1
|
Miranda LP, Guimarães JR, Fernandez-Lafuente R, Tardioli PW. Ethanolysis of degummed soybean oil using magnetic CLEAs from Eversa® Transform. J Biotechnol 2025; 402:79-86. [PMID: 40120763 DOI: 10.1016/j.jbiotec.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/30/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
Eversa@ Transform magnetic crosslinked enzyme aggregates (Eversa-mCLEA) have been used to produce fatty acid ethyl esters (FAEEs) through the ethanolysis of soybean oil. Some variables influencing this reaction were studied using an experimental statistical design. After 12 hours of reaction, a maximum FAEEs yield of 64 wt% was obtained using 4 Uest/g oil of Eversa-mCLEA, an anhydrous ethanol/refined oil molar ratio of 11, and a temperature of 40°C. Degummed oil and hydrated ethanol were used as more cost-effective alternatives, leading to an increase in FAEEs yield (up to 73 wt%). The initial reaction rate increased with a lower molar ratio of hydrated ethanol/degummed oil; however, the final yield remained similar. The combined use of Eversa-mCLEA and Lipozyme 435 resulted in 86 wt% FAEEs and 4 wt% of free fatty acids (FFAs) after 24 hours. A caustic polishing step of the product yielded 90 wt% FAEEs and 0.17 wt% FFAs. These findings show that, using these substrates, a more effective purification step (such as fractional distillation) is required for the product to meet international standards for biodiesel commercialization.
Collapse
Affiliation(s)
- Letícia Passos Miranda
- Department of Chemical Engineering, Federal University of São Carlos (DEQ/UFSCar), Rod. Washington Luís, km 235, São Carlos, SP 13565-905, Brazil.
| | - José Renato Guimarães
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá, Minas Gerais 37500-903, Brazil.
| | | | - Paulo Waldir Tardioli
- Department of Chemical Engineering, Federal University of São Carlos (DEQ/UFSCar), Rod. Washington Luís, km 235, São Carlos, SP 13565-905, Brazil.
| |
Collapse
|
2
|
Ong SN, Kamarudin NHA, Shariff FM, Noor NDM, Ali MSM, Rahman RNZRA. Effects of alcohol concentration and temperature on the dynamics and stability of mutant Staphylococcal lipase. J Biomol Struct Dyn 2025; 43:450-466. [PMID: 37968883 DOI: 10.1080/07391102.2023.2282177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
The stability and activity of lipase in organic media are important parameters in determining how quickly biocatalysis proceeds. This study aimed to examine the effects of two commonly used alcohols in industrial applications, methanol (MtOH) and ethanol (EtOH) on the conformational stability and catalytic activity of G210C lipase, a laboratory-evolved mutant of Staphylococcus epidermidis AT2 lipase. Simulation studies were performed using an open-form predicted structure under 30, 40 and 50% of MtOH and EtOH at 25 °C and 45 °C. The overall enzyme structure becomes more flexible with increasing concentration of MtOH and exhibited the highest flexibility in 40% EtOH. In EtOH, the movement of the lid was found to be temperature-dependent with a noticeable shift in the lid position at 45 °C. Lid opening was evidenced at 50% of MtOH and EtOH which was supported by the increase in SASA of hydrophobic residues of the lid and catalytic triad. The active site remained mostly intact. An open-closed lid transition was observed when the structure was re-simulated in water. Experimental evaluation of the lipase stability showed that the half-life reduced when the enzyme was treated with 40% (v/v) and 50% (v/v) of EtOH and MtOH respectively. The finding implies that a high concentration of alcohol and elevated temperature can induce the lid opening of lipase which could be essential for the activation of the enzyme, provided that the catalytic performance in the active site is not compromised.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shir Nee Ong
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Centre for Foundation Studies in Science of Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fairolniza Mohd Shariff
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Noor Dina Muhd Noor
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
3
|
Yoshimoto S, Aoki S, Ishikawa M, Suzuki A, Hori K. Size-dependent ability of AtaA to immobilize cells in Acinetobacter sp. Tol 5. Sci Rep 2024; 14:21039. [PMID: 39251675 PMCID: PMC11385948 DOI: 10.1038/s41598-024-71920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/31/2024] [Indexed: 09/11/2024] Open
Abstract
Microbial cells serve as efficient and environmentally friendly biocatalysts, but their stability and reusability in practical applications must often be improved through immobilization. Acinetobacter sp. Tol 5 shows high adhesiveness to materials due to its large cell surface protein AtaA, which consists of 3630 amino acids (aa). Previously, we developed a method for immobilizing bacteria using AtaA. Herein, we investigated the cell immobilization ability of in-frame deletion (IFD) mutants of AtaA with different sizes in Tol 5. Mini-AtaA, which consists of 775 aa and is functional in Escherichia coli, was produced and present on the cell surface; however, mini-AtaA showed no immobilization ability in Tol 5. A cell immobilization assay was performed with cells expressing 16 IFD mutants of AtaA with different sizes, revealing that a length of at least 1417 aa was required for the sufficient immobilization of Tol 5 cells; thus, the minimum length needed to achieve the adhesive function of AtaA varies among bacterial species. The constructed mutant library of AtaA ranging from 3630 to 775 aa will allow researchers to quickly and easily explore the optimal size of AtaA, even for bacteria newly introduced to AtaA.
