1
|
Yin D, Zhong Y, Hu J. Microbial polysaccharides biosynthesis and their regulatory strategies. Int J Biol Macromol 2025:143013. [PMID: 40220805 DOI: 10.1016/j.ijbiomac.2025.143013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Microbial polysaccharides hold significant potential for various applications, including food, cosmetics, petroleum, and pharmaceuticals. A deeper understanding of their biosynthetic pathways and regulatory strategies is crucial for enhancing production efficiency and reducing associated costs. To summarize synthetic biological modification strategies for microbial polysaccharides from a hierarchical perspective, this review classifies these polymers into three categories based on the depths of carried out research regarding their biosynthetic pathways and regulatory strategies, i.e., (1) microbial polysaccharides with well-elucidated biosynthetic pathways, (2) microbial polysaccharides with well-elucidated precursor sugar biosynthetic pathways but synthase-encoding genes incompletely understood, and (3) those whose biosynthesis depends on a single synthetic enzyme. We systematically summarize the biosynthetic pathways of these three categories and provide insights into yield-improvement strategies. This review aims to serve as a valuable reference for metabolic regulation of microbial polysaccharides and to facilitate future advances in their production.
Collapse
Affiliation(s)
- Dafang Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
2
|
Son J, Lee HJ, Woo HM. CRISPRi-assisted metabolic engineering of cyanobacteria for photosynthetic hyaluronic acid from CO 2. J Biol Eng 2025; 19:26. [PMID: 40148947 PMCID: PMC11951839 DOI: 10.1186/s13036-025-00494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Hyaluronic acid (HA) is widely used in pharmaceuticals, medicine, and cosmetics. Sustainable production has shifted to microbial fermentation using engineered GRAS strains. Diverse carbon sources and CO2 conversion via engineered microorganisms enhance HA production. Herein we applied advances in CRISPR technologies and tools to optimize metabolic pathway by redirecting carbon portioning in cyanobacterium Synechoccous elongatus PCC 7942, demonstrating enhanced HA production. RESULTS S. elongatus PCC 7942 lacking hyaluronan synthase (HAS) required pathway engineering for HA production. By expressing heterologous Class I HAS, a modular gene expression system was employed, incorporating hasB and hasC for the HA-GlcA module and glmU, glmM, and glmS for the GlcNAc module. This approach resulted in construction of four engineered cyanobacterial strains. Optimizing metabolic pathway involving the HA-GlcA and GlcNAc modules led to SeHA220 (wild-type with HA-GlcA and GlcNAc modules) producing 2.4 ± 0.85 mg/L HA at 21 d, a 27.5-fold increase compared to the control. Targeting F6P and G6P metabolic nodes via CRISPR interference to repress zwf and pfk genes further improved production, with SeHA226 (SeHA220 with a gene repression module) achieving 5.0 ± 0.3 mg/L HA from CO2 at 15 d. Notably, SeHA226 produced photosynthetic HA with a molecular weight (Mw) of 4.2 MDa, comparable to native producers, emphasizing the importance of precursor balance and growth conditions. CONCLUSIONS This study engineered cyanobacteria for efficient HA biosynthesis using modular gene expression and CRISPR-interference systems. Optimizing heterologous metabolic pathway was key to achieving high-molecular-weight photosynthetic HA production from CO2. The findings provide insights into tunable HA production, with future efforts aimed at scaling up photosynthetic HA production for larger-scale applications.
Collapse
Affiliation(s)
- Jigyeong Son
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Hyun Jeong Lee
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
- Biofoundry Research Center, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
3
|
Marwan-Abdelbaset E, Samy-Kamal M, Tan D, Lu X. Microbial production of hyaluronic acid: The current advances, engineering strategies and trends. J Biotechnol 2025; 403:52-72. [PMID: 40154620 DOI: 10.1016/j.jbiotec.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/27/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Hyaluronic acid (HA) is a versatile biomolecule with applications in medicine, cosmetics, and pharmaceuticals. While traditionally extracted from animal tissues, HA is now predominantly produced through microbial fermentation. Microbial fermentation using strains such as Streptococcus zooepidemicus, Corynebacterium glutamicum, and Bacillus subtilis offers a more scalable and sustainable alternative to chemical and animal extraction methods. Recent studies reveal promising yields from engineered strains of Corynebacterium glutamicum and Bacillus subtilis, utilizing advanced metabolic and genetic techniques. Recent advancements in genetic and metabolic engineering, as well as synthetic biology, have addressed some challenges related to molecular weight, viscosity, and by-product formation. This review focuses on the microbial production of HA using engineered strains, encompassing producer organisms, metabolic engineering strategies, industrial-scale production, and key factors influencing molecular weight. Furthermore, it addresses the challenges and potential solutions associated with HA production. Additional research is necessary to develop more efficient and robust engineered strains that exhibit resistance to contamination and can utilize low-cost substrates, such as Pseudomonas putida and Halomonas spp. By overcoming these challenges, researchers can advance the industrial production of HA and expand its applications, thereby contributing to the growth of the HA market.
