1
|
Gurazada SGR, Kennedy HM, Braatz RD, Mehrman SJ, Polson SW, Rombel IT. HEK-omics: The promise of omics to optimize HEK293 for recombinant adeno-associated virus (rAAV) gene therapy manufacturing. Biotechnol Adv 2025; 79:108506. [PMID: 39708987 DOI: 10.1016/j.biotechadv.2024.108506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Gene therapy is poised to transition from niche to mainstream medicine, with recombinant adeno-associated virus (rAAV) as the vector of choice. However, robust, scalable, industrialized production is required to meet demand and provide affordable patient access, which has not yet materialized. Closing the chasm between demand and supply requires innovation in biomanufacturing to achieve the essential step change in rAAV product yield and quality. Omics provides a rich source of mechanistic knowledge that can be applied to HEK293, the most commonly used cell line for rAAV production. In this review, the findings from a growing number of diverse studies that apply genomics, epigenomics, transcriptomics, proteomics, and metabolomics to HEK293 bioproduction are explored. Learnings from CHO-omics, application of omics approaches to improve CHO bioproduction, provide a framework to explore the potential of "HEK-omics" as a multi-omics-informed approach providing actionable mechanistic insights for improved transient and stable production of rAAV and other recombinant products in HEK293.
Collapse
Affiliation(s)
- Sai Guna Ranjan Gurazada
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States
| | | | - Richard D Braatz
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Steven J Mehrman
- Johnson & Johnson, J&J Innovative Medicine, Spring House, PA, United States
| | - Shawn W Polson
- Center for Bioinformatics and Computational Biology, Department of Computer and Information Sciences, University of Delaware, Newark, DE, United States.
| | | |
Collapse
|
2
|
Sheeter DA, Garza S, Park HG, Benhamou LRE, Badi NR, Espinosa EC, Kothapalli KSD, Brenna JT, Powers JT. Unsaturated Fatty Acid Synthesis Is Associated with Worse Survival and Is Differentially Regulated by MYCN and Tumor Suppressor microRNAs in Neuroblastoma. Cancers (Basel) 2024; 16:1590. [PMID: 38672672 PMCID: PMC11048984 DOI: 10.3390/cancers16081590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/13/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
MYCN amplification (MNA) and disruption of tumor suppressor microRNA (TSmiR) function are key drivers of poor outcomes in neuroblastoma (NB). While MYCN and TSmiRs regulate glucose metabolism, their role in de novo fatty acid synthesis (FAS) and unsaturated FAS (UFAS) remains poorly understood. Here, we show that FAS and UFAS (U/FAS) genes FASN, ELOVL6, SCD, FADS2, and FADS1 are upregulated in high-risk (HR) NB and that their expression is associated with lower overall survival. RNA-Seq analysis of human NB cell lines revealed parallel U/FAS gene expression patterns. Consistent with this, we found that NB-related TSmiRs were predicted to target these genes extensively. We further observed that both MYC and MYCN upregulated U/FAS pathway genes while suppressing TSmiR host gene expression, suggesting a possible U/FAS regulatory network between MYCN and TSmiRs in NB. NB cells are high in de novo synthesized omega 9 (ω9) unsaturated fatty acids and low in both ω6 and ω3, suggesting a means for NB to limit cell-autonomous immune stimulation and reactive oxygen species (ROS)-driven apoptosis from ω6 and ω3 unsaturated fatty acid derivatives, respectively. We propose a model in which MYCN and TSmiRs regulate U/FAS and play an important role in NB pathology, with implications for other MYC family-driven cancers.
Collapse
Affiliation(s)
- Dennis A. Sheeter
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Secilia Garza
- Department of Chemistry, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA;
| | - Hui Gyu Park
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Lorraine-Rana E. Benhamou
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Niharika R. Badi
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Erika C. Espinosa
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
| | - Kumar S. D. Kothapalli
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - J. Thomas Brenna
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
- Department of Chemistry, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, TX 78723, USA;
- Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA;
| | - John T. Powers
- Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School at The University of Texas at Austin, Austin, TX 78723, USA; (D.A.S.); (H.G.P.); (L.-R.E.B.); (N.R.B.); (E.C.E.)
