] [Indexed: 01/07/2023]
Abstract
The crystallizable fragment (Fc) of the immunoglobulin class G (IgG) is an attractive scaffold for the design of novel therapeutics. Upon engineering the C-terminal loops in the CH3 domains, Fcabs (Fc domain with antigen-binding sites) can be designed. We present the first crystal structures of Fcabs, i.e., of the HER2-binding clone H10-03-6 having the AB and EF loop engineered and the stabilized version STAB19 derived by directed evolution. Comparison with the crystal structure of the Fc wild-type protein reveals conservation of the overall domain structures but significant differences in EF-loop conformations. Furthermore, we present the first Fcab-antigen complex structures demonstrating the interaction between the engineered Fcab loops with domain IV of HER2. The crystal structures of the STAB19-HER2 and H10-03-6-HER2 complexes together with analyses by isothermal titration calorimetry, SEC-MALS, and fluorescence correlation spectroscopy show that one homodimeric Fcab binds two HER2 molecules following a negative cooperative binding behavior.
Collapse
|
10
|
Liu H, Saxena A, Sidhu SS, Wu D. Fc Engineering for Developing Therapeutic Bispecific Antibodies and Novel Scaffolds. Front Immunol 2017; 8:38. [PMID: 28184223 PMCID: PMC5266686 DOI: 10.3389/fimmu.2017.00038] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 01/10/2017] [Indexed: 12/20/2022] Open
Abstract
Therapeutic monoclonal antibodies have become molecules of choice to treat autoimmune disorders, inflammatory diseases, and cancer. Moreover, bispecific/multispecific antibodies that target more than one antigen or epitope on a target cell or recruit effector cells (T cell, natural killer cell, or macrophage cell) toward target cells have shown great potential to maximize the benefits of antibody therapy. In the past decade, many novel concepts to generate bispecific and multispecific antibodies have evolved successfully into a range of formats from full bispecific immunoglobulin gammas to antibody fragments. Impressively, antibody fragments such as bispecific T-cell engager, bispecific killer cell engager, trispecific killer cell engager, tandem diabody, and dual-affinity-retargeting are showing exciting results in terms of recruiting and activating self-immune effector cells to target and lyse tumor cells. Promisingly, crystallizable fragment (Fc) antigen-binding fragment and monomeric antibody or half antibody may be particularly advantageous to target solid tumors owing to their small size and thus good tissue penetration potential while, on the other hand, keeping Fc-related effector functions such as antibody-dependent cellular cytotoxicity, complement-dependent cytotoxicity, antibody-dependent cell-mediated phagocytosis, and extended serum half-life via interaction with neonatal Fc receptor. This review, therefore, focuses on the progress of Fc engineering in generating bispecific molecules and on the use of small antibody fragment as scaffolds for therapeutic development.
Collapse
Affiliation(s)
- Hongyan Liu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| | - Abhishek Saxena
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| | - Sachdev S Sidhu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China; Banting and Best Department of Medical Research, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Molecular Genetics, Terrence Donnelly Center for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - Donghui Wu
- Laboratory of Antibody Engineering, Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University , Shanghai , China
| |
Collapse
|
11
|
Abstract
The crystallizable fragment (Fc) of the immunoglobulin class G (IgG) is a very attractive scaffold for the design of novel therapeutics due to its quality of uniting all essential antibody functions. This article reviews the functionalization of this homodimeric glycoprotein by diversification of structural loops of CH3 domains for the design of Fcabs, i.e. antigen-binding Fc proteins. It reports the design of libraries for the selection of nanomolar binders with wildtype-like in vivo half-life and correlation of Fc receptor binding and ADCC. The in vitro and preclinical biological activity of selected Fcabs is compared with that of clinically approved antibodies. Recently, the great potential of the scaffold for the development of therapeutics for clinical use has been shown when the HER2-binding Fcab FS102 entered clinical phase I. Furthermore, methods for the engineering of biophysical properties of Fcabs applicable to proteins in general are presented as well as the different approaches in the design of heterodimeric Fc-based scaffolds used in the generation of bispecific monoclonal antibodies. Finally, this work critically analyzes and compares the various efforts in the design of highly diverse and functional libraries that have been made in the engineering of IgG1-Fc and structurally similar scaffolds.