Collapse
Affiliation(s)
- Ehab Marwan-Abdelbaset
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China; Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed Samy-Kamal
- Department of Marine Sciences and Applied Biology, University of Alicante, Sciences Building V, San Vicente del Raspeig Campus, PO Box 99, Alicante 03080, Spain
| | - Dan Tan
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - XiaoYun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
| |
Collapse
|
4
|
Ma DX, Cheng HJ, Zhang H, Wang S, Shi XT, Wang X, Gong DC. Harnessing the polysaccharide production potential to optimize and expand the application of probiotics. Carbohydr Polym 2025; 349:122951. [PMID: 39643409 DOI: 10.1016/j.carbpol.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024]
Abstract
Certain probiotic microorganisms can synthesize important bioproducts, including polysaccharides as components of cellular structure or extracellular matrix. Probiotic-derived polysaccharides have been widely applied in food, pharmaceutical, and medical fields due to their excellent properties and biological activities. The development of polysaccharide production potential has become a driving force for facilitating biotechnological applications of probiotics. Based on technical advances in synthetic biology, significant progress has recently been made in engineering probiotics with efficient biosynthesis of polysaccharides. Herein, this review summarizes probiotics chassis and genetic tools used for polysaccharide production. Then, probiotic polysaccharides and relevant biosynthesis mechanisms are also clearly described. Next, we introduce strategies for preparing high-yield, controllable molecular weight or non-native polysaccharides by adjusting metabolic pathways and integrating expression elements in probiotics. Finally, some prospective and well-established contributions of exogenous and in situ polysaccharides in probiotics' stability, bioactivity, and therapeutic effects are presented. Our viewpoints on advancing the efficient biomanufacturing of valuable biopolymers in probiotics and engineering probiotics with customized features are provided to exploit probiotics' industrial and biomedical applications.
Collapse
Affiliation(s)
- Dong-Xu Ma
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China
| | - Hui-Juan Cheng
- Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China
| | - Hui Zhang
- Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China
| | - Shuo Wang
- Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China
| | - Xiao-Tao Shi
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Xin Wang
- Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China.
| | - Da-Chun Gong
- Key Laboratory of Functional Yeast of China Light Industry, College of Biological and Pharmaceutical, China Three Gorges University, Yichang 443002, China.
| |
Collapse
|
5
|
Yao ZY, Gong JS, Jiang JY, Su C, Zhao WH, Xu ZH, Shi JS. Unraveling the intricacies of glycosaminoglycan biosynthesis: Decoding the molecular symphony in understanding complex polysaccharide assembly. Biotechnol Adv 2024; 75:108416. [PMID: 39033835 DOI: 10.1016/j.biotechadv.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Glycosaminoglycans (GAGs) are extensively utilized in clinical, cosmetic, and healthcare field, as well as in the treatment of thrombosis, osteoarthritis, rheumatism, and cancer. The biological production of GAGs is a strategy that has garnered significant attention due to its numerous advantages over traditional preparation methods. In this review, we embark on a journey to decode the intricate molecular symphony that orchestrates the biosynthesis of glycosaminoglycans. By unraveling the complex interplay of related enzymes and thorough excavation of the intricate metabolic cascades involved, GAGs chain aggregation and transportation, which efficiently and controllably modulate GAGs sulfation patterns involved in biosynthetic pathway, we endeavor to offer a thorough comprehension of how these remarkable GAGs are intricately assembled and pushes the boundaries of our understanding in GAGs biosynthesis.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Wen-Han Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| |
Collapse
|
6
|
Wei M, Huang Y, Zhu J, Qiao Y, Xiao N, Jin M, Gao H, Huang Y, Hu X, Li O. Advances in hyaluronic acid production: Biosynthesis and genetic engineering strategies based on Streptococcus - A review. Int J Biol Macromol 2024; 270:132334. [PMID: 38744368 DOI: 10.1016/j.ijbiomac.2024.132334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Hyaluronic acid (HA), which is a highly versatile glycosaminoglycan, is widely applied across the fields of food, cosmetics, and pharmaceuticals. It is primary produced through Streptococcus fermentation, but the product presents inherent challenges concerning consistency and potential pathogenicity. However, recent strides in molecular biology have paved the way for genetic engineering, which facilitates the creation of high-yield, nonpathogenic strains adept at synthesizing HA with specific molecular weights. This comprehensive review extensively explores the molecular biology underpinning pivotal HA synthase genes, which elucidates the intricate mechanisms governing HA synthesis. Moreover, it delineates various strategies employed in engineering HA-producing strains.
Collapse
Affiliation(s)
- Mengmeng Wei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ying Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Junyuan Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yufan Qiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Na Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Mengying Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Han Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yitie Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Xiufang Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ou Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China.
| |
Collapse
|
7
|
Wang D, Hu L, Xu R, Zhang W, Xiong H, Wang Y, Du G, Kang Z. Production of different molecular weight glycosaminoglycans with microbial cell factories. Enzyme Microb Technol 2023; 171:110324. [PMID: 37742407 DOI: 10.1016/j.enzmictec.2023.110324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
Glycosaminoglycans (GAGs) are naturally occurring acidic polysaccharides with wide applications in pharmaceuticals, cosmetics, and health foods. The diverse biological activities and physiological functions of GAGs are closely associated with their molecular weights and sulfation patterns. Except for the non-sulfated hyaluronan which can be synthesized naturally by group A Streptococcus, all the other GAGs such as heparin and chondroitin sulfate are mainly acquired from animal tissues. Microbial cell factories provide a more effective platform for the production of structurally homogeneous GAGs. Enhancing the production efficiency of polysaccharides, accurately regulating the GAGs molecular weight, and effectively controlling the sulfation degree of GAGs represent the major challenges of developing GAGs microbial cell factories. Several enzymatic, metabolic engineering, and synthetic biology strategies have been developed to tackle these obstacles and push forward the industrialization of biotechnologically produced GAGs. This review summarizes the recent advances in the construction of GAGs synthesis cell factories, regulation of GAG molecular weight, and modification of GAGs chains. Furthermore, the challenges and prospects for future research in this field are also discussed.