Collapse
Affiliation(s)
- Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan
| | - Sota Aoki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan
| | - Masahito Ishikawa
- Department of Frontier Bioscience, Faculty of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, 526-0829, Japan
| | - Atsuo Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Aichi, 464-8603, Japan.
| |
Collapse
|
4
|
Miranda FC, Oliveira KSGC, Tardioli PW, Fernandez-Lafuente R, Guimarães JR. Insights on the role of blocking agent on the properties of the lipase from Thermomyces lanuginosus immobilized on heterofunctional support for hydroesterification reactions. Int J Biol Macromol 2024; 275:133555. [PMID: 38960240 DOI: 10.1016/j.ijbiomac.2024.133555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Here, we report a study of the effect of the blocking agent on the properties of the lipase from Thermomyces lanuginosus (TLL) immobilized on a heterofunctional support (Purolite C18-ethylnediamina (EDA)- vinyl sulfone (VS)-TLL-blocking agent) in different reactions. The performance of the biocatalysts was compared to those immobilized on standard hydrophobic support (Purolite C18-TLL) and the commercial one (TLL-IM). The nature of the blocking agent (Cys, Gly and Asp) altered the enzyme features. TLL-IM always gave a comparatively worse performance, with its specificity for the oil being very different to the Purolite biocatalysts. Under optimized conditions, Purolite C18-TLL yielded 97 % of hydrolysis conversion after 4 h using a water/waste cooking soybean oil (WCSO) mass ratio of 4.3, biocatalyst load of 6.5 wt% and a temperature of 44.2 °C (without buffer or emulsification agent). In esterification reactions of the purified free fatty acids (FFAs) obtained from WCSO, the best TLL biocatalysts depended on the utilized alcohol: linear amyl alcohol was preferred by Purolite C18-TLL and Purolite C18-EDA-VS-TLL-Gly, while higher activity was achieved utilizing isoamyl alcohol as nucleophile by Purolite C18-EDA-VS-TLL-Cys, Purolite C18-EDA-VS-TLL-Asp and IM-TLL as catalysts. All the results indicate the influence of the blocking step on the final biocatalyst features.
Collapse
Affiliation(s)
- Felipe Cardoso Miranda
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá, Minas Gerais 37500-903, Brazil
| | | | - Paulo Waldir Tardioli
- Department of Chemical Engineering, Federal Institute of Education, Science and Technology of the South of Minas Gerais, Av. Maria da Conceição Santos, 900, 37560-260 Pouso Alegre, Minas Gerais, Brazil
| | - Roberto Fernandez-Lafuente
- Department of biocatalysis, Institute of Catalysis and Petrochemistry (ICP-CSIC), Campus UAM -CSIC, 28049 Madrid, Spain.
| | - José Renato Guimarães
- Institute of Natural Resources, Federal University of Itajubá, Av. Benedito Pereira dos Santos, 1303, Itajubá, Minas Gerais 37500-903, Brazil.
| |
Collapse
|
5
|
Rmili F, Frikha F, Chamkha M, Sayari A, Fendri A. Structure elucidation of Staphylococcus capitis lipase. Molecular dynamics simulations to investigate the effects of calcium and zinc ions on the structural stability. J Biomol Struct Dyn 2023; 41:10450-10462. [PMID: 36546696 DOI: 10.1080/07391102.2022.2159528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022]
Abstract
Cold-adapted and organic solvent tolerant lipases have significant potential in a wide range of synthetic reactions in industry. But there are no sufficient studies on how these enzymes interacts with their substrates. Herein, the predicted structure and function of the Staphylococcus capitis lipase (SCL) are studied. Given the high amino acid sequence homology with the Staphylococcus simulans lipase (SSL), 3D structure models of closed and open forms of the S. capitis lipase were built using the structure of SSL as template. The models suggested the presence of a main lid and a second lid that may act with the former as a double door to control the access to the active site. The SCL models also allowed us to identify key residues involved in binding substrates, calcium or zinc ions. By following this model and utilizing molecular dynamics (MD) simulations, the stability of the S. capitis lipase at low temperatures could be explained in the presence and in the absence of calcium and zinc. Due to its thermolability, the SCL is extremely valuable for different biotechnological applications in a wide variety of industries from molecular biology to detergency to food and beverage preparation.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatma Rmili
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Fakher Frikha
- Laboratory of Molecular and Cellular Screening Processes Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, University of Sfax, Sfax, Tunisia
| | - Adel Sayari
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, Engineering National School of Sfax (ENIS), University of Sfax, Sfax, Tunisia
| |
Collapse
|
6
|
Becker L, Sturm J, Eiden F, Holtmann D. Analyzing and understanding the robustness of bioprocesses. Trends Biotechnol 2023; 41:1013-1026. [PMID: 36959084 DOI: 10.1016/j.tibtech.2023.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/25/2023]
Abstract
The robustness of bioprocesses is becoming increasingly important. The main driving forces of this development are, in particular, increasing demands on product purities as well as economic aspects. In general, bioprocesses exhibit extremely high complexity and variability. Biological systems often have a much higher intrinsic variability compared with chemical processes, which makes the development and characterization of robust processes tedious task. To predict and control robustness, a clear understanding of interactions between input and output variables is necessary. Robust bioprocesses can be realized, for example, by using advanced control strategies for the different unit operations. In this review, we discuss the different biological, technical, and mathematical tools for the analysis and control of bioprocess robustness.