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
3
|
Recent developments in miRNA based recombinant protein expression in CHO. Biotechnol Lett 2022; 44:671-681. [PMID: 35507207 DOI: 10.1007/s10529-022-03250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/30/2022] [Indexed: 11/02/2022]
Abstract
It is widely accepted that the growing demand for recombinant therapeutic proteins has led to the expansion of the biopharmaceutical industry and the development of strategies to increase recombinant protein production in mammalian cell lines such as SP2/0 HEK and particularly Chinese hamster ovary cells. For a long time now, most investigations have been focused on increasing host cell productivity using genetic manipulating of cellular processes like cell cycle, apoptosis, cell growth, protein secretory and other pathways. In recent decades MicroRNAs beside different genetic engineering tools (e.g., TALEN, ZFN, and Crisper/Cas) have attracted further attention as a tool in the genetic engineering of host cells to increase protein expression levels. Their ability to simultaneously target multiple mRNAs involved in one or more cellular processes made them a favorable tool in this field. Accordingly, this study aimed to review the methods of selecting target miRNA for cell line engineering, miRNA gain- or loss-of-function strategies, examples of laboratory and pilot studies in this field and discussed advantages and disadvantages of this technology.
Collapse
|
4
|
Abaandou L, Quan D, Shiloach J. Affecting HEK293 Cell Growth and Production Performance by Modifying the Expression of Specific Genes. Cells 2021; 10:cells10071667. [PMID: 34359846 PMCID: PMC8304725 DOI: 10.3390/cells10071667] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/24/2021] [Accepted: 06/28/2021] [Indexed: 12/22/2022] Open
Abstract
The HEK293 cell line has earned its place as a producer of biotherapeutics. In addition to its ease of growth in serum-free suspension culture and its amenability to transfection, this cell line’s most important attribute is its human origin, which makes it suitable to produce biologics intended for human use. At the present time, the growth and production properties of the HEK293 cell line are inferior to those of non-human cell lines, such as the Chinese hamster ovary (CHO) and the murine myeloma NSO cell lines. However, the modification of genes involved in cellular processes, such as cell proliferation, apoptosis, metabolism, glycosylation, secretion, and protein folding, in addition to bioprocess, media, and vector optimization, have greatly improved the performance of this cell line. This review provides a comprehensive summary of important achievements in HEK293 cell line engineering and on the global engineering approaches and functional genomic tools that have been employed to identify relevant genes for targeted engineering.
Collapse
Affiliation(s)
- Laura Abaandou
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
- Department of Chemistry and Biochemistry, College of Science, George Mason University, Fairfax, VA 22030, USA
| | - David Quan
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
| | - Joseph Shiloach
- Biotechnology Core Laboratory National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA; (L.A.); (D.Q.)
- Correspondence:
| |
Collapse
|
5
|
Pulix M, Lukashchuk V, Smith DC, Dickson AJ. Molecular characterization of HEK293 cells as emerging versatile cell factories. Curr Opin Biotechnol 2021; 71:18-24. [PMID: 34058525 DOI: 10.1016/j.copbio.2021.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 01/27/2023]
Abstract
HEK293 cell lines are used for the production of recombinant proteins, virus-like particles and viral vectors. Recent work has generated molecular (systems level) characterisation of HEK293 variants that has enabled re-engineering of the cells towards enhanced use for manufacture-scale production of recombinant biopharmaceuticals (assessment of 'safe harbours' for gene insertion, engineering of new variants for stable, amplifiable expression). In parallel, there have been notable advances in the bioprocessing conditions (suspension adaptation, development of defined serum-free media) that offer the potential for large-scale manufacture, a feature especially important in the drive to produce viral vectors at large-scale and at commercially viable costs for gene therapy. The combination of cell-based and bioprocess-based modification of existing HEK293 cell processes, frequently informed by understandings transferred from developments with Chinese hamster ovary cell lines, seems destined to place the HEK293 cell systems firmly as a critical platform for production of future biologically based therapeutics.