Collapse
Affiliation(s)
- Daoan Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
8
|
Liu K, Guo L, Chen X, Liu L, Gao C. Microbial synthesis of glycosaminoglycans and their oligosaccharides. Trends Microbiol 2023; 31:369-383. [PMID: 36517300 DOI: 10.1016/j.tim.2022.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
Compared with chemical synthesis and tissue extraction methods, microbial synthesis of glycosaminoglycans (GAGs) is attractive because of the advantages of eco-friendly processes, production safety, and sustainable development. However, boosting the efficiency of microbial cell factories, precisely regulating GAG molecular weights, and rationally controlling the sulfation degree of GAGs remain challenging. To address these issues, various strategies, including genetic, enzymatic, metabolic, and fermentation engineering, have been developed. In this review, we summarize the recent progress in the construction of efficient GAG-producing microbial cell factories, regulation of the molecular weight of GAGs, and modification of GAG chains. Moreover, future studies, remaining challenges, and potential solutions in this field are discussed.
Collapse
Affiliation(s)
- Kaifang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Yao ZY, Gong JS, Liu YR, Jiang JY, Zhang YS, Su C, Li H, Kang CL, Liu L, Xu ZH, Shi JS. Genetic variation reveals the enhanced microbial hyaluronan biosynthesis via atmospheric and room temperature plasma. Carbohydr Polym 2023; 312:120809. [PMID: 37059520 DOI: 10.1016/j.carbpol.2023.120809] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 03/01/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023]
Abstract
This study reveals the genetic and biochemical changes underlying the enhanced hyaluronan (HA) biosynthesis in Streptococcus zooepidemicus. After multiple rounds of atmospheric and room temperature plasma (ARTP) mutagenesis combined with novel bovine serum albumin/cetyltrimethylammonium bromide coupled high-throughput screening assay, the HA yield of the mutant was increased by 42.9% and reached 0.813 g L-1 with a molecular weight of 0.54 × 106 Da within 18 h by shaking flask culture. HA production was increased to 4.56 g L-1 by batch culture in 5-L fermenter. Transcriptome sequencing exhibits that distinct mutants have similar genetic changes. Regulation in direction of metabolic flow into the HA biosynthesis, by enhancing genes responsible for the biosynthesis of HA including hasB, glmU and glmM, weaking downstream gene (nagA and nagB) of UDP-GlcNAc and significantly down-regulating transcription of wall-synthesizing genes, resulting in the accumulation of precursors (UDP-GlcA and UDP-GlcNAc) increased by 39.74% and 119.22%, respectively. These associated regulatory genes may provide control point for engineering of the efficient HA-producing cell factory.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, PR China.
| | - Yu-Ru Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Yue-Sheng Zhang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, PR China
| | - Heng Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chuan-Li Kang
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Lei Liu
- Shandong Engineering Laboratory of Sodium Hyaluronate and its Derivatives, Shandong Focusfreda Biotech Co., Ltd, Qufu 273165, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing 214200, PR China.
| |
Collapse
|
10
|
Amjad Zanjani FS, Afrasiabi S, Norouzian D, Ahmadian G, Hosseinzadeh SA, Fayazi Barjin A, Cohan RA, Keramati M. Hyaluronic acid production and characterization by novel Bacillus subtilis harboring truncated Hyaluronan Synthase. AMB Express 2022; 12:88. [PMID: 35821141 PMCID: PMC9445140 DOI: 10.1186/s13568-022-01429-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
Hyaluronic Acid (HA) is a natural biopolymer that has important physiological and industrial applications due to its viscoelastic and hydrophilic characteristics. The responsible enzyme for HA production is Hyaluronan synthase (HAS). Although in vitro structure–function of intact HAS enzyme has been partly identified, there is no data on in vivo function of truncated HAS forms. In the current study, novel recombinant Bacillus subtilis strains harboring full length (RBSFA) and truncated forms of SeHAS (RBSTr4 and RBSTr3) were developed and HA production was studied in terms of titer, production rate and molecular weight (Mw). The maximum HA titer for RBSFA, RBSTr4 and RBSTr3 was 602 ± 16.6, 503 ± 19.4 and 728 ± 22.9 mg/L, respectively. Also, the HA production rate was 20.02, 15.90 and 24.42 mg/L.h−1, respectively. The findings revealed that RBSTr3 produced 121% and 137% more HA rather than RBSFA and RBSTr4, respectively. More interestingly, the HA Mw was about 60 kDa for all strains which is much smaller than those obtained in prior studies. The strains containing truncated forms of SeHAS enzysme are able to produce HA. The HA from all recombinant strains was the same and low Mw. Deletion of C-terminal region of SeHAS was not effective on Mw.