Collapse
Affiliation(s)
- Lucas Becker
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany
| | - Jonathan Sturm
- Bioprozesstechnik Group, Westfälische Hochschule, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany; iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Frank Eiden
- Bioprozesstechnik Group, Westfälische Hochschule, August-Schmidt-Ring 10, 45665 Recklinghausen, Germany
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390 Giessen, Germany.
| |
Collapse
|
7
|
Yoshimoto S, Aoki S, Ohara Y, Ishikawa M, Suzuki A, Linke D, Lupas AN, Hori K. Identification of the adhesive domain of AtaA from Acinetobacter sp. Tol 5 and its application in immobilizing Escherichia coli. Front Bioeng Biotechnol 2023; 10:1095057. [PMID: 36698637 PMCID: PMC9868564 DOI: 10.3389/fbioe.2022.1095057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023] Open
Abstract
Cell immobilization is an important technique for efficiently utilizing whole-cell biocatalysts. We previously invented a method for bacterial cell immobilization using AtaA, a trimeric autotransporter adhesin from the highly sticky bacterium Acinetobacter sp. Tol 5. However, except for Acinetobacter species, only one bacterium has been successfully immobilized using AtaA. This is probably because the heterologous expression of large AtaA (1 MDa), that is a homotrimer of polypeptide chains composed of 3,630 amino acids, is difficult. In this study, we identified the adhesive domain of AtaA and constructed a miniaturized AtaA (mini-AtaA) to improve the heterologous expression of ataA. In-frame deletion mutants were used to perform functional mapping, revealing that the N-terminal head domain is essential for the adhesive feature of AtaA. The mini-AtaA, which contains a homotrimer of polypeptide chains from 775 amino acids and lacks the unnecessary part for its adhesion, was properly expressed in E. coli, and a larger amount of molecules was displayed on the cell surface than that of full-length AtaA (FL-AtaA). The immobilization ratio of E. coli cells expressing mini-AtaA on a polyurethane foam support was significantly higher compared to the cells with or without FL-AtaA expression, respectively. The expression of mini-AtaA in E. coli had little effect on the cell growth and the activity of another enzyme reflecting the production level, and the immobilized E. coli cells could be used for repetitive enzymatic reactions as a whole-cell catalyst.
Collapse
Affiliation(s)
- Shogo Yoshimoto
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Sota Aoki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Yuki Ohara
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Masahito Ishikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Atsuo Suzuki
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan
| | - Dirk Linke
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Andrei N. Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Katsutoshi Hori
- Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University, Nagoya, Japan,*Correspondence: Katsutoshi Hori,
| |
Collapse
|
8
|
Cloning, protein expression and biochemical characterization of Carica papaya esterase. ELECTRON J BIOTECHN 2022. [DOI: 10.1016/j.ejbt.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
9
|
Protein engineering to improve the stability of Thermomyces lanuginosus lipase in methanol. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Expanding Access to Optically Active Non-Steroidal Anti-Inflammatory Drugs via Lipase-Catalyzed KR of Racemic Acids Using Trialkyl Orthoesters as Irreversible Alkoxy Group Donors. Catalysts 2022. [DOI: 10.3390/catal12050546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Studies into the enzymatic kinetic resolution (EKR) of 2-arylpropanoic acids (‘profens’), as the active pharmaceutical ingredients (APIs) of blockbuster non-steroidal anti-inflammatory drugs (NSAIDs), by using various trialkyl orthoesters as irreversible alkoxy group donors in organic media, were performed. The enzymatic reactions of target substrates were optimized using several different immobilized preparations of lipase type B from the yeast Candida antarctica (CAL-B). The influence of crucial parameters, including the type of enzyme and alkoxy agent, as well as the nature of the organic co-solvent and time of the process on the conversion and enantioselectivity of the enzymatic kinetic resolution, is described. The optimal EKR procedure for the racemic profens consisted of a Novozym 435-STREM lipase preparation suspended in a mixture of 3 equiv of trimethyl or triethyl orthoacetate as alkoxy donor and toluene or n-hexane as co-solvent, depending on the employed racemic NSAIDs. The reported biocatalytic system provided optically active products with moderate-to-good enantioselectivity upon esterification lasting for 7–48 h, with most promising results in terms of enantiomeric purity of the pharmacologically active enantiomers of title APIs obtained on the analytical scale for: (S)-flurbiprofen (97% ee), (S)-ibuprofen (91% ee), (S)-ketoprofen (69% ee), and (S)-naproxen (63% ee), respectively. In turn, the employment of optimal conditions on a preparative-scale enabled us to obtain the (S)-enantiomers of: flurbiprofen in 28% yield and 97% ee, ibuprofen in 45% yield and 56% ee, (S)-ketoprofen in 23% yield and 69% ee, and naproxen in 42% yield and 57% ee, respectively. The devised method turned out to be inefficient toward racemic etodolac regardless of the lipase and alkoxy group donor used, proving that it is unsuitable for carboxylic acids possessing tertiary chiral centers.