Collapse
Affiliation(s)
- Michela Pulix
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, Department of Chemical Engineering & Analytical Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK; Cobra Biologics, Stephenson Building, Keele Science Park, Keele ST5 5SP, UK
| | - Vera Lukashchuk
- Cobra Biologics, Stephenson Building, Keele Science Park, Keele ST5 5SP, UK
| | - Daniel C Smith
- Cobra Biologics, Stephenson Building, Keele Science Park, Keele ST5 5SP, UK
| | - Alan J Dickson
- Manchester Institute of Biotechnology, Faculty of Science and Engineering, Department of Chemical Engineering & Analytical Sciences, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
6
|
Abaandou L, Sharma AK, Shiloach J. Knockout of the caspase 8-associated protein 2 gene improves recombinant protein expression in HEK293 cells through up-regulation of the cyclin-dependent kinase inhibitor 2A gene. Biotechnol Bioeng 2020; 118:186-198. [PMID: 32910455 DOI: 10.1002/bit.27561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 07/29/2020] [Accepted: 09/03/2020] [Indexed: 12/21/2022]
Abstract
Cell lines used in bioproduction are routinely engineered to improve their production efficiency. Numerous strategies, such as random mutagenesis, RNA interference screens, and transcriptome analyses have been employed to identify effective engineering targets. A genome-wide small interfering RNA screen previously identified the CASP8AP2 gene as a potential engineering target for improved expression of recombinant protein in the HEK293 cell line. Here, we validate the CASP8AP2 gene as an engineering target in HEK293 cells by knocking it out using CRISPR/Cas9 genome editing and assessing the effect of its knockout on recombinant protein expression, cell growth, cell viability, and overall gene expression. HEK293 cells lacking CASP8AP2 showed a seven-fold increase in specific expression of recombinant luciferase and a 2.5-fold increase in specific expression of recombinant SEAP, without significantly affecting cell growth and viability. Transcriptome analysis revealed that the deregulation of the cell cycle, specifically the upregulation of the cyclin-dependent kinase inhibitor 2A (CDKN2A) gene, contributed to the improvement in recombinant protein expression in CASP8AP2 deficient cells. The results validate the CASP8AP2 gene is a viable engineering target for improved recombinant protein expression in the HEK293 cell line.
Collapse
Affiliation(s)
- Laura Abaandou
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA.,Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA, USA
| | - Ashish K Sharma
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Kahraman A, Karakulak T, Szklarczyk D, von Mering C. Pathogenic impact of transcript isoform switching in 1,209 cancer samples covering 27 cancer types using an isoform-specific interaction network. Sci Rep 2020; 10:14453. [PMID: 32879328 PMCID: PMC7468103 DOI: 10.1038/s41598-020-71221-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/17/2020] [Indexed: 01/01/2023] Open
Abstract
Under normal conditions, cells of almost all tissue types express the same predominant canonical transcript isoform at each gene locus. In cancer, however, splicing regulation is often disturbed, leading to cancer-specific switches in the most dominant transcripts (MDT). To address the pathogenic impact of these switches, we have analyzed isoform-specific protein-protein interaction disruptions in 1,209 cancer samples covering 27 different cancer types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project of the International Cancer Genomics Consortium (ICGC). Our study revealed large variations in the number of cancer-specific MDT (cMDT) with the highest frequency in cancers of female reproductive organs. Interestingly, in contrast to the mutational load, cancers arising from the same primary tissue had a similar number of cMDT. Some cMDT were found in 100% of all samples in a cancer type, making them candidates for diagnostic biomarkers. cMDT tend to be located at densely populated network regions where they disrupted protein interactions in the proximity of pathogenic cancer genes. A gene ontology enrichment analysis showed that these disruptions occurred mostly in protein translation and RNA splicing pathways. Interestingly, samples with mutations in the spliceosomal complex tend to have higher number of cMDT, while other transcript expressions correlated with mutations in non-coding splice-site and promoter regions of their genes. This work demonstrates for the first time the large extent of cancer-specific alterations in alternative splicing for 27 different cancer types. It highlights distinct and common patterns of cMDT and suggests novel pathogenic transcripts and markers that induce large network disruptions in cancers.