Collapse
Affiliation(s)
- Elisabeth Lobner
- Christian Doppler Laboratory for Antibody Engineering, Department of Chemistry, Vienna Institute of BioTechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Michael W Traxlmayr
- Christian Doppler Laboratory for Antibody Engineering, Department of Chemistry, Vienna Institute of BioTechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christian Obinger
- Christian Doppler Laboratory for Antibody Engineering, Department of Chemistry, Vienna Institute of BioTechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christoph Hasenhindl
- Christian Doppler Laboratory for Antibody Engineering, Department of Chemistry, Vienna Institute of BioTechnology, BOKU - University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
12
|
Vazquez-Lombardi R, Phan TG, Zimmermann C, Lowe D, Jermutus L, Christ D. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov Today 2015; 20:1271-83. [PMID: 26360055 DOI: 10.1016/j.drudis.2015.09.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/06/2015] [Accepted: 09/01/2015] [Indexed: 12/22/2022]
Abstract
The first candidates from the promising class of small non-antibody protein scaffolds are now moving into clinical development and practice. Challenges remain, and scaffolds will need to be further tailored toward applications where they provide real advantages over established therapeutics to succeed in a rapidly evolving drug development landscape.
Collapse
Affiliation(s)
- Rodrigo Vazquez-Lombardi
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia
| | - Tri Giang Phan
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia
| | - Carsten Zimmermann
- University of San Diego, School of Business Administration, 5998 Alcala Park, San Diego, CA 92110, USA
| | - David Lowe
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK
| | - Lutz Jermutus
- MedImmune Ltd., Granta Park, Cambridge CB21 6GH, UK; Trinity Hall, University of Cambridge, Trinity Lane CB2 1TJ, UK.
| | - Daniel Christ
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney, NSW 2010, Australia; The University of New South Wales, Faculty of Medicine, St Vincent's Clinical School, Darlinghurst, Sydney, NSW 2010, Australia.
| |
Collapse
|
13
|
Brennan FR, Baumann A, Blaich G, de Haan L, Fagg R, Kiessling A, Kronenberg S, Locher M, Milton M, Tibbitts J, Ulrich P, Weir L. Nonclinical safety testing of biopharmaceuticals--Addressing current challenges of these novel and emerging therapies. Regul Toxicol Pharmacol 2015. [PMID: 26219199 DOI: 10.1016/j.yrtph.2015.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-clinical safety testing of biopharmaceuticals can present significant challenges to human risk assessment with these often innovative and complex drugs. Hot Topics in this field were discussed recently at the 4th Annual European Biosafe General Membership meeting. In this feature article, the presentations and subsequent discussions from the main sessions are summarized. The topics covered include: (i) wanted versus unwanted immune activation, (ii) bi-specific protein scaffolds, (iii) use of Pharmacokinetic (PK)/Pharmacodynamic (PD) data to impact/optimize toxicology study design, (iv) cytokine release and challenges to human translation (v) safety testing of cell and gene therapies including chimeric antigen receptor T (CAR-T) cells and retroviral vectors and (vi) biopharmaceutical development strategies encompassing a range of diverse topics including optimizing entry of monoclonal antibodies (mAbs) into the brain, safety testing of therapeutic vaccines, non-clinical testing of biosimilars, infection in toxicology studies with immunomodulators and challenges to human risk assessment, maternal and infant anti-drug antibody (ADA) development and impact in non-human primate (NHP) developmental toxicity studies, and a summary of an NC3Rs workshop on the future vision for non-clinical safety assessment of biopharmaceuticals.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sven Kronenberg
- Roche Pharmaceutical Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, Switzerland
| | | | | | | | | | | |
Collapse
|