Collapse
|
11
|
Everton SS, Sousa I, da Silva Dutra L, Cipolatti EP, Aguieiras ECG, Manoel EA, Greco-Duarte J, Pinto MCC, Freire DMG, Pinto JC. The role of Brazil in the advancement of enzymatic biodiesel production. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00229-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Mangiagalli M, Ami D, de Divitiis M, Brocca S, Catelani T, Natalello A, Lotti M. Short-chain alcohols inactivate an immobilized industrial lipase through two different mechanisms. Biotechnol J 2022; 17:e2100712. [PMID: 35188703 DOI: 10.1002/biot.202100712] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/26/2022] [Accepted: 02/18/2022] [Indexed: 11/07/2022]
Abstract
Broadly used in biocatalysis as acyl acceptors or (co)-solvents, short-chain alcohols often cause irreversible loss of enzyme activity. Understanding the mechanisms of inactivation is a necessary step toward the optimization of biocatalytic reactions and the design of enzyme-based sustainable processes. In this work, we explored the functional and structural response of an immobilized enzyme, Novozym 435, exposed to methanol, ethanol, and tert-butanol. N-435 consists of Candida antarctica lipase B (CALB) adsorbed on polymethacrylate beads and finds application in a variety of processes involving the presence of short-chain alcohols. The nature of the N-435 material required the development of an ad hoc method of structural analysis, based on Fourier transform infrared microspectroscopy, which was complemented by catalytic activity assays and by morphological observation by transmission electron microscopy. We found that the inactivation of N-435 is highly dependent on alcohol concentration and occurs through two different mechanisms. Short-chain alcohols induce conformational changes leading to CALB aggregation, which is only partially prevented by immobilization. Moreover, alcohol modifies the texture of the solid support promoting the enzyme release. Overall, knowledge of the molecular mechanisms underlying Novozym 435 inactivation induced by short-chain alcohols promises to overcome the limitations that usually occur during industrial processes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marcella de Divitiis
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Tiziano Catelani
- Microscopy Facility, University of Milano-Bicocca, Milan, 20126, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
13
|
Strategies for the Immobilization of Eversa® Transform 2.0 Lipase and Application for Phospholipid Synthesis. Catalysts 2021. [DOI: 10.3390/catal11101236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Eversa® Transform 2.0 lipase (ET2) is a recent lipase formulation derived from the Thermomyces lanuginosus lipase cultivated on Aspergillus oryzae and specially designed for biodiesel production. Since it has not been available for a long time, research on the efficiency of this enzyme in other applications remains unexplored. Moreover, even though it has been launched as a free enzyme, its immobilization may extend the scope of ET2 applications. This work explored ET2 immobilization on octadecyl methacrylate beads (IB-ADS-3) and proved the efficiency of the derivatives for esterification of glycerophosphocholine (GPC) with oleic acid in anhydrous systems. ET2 immobilized via interfacial activation on commercial hydrophobic support Immobead IB-ADS-3 showed maximum enzyme loading of 160 mg/g (enzyme/support) and great stability for GPC esterification under 30% butanone and solvent-free systems. For reusability, yields above 63% were achieved after six reaction cycles for GPC esterification. Considering the very high enzyme loading and the number of reuses achieved, these results suggest a potential application of this immobilized biocatalyst for esterification reactions in anhydrous media. This study is expected to encourage the exploration of other approaches for this enzyme, thereby opening up several new possibilities.
Collapse
|
14
|
Carvalho HF, Ferrario V, Pleiss J. Molecular Mechanism of Methanol Inhibition in CALB-Catalyzed Alcoholysis: Analyzing Molecular Dynamics Simulations by a Markov State Model. J Chem Theory Comput 2021; 17:6570-6582. [PMID: 34494846 DOI: 10.1021/acs.jctc.1c00559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lipases are widely used enzymes that catalyze hydrolysis and alcoholysis of fatty acid esters. At high concentrations of small alcohols such as methanol or ethanol, many lipases are inhibited by the substrate. The molecular basis of the inhibition of Candida antarctica lipase B (CALB) by methanol was investigated by unbiased molecular dynamics (MD) simulations, and the substrate binding kinetics was analyzed by Markov state models (MSMs). The modeled fluxes of productive methanol binding at concentrations between 50 mM and 5.5 M were in good agreement with the experimental activity profile of CALB, with a peak at 300 mM. The kinetic and structural analysis uncovered the molecular basis of CALB inhibition. Beyond 300 mM, the kinetic bottleneck results from crowding of methanol in the substrate access channel, which is caused by the gradual formation of methanol patches close to Leu140 (helix α5), Leu278, and Ile285 (helix α10) at a distance of 4-5 Å from the active site. Our findings demonstrate the usefulness of unbiased MD simulations to study enzyme-substrate interactions at realistic substrate concentrations and the feasibility of scale-bridging by an MSM analysis to derive kinetic information.
Collapse
Affiliation(s)
- Henrique F Carvalho
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Valerio Ferrario
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|
15
|
Statistical Optimization of Biodiesel Production from Salmon Oil via Enzymatic Transesterification: Investigation of the Effects of Various Operational Parameters. Processes (Basel) 2021. [DOI: 10.3390/pr9040700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The enzymatic transesterification of Atlantic salmon (Salmo salar) oil was carried out using Novozym 435 (immobilized lipase from Candida antartica) to produce biodiesel. A response surface modelling design was performed to investigate the relationship between biodiesel yield and several critical factors, including enzyme concentration (5, 10, or 15%), temperature (40, 45, or 50 °C), oil/alcohol molar ratio (1:3, 1:4, or 1:5) and time (8, 16, or 24 h). The results indicated that the effects of all the factors were statistically significant at p-values of 0.000 for biodiesel production. The optimum parameters for biodiesel production were determined as 10% enzyme concentration, 45 °C, 16 h, and 1:4 oil/alcohol molar ratio, leading to a biodiesel yield of 87.23%. The step-wise addition of methanol during the enzymatic transesterification further increased the biodiesel yield to 94.5%. This is the first study that focused on Atlantic salmon oil-derived biodiesel production, which creates a paradigm for valorization of Atlantic salmon by-products that would also reduce the consumption and demand of plant oils derived from crops and vegetables.