Collapse
Affiliation(s)
| | - Shadi Afrasiabi
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Gholamreza Ahmadian
- Department of Industrial and Environmental Biotechnology, National Institute for Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Sara Ali Hosseinzadeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Alireza Fayazi Barjin
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Malihe Keramati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
11
|
Jeeva P, Jayaprakash SR, Jayaraman G. Hyaluronic acid production is enhanced by harnessing the heme-induced respiration in recombinant Lactococcus lactis cultures. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Rykov SV, Battalova IY, Mironov AS. Construction of Recombinant Bacillus subtilis Strains Producing Hyaluronic Acid. RUSS J GENET+ 2022; 58:507-527. [DOI: 10.1134/s1022795422050088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 01/04/2025]
|
13
|
Xu Q, Torres JE, Hakim M, Babiak PM, Pal P, Battistoni CM, Nguyen M, Panitch A, Solorio L, Liu JC. Collagen- and hyaluronic acid-based hydrogels and their biomedical applications. MATERIALS SCIENCE & ENGINEERING. R, REPORTS : A REVIEW JOURNAL 2021; 146:100641. [PMID: 34483486 PMCID: PMC8409465 DOI: 10.1016/j.mser.2021.100641] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Hydrogels have been widely investigated in biomedical fields due to their similar physical and biochemical properties to the extracellular matrix (ECM). Collagen and hyaluronic acid (HA) are the main components of the ECM in many tissues. As a result, hydrogels prepared from collagen and HA hold inherent advantages in mimicking the structure and function of the native ECM. Numerous studies have focused on the development of collagen and HA hydrogels and their biomedical applications. In this extensive review, we provide a summary and analysis of the sources, features, and modifications of collagen and HA. Specifically, we highlight the fabrication, properties, and potential biomedical applications as well as promising commercialization of hydrogels based on these two natural polymers.
Collapse
Affiliation(s)
- Qinghua Xu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jessica E Torres
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Mazin Hakim
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Paulina M Babiak
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Pallabi Pal
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Carly M Battistoni
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Michael Nguyen
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Alyssa Panitch
- Department of Biomedical Engineering, University of California Davis, Davis, California 95616, United States
| | - Luis Solorio
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Julie C Liu
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| |
Collapse
|
14
|
Nazeri A, Niazi A, Afsharifar A, Taghavi SM, Moghadam A, Aram F. Heterologous production of hyaluronic acid in Nicotiana tabacum hairy roots expressing a human hyaluronan synthase 2. Sci Rep 2021; 11:17966. [PMID: 34504153 PMCID: PMC8429445 DOI: 10.1038/s41598-021-97139-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Hyaluronic acid (HA), a unique polysaccharide with excellent Physico-chemical properties, is broadly used in pharmaceutical, biomedical, and cosmetic fields. It is widely present in all vertebrates, certain bacterial strains, and even viruses while it is not found in plants, fungi, and insects. HA is naturally synthesized by a class of integral membrane proteins called Hyaluronic acid synthase (HAS). Thus far, industrial production of HA is carried out based on either extraction from animal sources or large-scale microbial fermentation. The major drawbacks to using these systems are contamination with pathogens and microbial toxins. Recently, the production of HA through recombinant systems has received considerable attention. Plants are eco-friendly ideal expression systems for biopharmaceuticals production. In this study, the optimized human hyaluronic acid synthase2 (hHAS2) sequence was transformed into Nicotiana tabacum using Agrobacterium rhizogenes. The highest rhHAS2 concentration of 65.72 ng/kg (wet weight) in transgenic tobacco hairy roots was measured by the human HAS2 ELISA kit. The HA production in the transgenic hairy roots was verified by scanning electron microscope (SEM) and quantified by the HA ELISA kit. The DPPH radical scavenging activity of HA with the highest concentration of 0.56 g/kg (wet weight) showed a maximum activity of 46%. Gel Permeation Chromatography (GPC) analyses revealed the high molecular weight HA (HMW-HA) with about > 0.8 MDa.
Collapse
Affiliation(s)
- Arezoo Nazeri
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Seyed Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Farzaneh Aram
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
15
|
Manfrão-Netto JHC, Queiroz EB, de Oliveira Junqueira AC, Gomes AMV, Gusmão de Morais D, Paes HC, Parachin NS. Genetic strategies for improving hyaluronic acid production in recombinant bacterial culture. J Appl Microbiol 2021; 132:822-840. [PMID: 34327773 DOI: 10.1111/jam.15242] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Hyaluronic acid (HA) is a biopolymer of repeating units of glucuronic acid and N-acetylglucosamine. Its market was valued at USD 8.9 billion in 2019. Traditionally, HA has been obtained from rooster comb-like animal tissues and fermentative cultures of attenuated pathogenic streptococci. Various attempts have been made to engineer a safe micro-organism for HA synthesis; however, the HA titres obtained from these attempts are in general still lower than those achieved by natural, pathogenic producers. In this scenario, ways to increase HA molecule length and titres in already constructed strains are gaining attention in the last years, but no recent publication has reviewed the main genetic strategies applied to improve HA production on heterologous hosts. In light of that, we hereby compile the advances made in the engineering of micro-organisms to improve HA synthesis.
Collapse
Affiliation(s)
- João H C Manfrão-Netto
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Enzo Bento Queiroz
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Ana C de Oliveira Junqueira
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Antônio M V Gomes
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Daniel Gusmão de Morais
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Hugo Costa Paes
- Clinical Medicine Division, University of Brasília Medical School, Brasília, Brazil
| | - Nádia Skorupa Parachin
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
16
|
Qiu Y, Ma Y, Huang Y, Li S, Xu H, Su E. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydr Polym 2021; 269:118320. [PMID: 34294332 DOI: 10.1016/j.carbpol.2021.118320] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
Hyaluronic acid (HA) is a naturally formed acidic mucopolysaccharide, with excellent moisturising properties and used widely in the medicine, cosmetics, and food industries. The industrial production of specific molecular weight HA has become imperative. Different biological activities and physiological functions of HA mainly depend on the degree of polymerisation. This article reviews the research status and development prospects of the green biosynthesis and molecular weight regulation of HA. There is an application-based prerequisite of specific molecular weight of HA that could be regulated either during the fermentation process or via a controlled HA degradation process. This work provides an important theoretical basis for the downstream efficient production of diversified HA, which will further accelerate the research applications of HA and provide a good scientific basis and method reference for the study of the molecular weight regulation of similar biopolymers.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Yangzhou Rixing Bio-Tech Co., Ltd., Yangzhou 225601, PR China.