Collapse
Affiliation(s)
- Abdullah Kahraman
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Tülay Karakulak
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Department of Pathology and Molecular Pathology, University Hospital Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Damian Szklarczyk
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Christian von Mering
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
8
|
Inwood S, Abaandou L, Betenbaugh M, Shiloach J. Improved protein expression in HEK293 cells by over-expressing miR-22 and knocking-out its target gene, HIPK1. N Biotechnol 2019; 54:28-33. [PMID: 31425885 DOI: 10.1016/j.nbt.2019.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 07/01/2019] [Accepted: 08/15/2019] [Indexed: 02/08/2023]
Abstract
Stable cell lines can continuously produce a recombinant protein without the need to repeatedly engineer the genome. In a previous study HIPK1, Homeodomain-interacting Protein Kinase 1, was found to be a target of the microRNA miR-22 that, when repressed, improved expression of both an intracellular and a secreted protein. In this report, HEK293 cells stably over-expressing miR-22 were compared with HEK293 with knockout of HIPK1, executed by CRISPR/Cas9, for their ability to improve recombinant protein expression. In this model case of luciferase, over-expression of miR-22 improved overall activity 2.4-fold while the HIPK1 knockout improved overall activity 4.7-fold.
Collapse
Affiliation(s)
- Sarah Inwood
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland, 20892, USA; Department of Chemical and Biomolecular Engineering Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Laura Abaandou
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland, 20892, USA
| | - Michael Betenbaugh
- Department of Chemical and Biomolecular Engineering Johns Hopkins University, Baltimore, Maryland, 21218, USA
| | - Joseph Shiloach
- Biotechnology Core Laboratory NIDDK, NIH, Bethesda, Maryland, 20892, USA.
| |
Collapse
|
9
|
Abaandou L, Shiloach J. Knocking out Ornithine Decarboxylase Antizyme 1 ( OAZ1) Improves Recombinant Protein Expression in the HEK293 Cell Line. Med Sci (Basel) 2018; 6:medsci6020048. [PMID: 29890687 PMCID: PMC6024716 DOI: 10.3390/medsci6020048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 12/13/2022] Open
Abstract
Creating efficient cell lines is a priority for the biopharmaceutical industry, which produces biologicals for various uses. A recent approach to achieving this goal is the use of non-coding RNAs, microRNA (miRNA) and small interfering RNA (siRNA), to identify key genes that can potentially improve production or growth. The ornithine decarboxylase antizyme 1 (OAZ1) gene, a negative regulator of polyamine biosynthesis, was identified in a genome-wide siRNA screen as a potential engineering target, because its knock down by siRNA increased recombinant protein expression from human embryonic kidney 293 (HEK293) cells by two-fold. To investigate this further, the OAZ1 gene in HEK293 cells was knocked out using CRISPR genome editing. The OAZ1 knockout cell lines displayed up to four-fold higher expression of both stably and transiently expressed proteins, with comparable growth and metabolic activity to the parental cell line; and an approximately three-fold increase in intracellular polyamine content. The results indicate that genetic inactivation of OAZ1 in HEK293 cells is an effective strategy to improve recombinant protein expression in HEK293 cells.
Collapse
Affiliation(s)
- Laura Abaandou
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
- Department of Chemistry and Biochemistry, George Mason University, Fairfax, VA 22030, USA.
| | - Joseph Shiloach
- Biotechnology Core Laboratory, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|