Collapse
|
16
|
Immobilization of Eversa ® Transform via CLEA Technology Converts It in a Suitable Biocatalyst for Biolubricant Production Using Waste Cooking Oil. Molecules 2021; 26:molecules26010193. [PMID: 33401727 PMCID: PMC7794791 DOI: 10.3390/molecules26010193] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 12/27/2022] Open
Abstract
The performance of the previously optimized magnetic cross-linked enzyme aggregate of Eversa (Eversa-mCLEA) in the enzymatic synthesis of biolubricants by transesterification of waste cooking oil (WCO) with different alcohols has been evaluated. Eversa-mCLEA showed good activities using these alcohols, reaching a transesterification activity with isoamyl alcohol around 10-fold higher than with methanol. Yields of isoamyl fatty acid ester synthesis were similar using WCO or refined oil, confirming that this biocatalyst could be utilized to transform this residue into a valuable product. The effects of WCO/isoamyl alcohol molar ratio and enzyme load on the synthesis of biolubricant were also investigated. A maximum yield of around 90 wt.% was reached after 72 h of reaction using an enzyme load of 12 esterification units/g oil and a WCO/alcohol molar ratio of 1:6 in a solvent-free system. At the same conditions, the liquid Eversa yielded a maximum ester yield of only 34%. This study demonstrated the great changes in the enzyme properties that can be derived from a proper immobilization system. Moreover, it also shows the potential of WCO as a feedstock for the production of isoamyl fatty acid esters, which are potential candidates as biolubricants.
Collapse
|
17
|
Martani F, Maestroni L, Torchio M, Ami D, Natalello A, Lotti M, Porro D, Branduardi P. Conversion of sugar beet residues into lipids by Lipomyces starkeyi for biodiesel production. Microb Cell Fact 2020; 19:204. [PMID: 33167962 PMCID: PMC7653891 DOI: 10.1186/s12934-020-01467-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lipids from oleaginous yeasts emerged as a sustainable alternative to vegetable oils and animal fat to produce biodiesel, the biodegradable and environmentally friendly counterpart of petro-diesel fuel. To develop economically viable microbial processes, the use of residual feedstocks as growth and production substrates is required. RESULTS In this work we investigated sugar beet pulp (SBP) and molasses, the main residues of sugar beet processing, as sustainable substrates for the growth and lipid accumulation by the oleaginous yeast Lipomyces starkeyi. We observed that in hydrolysed SBP the yeast cultures reached a limited biomass, cellular lipid content, lipid production and yield (2.5 g/L, 19.2%, 0.5 g/L and 0.08 g/g, respectively). To increase the initial sugar availability, cells were grown in SBP blended with molasses. Under batch cultivation, the cellular lipid content was more than doubled (47.2%) in the presence of 6% molasses. Under pulsed-feeding cultivation, final biomass, cellular lipid content, lipid production and lipid yield were further improved, reaching respectively 20.5 g/L, 49.2%, 9.7 g/L and 0.178 g/g. Finally, we observed that SBP can be used instead of ammonium sulphate to fulfil yeasts nitrogen requirement in molasses-based media for microbial oil production. CONCLUSIONS This study demonstrates for the first time that SBP and molasses can be blended to create a feedstock for the sustainable production of lipids by L. starkeyi. The data obtained pave the way to further improve lipid production by designing a fed-batch process in bioreactor.
Collapse
Affiliation(s)
- Francesca Martani
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Letizia Maestroni
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Mattia Torchio
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Diletta Ami
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Antonino Natalello
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Marina Lotti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Danilo Porro
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, 20126, Milan, Italy.
| |
Collapse
|
18
|
Patinios C, Lanza L, Corino I, Franssen MCR, Van der Oost J, Weusthuis RA, Kengen SWM. Eat1-Like Alcohol Acyl Transferases From Yeasts Have High Alcoholysis and Thiolysis Activity. Front Microbiol 2020; 11:579844. [PMID: 33193208 PMCID: PMC7658179 DOI: 10.3389/fmicb.2020.579844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/09/2020] [Indexed: 11/13/2022] Open
Abstract
Esters are important flavor and fragrance compounds that are present in many food and beverage products. Many of these esters are produced by yeasts and bacteria during fermentation. While ester production in yeasts through the alcohol acyl transferase reaction has been thoroughly investigated, ester production through alcoholysis has been completely neglected. Here, we further analyze the catalytic capacity of the yeast Eat1 enzyme and demonstrate that it also has alcoholysis and thiolysis activities. Eat1 can perform alcoholysis in an aqueous environment in vitro, accepting a wide range of alcohols (C2-C10) but only a small range of acyl donors (C2-C4). We show that alcoholysis occurs in vivo in several Crabtree negative yeast species but also in engineered Saccharomyces cerevisiae strains that overexpress Eat1 homologs. The alcoholysis activity of Eat1 was also used to upgrade ethyl esters to butyl esters in vivo by overexpressing Eat1 in Clostridium beijerinckii. Approximately 17 mM of butyl acetate and 0.3 mM of butyl butyrate could be produced following our approach. Remarkably, the in vitro alcoholysis activity is 445 times higher than the previously described alcohol acyl transferase activity. Thus, alcoholysis is likely to affect the ester generation, both quantitatively and qualitatively, in food and beverage production processes. Moreover, mastering the alcoholysis activity of Eat1 may give rise to the production of novel food and beverage products.