| | - Yanqin Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
17
|
Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohydr Polym 2021; 264:118015. [PMID: 33910717 DOI: 10.1016/j.carbpol.2021.118015] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 01/16/2023]
Abstract
Owing to its outstanding water-retention ability, viscoelasticity, biocompatibility and non-immunogenicity, Hyaluronic acid (HA), a natural linear polymer alternating linked by d-glucuronic acid and N-acetylglucosamine, has been widely employed in cosmetic, medical and clinical applications. With the development of synthetic biology and bioprocessing optimization, HA production via microbial fermentation is an economical and sustainable alternative over traditional animal extraction methods. Indeed, recently Streptococci and other recombinant systems for HA synthesis has received increasing interests due to its technical advantages. This review summarizes the production of HA by microorganisms and demonstrates its synthesis mechanism, focusing on the current status in various production systems, as well as common synthetic biology strategies include driving more carbon flux into HA biosynthesis and regulating the molecular weight (MW), and finally discusses the major challenges and prospects.
Collapse
|
18
|
Manfrão-Netto JHC, Queiroz EB, Rodrigues KA, Coelho CM, Paes HC, Rech EL, Parachin NS. Evaluation of Ogataea ( Hansenula) polymorpha for Hyaluronic Acid Production. Microorganisms 2021; 9:microorganisms9020312. [PMID: 33546444 PMCID: PMC7913781 DOI: 10.3390/microorganisms9020312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/29/2022] Open
Abstract
Hyaluronic acid (HA) is a biopolymer formed by UDP-glucuronic acid and UDP-N-acetyl-glucosamine disaccharide units linked by β-1,4 and β-1,3 glycosidic bonds. It is widely employed in medical and cosmetic procedures. HA is synthesized by hyaluronan synthase (HAS), which catalyzes the precursors’ ligation in the cytosol, elongates the polymer chain, and exports it to the extracellular space. Here, we engineer Ogataea (Hansenula) polymorpha for HA production by inserting the genes encoding UDP-glucose 6-dehydrogenase, for UDP-glucuronic acid production, and HAS. Two microbial HAS, from Streptococcus zooepidemicus (hasAs) and Pasteurella multocida (hasAp), were evaluated separately. Additionally, we assessed a genetic switch using integrases in O. polymorpha to uncouple HA production from growth. Four strains were constructed containing both has genes under the control of different promoters. In the strain containing the genetic switch, HA production was verified by a capsule-like layer around the cells by scanning electron microscopy in the first 24 h of cultivation. For the other strains, the HA was quantified only after 48 h and in an optimized medium, indicating that HA production in O. polymorpha is limited by cultivation conditions. Nevertheless, these results provide a proof-of-principle that O. polymorpha is a suitable host for HA production.
Collapse
Affiliation(s)
- João Heitor Colombelli Manfrão-Netto
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
| | - Enzo Bento Queiroz
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
| | - Kelly Assis Rodrigues
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
| | - Cintia M. Coelho
- Department of Genetics and Morphology, Institute of Biological Science, University of Brasília, Brasília 70910-900, Brazil;
| | - Hugo Costa Paes
- Clinical Medicine Division, University of Brasília Medical School, University of Brasília, Brasília 70910-900, Brazil;
| | - Elibio Leopoldo Rech
- Brazilian Agriculture Research Corporation—Embrapa—Genetic Resources and Biotechnology—CENARGEN, Brasília 70770-917, Brazil;
| | - Nádia Skorupa Parachin
- Grupo Engenharia de Biocatalisadores, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília 70910-900, Brazil; (J.H.C.M.-N.); (E.B.Q.); (K.A.R.)
- Ginkgo Bioworks, Boston, MA 02210, USA
- Correspondence:
| |
Collapse
|
19
|
Gunasekaran V, D G, V P. Role of membrane proteins in bacterial synthesis of hyaluronic acid and their potential in industrial production. Int J Biol Macromol 2020; 164:1916-1926. [PMID: 32791275 DOI: 10.1016/j.ijbiomac.2020.08.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan polymer found in various parts of human body and is required for functions like lubrication, water homeostasis etc. Hyaluronic acid is mostly produced industrially by bacterial fermentation for pharmaceutical and cosmetic applications. This review discusses on the role of membrane proteins involved in synthesis and transport of bacterial HA, since HA is a transmembrane product. The different types of membrane proteins involved, their transcriptional control in wild type bacteria and the expression of those proteins in various recombinant hosts have been discussed. The role of phospholipids and metal ions on membrane proteins activity, HA yield and size of HA have also been discussed. Today with an estimated market of US$ 8.3 billion and which is expected to grow to US$ 15.25 billion in 2026, it is essential to increase the efficiency of the industrial HA production process. So this review also proposes on how those membrane proteins and cellular mechanisms like the transcriptional control can be utilised to develop efficient industrial strains that enhance the yield and size of HA produced.