Collapse
Affiliation(s)
- Constantinos Patinios
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
- Laboratory of Bioprocess Engineering, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Lucrezia Lanza
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Inge Corino
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Maurice C. R. Franssen
- Laboratory of Organic Chemistry, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - John Van der Oost
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Ruud A. Weusthuis
- Laboratory of Bioprocess Engineering, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Servé W. M. Kengen
- Laboratory of Microbiology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
19
|
Zhang Y, Di X, Wang W, Song M, Yu Q, Wang Z, Yuan Z, Chen X, Xu H, Guo Y. Kinetic study of lipase-catalyzed esterification of furoic acid to methyl-2-furoate. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Composites of Crosslinked Aggregates of Eversa® Transform and Magnetic Nanoparticles. Performance in the Ethanolysis of Soybean Oil. Catalysts 2020. [DOI: 10.3390/catal10080817] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Eversa® Transform 2.0 has been launched to be used in free form, but its immobilization may improve its performance. This work aimed to optimize the immobilization of Eversa® Transform 2.0 by the crosslinked enzyme aggregates (CLEAs) technique, using almost all the available tools to improve its performance. Several variables in the CLEA preparation were optimized to improve the recovered activity, such as precipitant nature and crosslinker concentration. Moreover, some feeders were co-precipitated to improve the crosslinking step, such as bovine serum albumin, soy protein, or polyethyleneimine. Starch (later enzymatically degraded) was utilized as a porogenic agent to decrease the substrate diffusion limitations. Silica magnetic nanoparticles were also utilized to simplify the CLEA handling, but it was found that a large percentage of the Eversa activity could be immobilized on these nanoparticles before aggregation. The best CLEA protocol gave a 98.9% immobilization yield and 30.1% recovered activity, exhibited a porous structure, and an excellent performance in the transesterification of soybean oil with ethanol: 89.8 wt% of fatty acid ethyl esters (FAEEs) yield after 12 h of reaction, while the free enzyme required a 48 h reaction to give the same yield. A caustic polishing step of the product yielded a biodiesel containing 98.9 wt% of FAEEs and a free fatty acids content lower than 0.25%, thus the final product met the international standards for biodiesel. The immobilized biocatalyst could be reused for at least five 12 h-batches maintaining 89.6% of the first-batch yield, showing the efficient catalyst recovery by applying an external magnetic field.
Collapse
|
21
|
Mangiagalli M, Carvalho H, Natalello A, Ferrario V, Pennati ML, Barbiroli A, Lotti M, Pleiss J, Brocca S. Diverse effects of aqueous polar co-solvents on Candida antarctica lipase B. Int J Biol Macromol 2020; 150:930-940. [DOI: 10.1016/j.ijbiomac.2020.02.145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/04/2023]
|
22
|
Nady D, Zaki A, Raslan M, Hozayen W. Enhancement of microbial lipase activity via immobilization over sodium titanate nanotubes for fatty acid methyl esters production. Int J Biol Macromol 2020; 146:1169-1179. [DOI: 10.1016/j.ijbiomac.2019.09.240] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 11/24/2022]
|
23
|
Arif M, Bai Y, Usman M, Jalalah M, Harraz FA, Al-Assiri MS, Li X, Salama ES, Zhang C. Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: Role of lipidomics. BIORESOURCE TECHNOLOGY 2020; 298:122299. [PMID: 31706891 DOI: 10.1016/j.biortech.2019.122299] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Microalgal lipids consist of non-polar and polar lipids. Triacyleglyceride (TAG), a non-polar lipid, is convertible to biodiesel, whereas glycolipids and phospholipids are polar and not convertible to biodiesel owing to their high degree of unsaturation (polyunsaturated fatty acids), which makes the production process insufficient and expensive. In this review, microalgal species that contain the highest lipid content (≥40%) in the literature till 2019 are highlighted. The differentiation between non-polar and polar lipids and the limitations in the conversion of polar lipids to biodiesel are reported. The basic and advanced factors contributing to the accumulation of lipids convertible to biodiesel is discussed. Microalgal species including Scenedesmus obliquus, Ourococcus multisporus, Chlamydomonas pitschmannii, Micractinium reisseri, and Botryococcus braunii with high lipid content are potential candidates for biomass/biodiesel production and nutrient removal from wastewater. Application of lipidomics and transcriptomics to manipulate the lipid associated gene acetyl-CoA synthetase in microalgae improves the accumulative lipid content.
Collapse
Affiliation(s)
- Muhammad Arif
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Yanrui Bai
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Muhammad Usman
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China; Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Mohammed Jalalah
- Promising Center for Sensors and Electronic Devices (PCSED) Najran University, Najran 11001, Saudi Arabia
| | - Farid A Harraz
- Promising Center for Sensors and Electronic Devices (PCSED) Najran University, Najran 11001, Saudi Arabia; Nanomaterials and Nanotechnology Department, Central Metallurgical Research and Development Institute (CMRDI), P.O. 87 Helwan, Cairo 11421, Egypt
| | - M S Al-Assiri
- Promising Center for Sensors and Electronic Devices (PCSED) Najran University, Najran 11001, Saudi Arabia
| | - Xiangkai Li
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu, PR China
| | - Chunjiang Zhang
- School of Life Sciences, Lanzhou University, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
24
|
Gihaz S, Bash Y, Rush I, Shahar A, Pazy Y, Fishman A. Bridges to Stability: Engineering Disulfide Bonds Towards Enhanced Lipase Biodiesel Synthesis. ChemCatChem 2019. [DOI: 10.1002/cctc.201901369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shalev Gihaz
- Department of Biotechnology and Food EngineeringTechnion-Israel Institute of Technology Haifa 3200003 Israel
| | - Yael Bash
- Department of Biotechnology and Food EngineeringTechnion-Israel Institute of Technology Haifa 3200003 Israel
| | - Inbal Rush
- Department of Biotechnology and Food EngineeringTechnion-Israel Institute of Technology Haifa 3200003 Israel
| | - Anat Shahar
- National Institute for Biotechnology in the Negev (NIBN) Beer-Sheva 84105 Israel
| | - Yael Pazy
- Technion Center for Structural Biology Lorry I. Lokey Center for Life Sciences and EngineeringTechnion-Israel Institute of Technology Haifa 3200003 Israel
| | - Ayelet Fishman
- Department of Biotechnology and Food EngineeringTechnion-Israel Institute of Technology Haifa 3200003 Israel
| |
Collapse
|
25
|
Bauer TL, Buchholz PCF, Pleiss J. The modular structure of α/β-hydrolases. FEBS J 2019; 287:1035-1053. [PMID: 31545554 DOI: 10.1111/febs.15071] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 09/19/2019] [Indexed: 12/22/2022]
Abstract
The α/β-hydrolase fold family is highly diverse in sequence, structure and biochemical function. To investigate the sequence-structure-function relationships, the Lipase Engineering Database (https://led.biocatnet.de) was updated. Overall, 280 638 protein sequences and 1557 protein structures were analysed. All α/β-hydrolases consist of the catalytically active core domain, but they might also contain additional structural modules, resulting in 12 different architectures: core domain only, additional lids at three different positions, three different caps, additional N- or C-terminal domains and combinations of N- and C-terminal domains with caps and lids respectively. In addition, the α/β-hydrolases were distinguished by their oxyanion hole signature (GX-, GGGX- and Y-types). The N-terminal domains show two different folds, the Rossmann fold or the β-propeller fold. The C-terminal domains show a β-sandwich fold. The N-terminal β-propeller domain and the C-terminal β-sandwich domain are structurally similar to carbohydrate-binding proteins such as lectins. The classification was applied to the newly discovered polyethylene terephthalate (PET)-degrading PETases and MHETases, which are core domain α/β-hydrolases of the GX- and the GGGX-type respectively. To investigate evolutionary relationships, sequence networks were analysed. The degree distribution followed a power law with a scaling exponent γ = 1.4, indicating a highly inhomogeneous network which consists of a few hubs and a large number of less connected sequences. The hub sequences have many functional neighbours and therefore are expected to be robust toward possible deleterious effects of mutations. The cluster size distribution followed a power law with an extrapolated scaling exponent τ = 2.6, which strongly supports the connectedness of the sequence space of α/β-hydrolases. DATABASE: Supporting data about domains from other proteins with structural similarity to the N- or C-terminal domains of α/β-hydrolases are available in Data Repository of the University of Stuttgart (DaRUS) under doi: https://doi.org/10.18419/darus-458.
Collapse
Affiliation(s)
- Tabea L Bauer
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Patrick C F Buchholz
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| | - Jürgen Pleiss
- Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Germany
| |
Collapse
|
26
|
Chen CC, Gao GJ, Kao AL, Tsai CT, Tsai ZC. Two novel lipases purified from rice bran displaying lipolytic and esterification activities. Int J Biol Macromol 2019; 139:298-306. [DOI: 10.1016/j.ijbiomac.2019.08.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/02/2019] [Indexed: 12/01/2022]
|
27
|
Luo J, Ma L, Svec F, Tan T, Lv Y. Reversible Two‐Enzyme Coimmobilization on pH‐Responsive Imprinted Monolith for Glucose Detection. Biotechnol J 2019; 14:e1900028. [DOI: 10.1002/biot.201900028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/08/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Jingyi Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Liang Ma
- Clinical LaboratoryChina–Japan Friendship Hospital Beijing 100029 China
| | - Frantisek Svec
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Tianwei Tan
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| | - Yongqin Lv
- Beijing Key Laboratory of Bioprocess, College of Life Science and TechnologyBeijing University of Chemical Technology Beijing 100029 China
- Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
28
|
Li H, Pang Y, Wang X, Cao X, He X, Chen K, Li G, Ouyang P, Tan W. Phospholipase D encapsulated into metal-surfactant nanocapsules for enhancing biocatalysis in a two-phase system. RSC Adv 2019; 9:6548-6555. [PMID: 35518461 PMCID: PMC9060939 DOI: 10.1039/c8ra09827a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/11/2019] [Indexed: 12/14/2022] Open
Abstract
Methods for enhancing enzyme activities in two-phase systems are getting more attention. Phospholipase D (PLD) was successfully encapsulated into metal-surfactant nanocapsules (MSNCs) using a one-pot self-assembly technique in an aqueous solution. The highest yield for the production of high-value phosphatidylserine (PS) from low-value phosphatidylcholine (PC) in the two-phase system was achieved by encapsulating PLD into MSNCs formed from Ca2+ which gave an enzyme activity that was 133.6% of that of free PLD. The PLD@MSNC transformed the two-phase system into an emulsion phase system and improved the organic solvent tolerance, pH and thermal stabilities as well as the storage stability and reusability of the enzyme. Under optimal conditions, PLD@MSNC generated 91.9% PS over 8 h in the two-phase system, while free PLD generated only 77.5%. PLD@MSNC transforms a two-phase system into an emulsion phase, and enhances transphosphatidylation.![]()
Collapse
Affiliation(s)
- Hui Li
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Yang Pang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Xin Wang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Xun Cao
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Xun He
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kequan Chen
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Ganlu Li
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Pingkai Ouyang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 210000
- China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Weiming Tan
- National Engineering Research Center for Coatings
- CNOOC Changzhou Paint and Coatings Industry Research Institute Co., Ltd
- Changzhou 213016
- P. R. China
| |
Collapse
|
29
|
Lipolytic bacterial strains mediated transesterification of non-edible plant oils for generation of high quality biodiesel. J Biosci Bioeng 2018; 127:609-617. [PMID: 30579829 DOI: 10.1016/j.jbiosc.2018.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 10/20/2018] [Accepted: 11/02/2018] [Indexed: 12/20/2022]
Abstract
Biodiesel is one of the best alternative to depleting fossil fuels for transport sector. However, biodiesel production via lipase mediated transesterification has limitation of high costing microbial enzymes. In order to overcome this limitation, a process of sequential treatment of oil industry wastewater using isolated lipolytic bacterial strains and biodiesel production from non-edible plant oils was studied. In this study, efficient lipase producing bacteria were isolated and evaluated for production of biodiesel from mustard, soybean, jatropha and taramira oils utilizing methanol for the transesterification of oils and bioremediation. Selected strains were then identified, using 16s rRNA sequencing. Further, Bacillus subtilis strain Q1 KX712301 was optimized for biodiesel production from non-edible taramira oil via Plackett-Burman and central composite design. Highest volumetric yield of biodiesel obtained was 102% at optimized parameters. Finally, a sequential bioremediation of vegetable oil contaminated wastewater and then microbial production of biodiesel from non-edible taramira oil was carried out using efficient lipase producer B. subtilis strain Q1 at optimized conditions. During sequential process, complete chemical oxigen demand reduction of oil containing wastewater and theoretical volumetric yield of biodiesel was achieved. Gas chromatography/mass spectrometry chromatogram revealed that the total fatty acid methyl ester content of the produced biodiesel was >98% which is in accordance with the biodiesel quality standards specified by both ASTM and EU-14103.