Collapse
Affiliation(s)
| | - Gowdhaman D
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India
| | - Ponnusami V
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India.
| |
Collapse
|
20
|
Wang Y, Hu L, Huang H, Wang H, Zhang T, Chen J, Du G, Kang Z. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat Commun 2020; 11:3120. [PMID: 32561727 PMCID: PMC7305114 DOI: 10.1038/s41467-020-16962-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan is widely used in cosmetics and pharmaceutics. Development of robust and safe cell factories and cultivation approaches to efficiently produce hyaluronan is of many interests. Here, we describe the metabolic engineering of Corynebacterium glutamicum and application of a fermentation strategy to manufacture hyaluronan with different molecular weights. C. glutamicum is engineered by combinatorial overexpression of type I hyaluronan synthase, enzymes of intermediate metabolic pathways and attenuation of extracellular polysaccharide biosynthesis. The engineered strain produces 34.2 g L−1 hyaluronan in fed-batch cultures. We find secreted hyaluronan encapsulates C. glutamicum, changes its cell morphology and inhibits metabolism. Disruption of the encapsulation with leech hyaluronidase restores metabolism and leads to hyper hyaluronan productions of 74.1 g L−1. Meanwhile, the molecular weight of hyaluronan is also highly tunable. These results demonstrate combinatorial optimization of cell factories and the extracellular environment is efficacious and likely applicable for the production of other biopolymers. Bioproduction of hyaluronan needs increases in yield and greater diversity of the molecular weights. Here, the author increases hyaluronan production and diversifies the molecular weights through engineering the hyaluronan biosynthesis pathway and disruption of Corynebacterium glutamicum encapsulation caused by secreted hyaluronan.
Collapse
Affiliation(s)
- Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Hao Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Hao Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | | | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
21
|
Cheng F, Yu H, Stephanopoulos G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid. Metab Eng 2019; 55:276-289. [DOI: 10.1016/j.ymben.2019.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
|
22
|
Heterologous Hyaluronic Acid Production in Kluyveromyces lactis. Microorganisms 2019; 7:microorganisms7090294. [PMID: 31466214 PMCID: PMC6780701 DOI: 10.3390/microorganisms7090294] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 11/17/2022] Open
Abstract
Hyaluronic Acid (HA) is a biopolymer composed by the monomers Glucuronic Acid (GlcUA) and N-Acetyl Glucosamine (GlcNAc). It has a broad range of applications in the field of medicine, being marketed between USD 1000-5000/kg. Its primary sources include extraction of animal tissue and fermentation using pathogenic bacteria. However, in both cases, extensive purification protocols are required to prevent toxin contamination. In this study, aiming at creating a safe HA producing microorganism, the generally regarded as safe (GRAS) yeast Kluyveroymyces lactis is utilized. Initially, the hasB (UDP-Glucose dehydrogenase) gene from Xenopus laevis (xlhasB) is inserted. After that, four strains are constructed harboring different hasA (HA Synthase) genes, three of humans (hshasA1, hshasA2, and hshasA3) and one with the bacteria Pasteurella multocida (pmhasA). Transcript values analysis confirms the presence of hasA genes only in three strains. HA production is verified by scanning electron microscopy in the strain containing the pmHAS isoform. The pmHAS strain is grown in a 1.3 l bioreactor operating in a batch mode, the maximum HA levels are 1.89 g/L with a molecular weight of 2.097 MDa. This is the first study that reports HA production in K. lactis and it has the highest HA titers reported among yeast.
Collapse
|
23
|
Schulte S, Doss SS, Jeeva P, Ananth M, Blank LM, Jayaraman G. Exploiting the diversity of streptococcal hyaluronan synthases for the production of molecular weight–tailored hyaluronan. Appl Microbiol Biotechnol 2019; 103:7567-7581. [DOI: 10.1007/s00253-019-10023-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 11/28/2022]
|
24
|
Puvendran K, Jayaraman G. Enhancement of acetyl-CoA by acetate co-utilization in recombinant Lactococcus lactis cultures enables the production of high molecular weight hyaluronic acid. Appl Microbiol Biotechnol 2019; 103:6989-7001. [PMID: 31267232 DOI: 10.1007/s00253-019-09987-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 10/26/2022]
Abstract
The molecular weight of hyaluronic acid (HA) is a critical property which determines its usage in various biomedical applications. This study investigates the correlation between the availability of a critical cofactor, acetyl-CoA, the concentration of a limiting precursor, UDP-N-acetylglucosamine (UDP-GlcNAc), and the molecular weight of HA (MWHA) produced by recombinant Lactococcus lactis MKG6 cultures. This strain expressed three heterologous HA-pathway genes obtained from the has operon of Streptococcus zooepidemicus in an ldh-mutant host strain, L. lactis NZ9020. A flux balance analysis, performed using the L. lactis genome-scale metabolic network, showed a positive correlation of acetyl-CoA flux with the UDP-GlcNAc flux and the experimental data on HA productivity. To increase the intracellular levels of acetyl-CoA, acetate was supplemented as a pulse feed in anaerobic batch cultures. However, acetate is effectively utilized only in the presence of glucose and exhaustion of glucose resulted in decreasing the final MWHA (1.5 MDa). Co-supplementation of acetate resulted in enhancing the acetyl-CoA and UDP-GlcNAc levels as well as the MWHA to 2.5 MDa. This logic was extended to fed-batch cultures, designed with a pH-based feedback control of glucose feeding and pulse acetate supplementation. When the glucose feed concentration was optimally adjusted to prevent glucose exhaustion or accumulation, the acetate utilization was found to be high, resulting in significantly enhanced levels of acetyl-CoA and UDP-GlcNAc as well as a MWHA of 3.4 MDa, which was sustained at this value throughout the process. This study provides the possibility of commercially producing high MWHA using recombinant L. lactis strains.