Collapse
|
30
|
Filling the Void: Introducing Aromatic Interactions into Solvent Tunnels To Enhance Lipase Stability in Methanol. Appl Environ Microbiol 2018; 84:AEM.02143-18. [PMID: 30217852 DOI: 10.1128/aem.02143-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022] Open
Abstract
An enhanced stability of enzymes in organic solvents is desirable under industrial conditions. The potential of lipases as biocatalysts is mainly limited by their denaturation in polar alcohols. In this study, we focused on selected solvent tunnels in lipase from Geobacillus stearothermophilus T6 to improve its stability in methanol during biodiesel synthesis. Using rational mutagenesis, bulky aromatic residues were incorporated to occupy solvent channels and induce aromatic interactions leading to a better inner core packing. The chemical and structural characteristics of each solvent tunnel were systematically analyzed. Selected residues were replaced with Phe, Tyr, or Trp. Overall, 16 mutants were generated and screened in 60% methanol, from which 3 variants showed an enhanced stability up to 81-fold compared with that of the wild type. All stabilizing mutations were found in the longest tunnel detected in the "closed-lid" X-ray structure. The combination of Phe substitutions in an A187F/L360F double mutant resulted in an increase in unfolding temperature (Tm ) of 7°C in methanol and a 3-fold increase in biodiesel synthesis yield from waste chicken oil. A kinetic analysis with p-nitrophenyl laurate revealed that all mutants displayed lower hydrolysis rates (k cat), though their stability properties mostly determined the transesterification capability. Seven crystal structures of different variants were solved, disclosing new π-π or CH/π intramolecular interactions and emphasizing the significance of aromatic interactions for improved solvent stability. This rational approach could be implemented for the stabilization of other enzymes in organic solvents.IMPORTANCE Enzymatic synthesis in organic solvents holds increasing industrial opportunities in many fields; however, one major obstacle is the limited stability of biocatalysts in such a denaturing environment. Aromatic interactions play a major role in protein folding and stability, and we were inspired by this to redesign enzyme voids. The rational protein engineering of solvent tunnels of lipase from Geobacillus stearothermophilus is presented here, offering a promising approach to introduce new aromatic interactions within the enzyme core. We discovered that longer tunnels leading from the surface to the enzyme active site were more beneficial targets for mutagenesis for improving lipase stability in methanol during biodiesel biosynthesis. A structural analysis of the variants confirmed the generation of new interactions involving aromatic residues. This work provides insights into stability-driven enzyme design by targeting the solvent channel void.
Collapse
|
31
|
Influence of Dlutaraldehyde Cross-Linking Modes on the Recyclability of Immobilized Lipase B from Candida antarctica for Transesterification of Soy Bean Oil. Molecules 2018; 23:molecules23092230. [PMID: 30200521 PMCID: PMC6225267 DOI: 10.3390/molecules23092230] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 11/16/2022] Open
Abstract
Lipase B from Candida antarctica (CAL-B) is largely employed as a biocatalyst for hydrolysis, esterification, and transesterification reactions. CAL-B is a good model enzyme to study factors affecting the enzymatic structure, activity and/or stability after an immobilization process. In this study, we analyzed the immobilization of CAL-B enzyme on different magnetic nanoparticles, synthesized by the coprecipitation method inside inverse micelles made of zwitterionic surfactants, with distinct carbon chain length: 4 (ImS4), 10 (ImS10) and 18 (ImS18) carbons. Magnetic nanoparticles ImS4 and ImS10 were shown to cross-link to CAL-B enzyme via a Michael-type addition, whereas particles with ImS18 were bond via pyridine formation after glutaraldehyde cross-coupling. Interestingly, the Michael-type cross-linking generated less stable immobilized CAL-B, revealing the influence of a cross-linking mode on the resulting biocatalyst behavior. Curiously, a direct correlation between nanoparticle agglomerate sizes and CAL-B enzyme reuse stability was observed. Moreover, free CAL-B enzyme was not able to catalyze transesterification due to the high methanol concentration; however, the immobilized CAL-B enzyme reached yields from 79.7 to 90% at the same conditions. In addition, the transesterification of lipids isolated from oleaginous yeasts achieved 89% yield, which confirmed the potential of immobilized CAL-B enzyme in microbial production of biodiesel.
Collapse
|
32
|
Antonio DC, Amancio LP, Rosset IG. Biocatalytic Ethanolysis of Waste Chicken Fat for Biodiesel Production. Catal Letters 2018. [DOI: 10.1007/s10562-018-2529-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|