Collapse
Affiliation(s)
- Kirubhakaran Puvendran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Guhan Jayaraman
- Bioprocess and Metabolic Engineering Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India.
| |
Collapse
|
25
|
Jeeva P, Shanmuga Doss S, Sundaram V, Jayaraman G. Production of controlled molecular weight hyaluronic acid by glucostat strategy using recombinant Lactococcus lactis cultures. Appl Microbiol Biotechnol 2019; 103:4363-4375. [DOI: 10.1007/s00253-019-09769-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 03/11/2019] [Accepted: 03/12/2019] [Indexed: 10/27/2022]
|
26
|
Badri A, Williams A, Linhardt RJ, Koffas MAG. The road to animal-free glycosaminoglycan production: current efforts and bottlenecks. Curr Opin Biotechnol 2018; 53:85-92. [DOI: 10.1016/j.copbio.2017.12.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/07/2017] [Accepted: 12/15/2017] [Indexed: 02/07/2023]
|
27
|
Sunguroğlu C, Sezgin DE, Aytar Çelik P, Çabuk A. Higher titer hyaluronic acid production in recombinant Lactococcus lactis. Prep Biochem Biotechnol 2018; 48:734-742. [DOI: 10.1080/10826068.2018.1508036] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Cansu Sunguroğlu
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Dilber Ece Sezgin
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Pınar Aytar Çelik
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Ahmet Çabuk
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
- Department of Biology, Faculty of Arts and Science, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
28
|
Puvendran K, Anupama K, Jayaraman G. Real-time monitoring of hyaluronic acid fermentation by in situ transflectance spectroscopy. Appl Microbiol Biotechnol 2018; 102:2659-2669. [DOI: 10.1007/s00253-018-8816-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 01/23/2018] [Accepted: 01/27/2018] [Indexed: 01/22/2023]
|
29
|
Cheng F, Luozhong S, Guo Z, Yu H, Stephanopoulos G. Enhanced Biosynthesis of Hyaluronic Acid Using Engineered Corynebacterium glutamicum Via Metabolic Pathway Regulation. Biotechnol J 2017; 12. [PMID: 28869338 DOI: 10.1002/biot.201700191] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/27/2017] [Indexed: 11/07/2022]
Abstract
Hyaluronic acid (HA) is a polysaccharide used in many industries such as medicine, surgery, cosmetics, and food. To avoid potential pathogenicity caused by its native producer, Streptococcus, efforts have been made to create a recombinant host for HA production. In this work, a GRAS (generally recognized as safe) strain, Corynebacterium glutamicum, is engineered for enhanced biosynthesis of HA via metabolic pathway regulation. Five enzymes (HasA-HasE) involved in the HA biosynthetic pathway are highlighted, and eight diverse operon combinations, including HasA, HasAB, HasAC, HasAD, HasAE, HasABC, HasABD, and HasABE, are compared. HasAB and HasABC are found to be optimal for HA biosynthesis in C. glutamicum. To meet the energy demand for HA synthesis, the metabolic pathway that produces lactate is blocked by knocking out the lactate dehydrogenase (LDH) gene using single crossover homologous recombination. Engineered C. glutamicum/Δldh-AB is superior and had a significantly higher HA titer than C. glutamicum/Δldh-ABC. Batch and fed-batch cultures of C. glutamicum/Δldh-AB are performed in a 5-L fermenter. Using glucose feeding, the maximum HA titer reached 21.6 g L-1 , more than threefolds of that of the wild-type Streptococcus. This work provides an efficient, safe, and novel recombinant HA producer, C. glutamicum/Δldh-AB, via metabolic pathway regulation.
Collapse
Affiliation(s)
- Fangyu Cheng
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Sijin Luozhong
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Zhigang Guo
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Huimin Yu
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, P. R. China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, P. R. China
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
30
|
Hamad GM, H. Taha T, E. Hafez E, El Sohaimy S. Physicochemical, Molecular and Functional Characteristics of Hyaluronic Acid as a Functional Food. ACTA ACUST UNITED AC 2017. [DOI: 10.3923/ajft.2017.72.85] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Kaur M, Jayaraman G. Hyaluronan production and molecular weight is enhanced in pathway-engineered strains of lactate dehydrogenase-deficient Lactococcus lactis. Metab Eng Commun 2016; 3:15-23. [PMID: 29468110 PMCID: PMC5779726 DOI: 10.1016/j.meteno.2016.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/08/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
The potential advantages of hyaluronic acid (HA) production by metabolically-engineered Lactococcus lactis is constrained by the lower molecular weight and yield of HA obtained in these strains, compared to natural producers. Earlier studies have correlated lower HA yield with excessive lactate production in L. lactis cultures (Chauhan et al., 2014). In the present study, a three-fold increase was observed in the amount as well as molecular weight of HA produced by recombinant ldh-mutant L. lactis strains. The diversion from lactate production in the ldh-mutant strains resulted in excess ethanol and acetoin production and higher NAD+/NADH ratio in these cultures. The initial NAD+/NADH ratio showed a positive correlation with HA molecular weight as well as with the HA-precursor ratio (UDP-GlcUA/UDP-GlcNAc). The influence of NAD+/NADH ratio on regulation of the concerned metabolic pathways was assessed by transcriptional analysis of key genes having putative binding sites of the NADH-binding transcriptional factor, Rex.
Collapse
Affiliation(s)
| | - Guhan Jayaraman
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
32
|
de Oliveira JD, Carvalho LS, Gomes AMV, Queiroz LR, Magalhães BS, Parachin NS. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb Cell Fact 2016; 15:119. [PMID: 27370777 PMCID: PMC4930576 DOI: 10.1186/s12934-016-0517-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/22/2016] [Indexed: 11/10/2022] Open
Abstract
Hyaluronic acid, or HA, is a rigid and linear biopolymer belonging to the class of the glycosaminoglycans, and composed of repeating units of the monosaccharides glucuronic acid and N-acetylglucosamine. HA has multiple important functions in the human body, due to its properties such as bio-compatibility, lubricity and hydrophilicity, it is widely applied in the biomedical, food, health and cosmetic fields. The growing interest in this molecule has motivated the discovery of new ways of obtaining it. Traditionally, HA has been extracted from rooster comb-like animal tissues. However, due to legislation laws HA is now being produced by bacterial fermentation using Streptococcus zooepidemicus, a natural producer of HA, despite it being a pathogenic microorganism. With the expansion of new genetic engineering technologies, the use of organisms that are non-natural producers of HA has also made it possible to obtain such a polymer. Most of the published reviews have focused on HA formulation and its effects on different body tissues, whereas very few of them describe the microbial basis of HA production. Therefore, for the first time this review has compiled the molecular and genetic bases for natural HA production in microorganisms together with the main strategies employed for heterologous production of HA.
Collapse
Affiliation(s)
- Juliana Davies de Oliveira
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, CEP 70.790-160, Brazil
| | - Lucas Silva Carvalho
- Integra Bioprocessos e Análises, Campus Universitário Darcy Ribeiro, Edifício CDT, Sala AT-36/37, Brasília, DF, CEP 70.904-970, Brazil
| | - Antônio Milton Vieira Gomes
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil
| | - Lúcio Rezende Queiroz
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil
| | - Beatriz Simas Magalhães
- Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, CEP 70.790-160, Brazil.,Integra Bioprocessos e Análises, Campus Universitário Darcy Ribeiro, Edifício CDT, Sala AT-36/37, Brasília, DF, CEP 70.904-970, Brazil
| | - Nádia Skorupa Parachin
- Grupo de Engenharia Metabólica Aplicada a Bioprocessos, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, CEP 70.790-900, Brazil.
| |
Collapse
|
33
|
Production of specific-molecular-weight hyaluronan by metabolically engineered Bacillus subtilis 168. Metab Eng 2016; 35:21-30. [DOI: 10.1016/j.ymben.2016.01.008] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 01/11/2016] [Accepted: 01/27/2016] [Indexed: 12/14/2022]
|
34
|
Cheng F, Gong Q, Yu H, Stephanopoulos G. High-titer biosynthesis of hyaluronic acid by recombinantCorynebacterium glutamicum. Biotechnol J 2016; 11:574-84. [DOI: 10.1002/biot.201500404] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/09/2015] [Accepted: 12/18/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Fangyu Cheng
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University; Beijing China
| | - Qianying Gong
- College of Life Science and Technology, Beijing University of Chemical Technology; Beijing China
| | - Huimin Yu
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University; Beijing China
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology; Cambridge MA USA
| |
Collapse
|
35
|
Metabolic engineering for amino-, oligo-, and polysugar production in microbes. Appl Microbiol Biotechnol 2016; 100:2523-33. [DOI: 10.1007/s00253-015-7215-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 12/21/2022]
|
36
|
Chen R. The sweet branch of metabolic engineering: cherry-picking the low-hanging sugary fruits. Microb Cell Fact 2015; 14:197. [PMID: 26655367 PMCID: PMC4674990 DOI: 10.1186/s12934-015-0389-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/25/2015] [Indexed: 02/08/2023] Open
Abstract
In the first science review on the then nascent Metabolic Engineering field in 1991, Dr. James E. Bailey described how improving erythropoietin (EPO) glycosylation can be achieved via metabolic engineering of Chinese hamster ovary (CHO) cells. In the intervening decades, metabolic engineering has brought sweet successes in glycoprotein engineering, including antibodies, vaccines, and other human therapeutics. Today, not only eukaryotes (CHO, plant, insect, yeast) are being used for manufacturing protein therapeutics with human-like glycosylation, newly elucidated bacterial glycosylation systems are enthusiastically embraced as potential breakthrough to revolutionize the biopharmaceutical industry. Notwithstanding these excitement in glycoprotein, the sweet metabolic engineering reaches far beyond glycoproteins. Many different types of oligo- and poly-saccharides are synthesized with metabolically engineered cells. For example, several recombinant hyaluronan bioprocesses are now in commercial production, and the titer of 2′-fucosyllactose, the most abundant fucosylated trisaccharide in human milk, reaches over 20 g/L with engineered E. coli cells. These successes represent only the first low hanging fruits, which have been appreciated scientifically, medically and fortunately, commercially as well. As one of the four building blocks of life, sugar molecules permeate almost all aspects of life. They are also unique in being intimately associated with all major types of biopolymers (including DNA/RNA, proteins, lipids) meanwhile they stand alone as bioactive polysaccharides, or free soluble oligosaccharides. As such, all sugar moieties in biological components, small or big and free or bound, are important targets for metabolic engineering. Opportunities abound at the interface of glycosciences and metabolic engineering. Continued investment and successes in this branch of metabolic engineering will make vastly diverse sugar-containing molecules (a.k.a. glycoconjugates) available for biomedical applications, sustainable technology development, and as invaluable tools for basic scientific research. This short review focuses on the most recent development in the field, with emphasis on the synthesis technology for glycoprotein, polysaccharide, and oligosaccharide.
Collapse
Affiliation(s)
- Rachel Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, NW, Atlanta, GA, 30332-0100, USA.
| |
Collapse
|
37
|
Affiliation(s)
- Akihiko Kondo
- Dept. Chemical Science and Engineering, Kobe University, Kobe, Japan.
| | | |
Collapse
|