1
|
Ambattu LA, Yeo LY. Sonomechanobiology: Vibrational stimulation of cells and its therapeutic implications. BIOPHYSICS REVIEWS 2023; 4:021301. [PMID: 38504927 PMCID: PMC10903386 DOI: 10.1063/5.0127122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 02/27/2023] [Indexed: 03/21/2024]
Abstract
All cells possess an innate ability to respond to a range of mechanical stimuli through their complex internal machinery. This comprises various mechanosensory elements that detect these mechanical cues and diverse cytoskeletal structures that transmit the force to different parts of the cell, where they are transcribed into complex transcriptomic and signaling events that determine their response and fate. In contrast to static (or steady) mechanostimuli primarily involving constant-force loading such as compression, tension, and shear (or forces applied at very low oscillatory frequencies (≤ 1 Hz) that essentially render their effects quasi-static), dynamic mechanostimuli comprising more complex vibrational forms (e.g., time-dependent, i.e., periodic, forcing) at higher frequencies are less well understood in comparison. We review the mechanotransductive processes associated with such acoustic forcing, typically at ultrasonic frequencies (> 20 kHz), and discuss the various applications that arise from the cellular responses that are generated, particularly for regenerative therapeutics, such as exosome biogenesis, stem cell differentiation, and endothelial barrier modulation. Finally, we offer perspectives on the possible existence of a universal mechanism that is common across all forms of acoustically driven mechanostimuli that underscores the central role of the cell membrane as the key effector, and calcium as the dominant second messenger, in the mechanotransduction process.
Collapse
Affiliation(s)
- Lizebona August Ambattu
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| | - Leslie Y. Yeo
- Micro/Nanophysics Research Laboratory, School of Engineering, RMIT University, Melbourne VIC 3000, Australia
| |
Collapse
|
2
|
Phan TN, Fan CH, Yeh CK. Application of Ultrasound to Enhancing Stem Cells Associated Therapies. Stem Cell Rev Rep 2023:10.1007/s12015-023-10546-w. [PMID: 37119453 DOI: 10.1007/s12015-023-10546-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2023] [Indexed: 05/01/2023]
Abstract
Pluripotent stem cell therapy exhibits self-renewal capacity and multi-directional differentiation potential and is considered an important regenerative approach for the treatment of several diseases. However, insufficient cell transplantation efficiency, uncontrollable differentiation, low cell viability, and difficult tracing limit its clinical applications and treatment outcome. Ultrasound (US) has mechanical, cavitation, and thermal effects that can produce different biological effects on organs, tissues, and cells. US can be combined with different US-responsive particles for enhanced physical-chemical stimulation and drug delivery. In the meantime, US also can provide a noninvasive and harmless imaging modality for deep tissue in vivo. An in-depth evaluation of the role and mechanism of action of US in stem cell therapy would enhance understanding of US and encourage research in this field. In this article, we comprehensively review progress in the application of US alone and combined with US-responsive particles for the promotion of proliferation, differentiation, migration, and in vivo detection of stem cells and the potential clinical applications.
Collapse
Affiliation(s)
- Thi-Nhan Phan
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Ching-Hsiang Fan
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
- Medical Device Innovation Center, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Kuang Yeh
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan.
| |
Collapse
|
3
|
Chen Y, Yang H, Wang Z, Zhu R, Cheng L, Cheng Q. Low-intensity pulsed ultrasound promotes mesenchymal stem cell transplantation-based articular cartilage regeneration via inhibiting the TNF signaling pathway. Stem Cell Res Ther 2023; 14:93. [PMID: 37069673 PMCID: PMC10111837 DOI: 10.1186/s13287-023-03296-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 03/22/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) transplantation therapy is highly investigated for the regenerative repair of cartilage defects. Low-intensity pulsed ultrasound (LIPUS) has the potential to promote chondrogenic differentiation of MSCs. However, its underlying mechanism remains unclear. Here, we investigated the promoting effects and mechanisms underlying LIPUS stimulation on the chondrogenic differentiation of human umbilical cord mesenchymal stem cells (hUC-MSCs) and further evaluated its regenerative application value in articular cartilage defects in rats. METHODS LIPUS was applied to stimulate cultured hUC-MSCs and C28/I2 cells in vitro. Immunofluorescence staining, qPCR analysis, and transcriptome sequencing were used to detect mature cartilage-related markers of gene and protein expression for a comprehensive evaluation of differentiation. Injured articular cartilage rat models were established for further hUC-MSC transplantation and LIPUS stimulation in vivo. Histopathology and H&E staining were used to evaluate the repair effects of the injured articular cartilage with LIPUS stimulation. RESULTS The results showed that LIPUS stimulation with specific parameters effectively promoted the expression of mature cartilage-related genes and proteins, inhibited TNF-α gene expression in hUC-MSCs, and exhibited anti-inflammation in C28/I2 cells. In addition, the articular cartilage defects of rats were significantly repaired after hUC-MSC transplantation and LIPUS stimulation. CONCLUSIONS Taken together, LIPUS stimulation could realize articular cartilage regeneration based on hUC-MSC transplantation due to the inhibition of the TNF signaling pathway, which is of clinical value for the relief of osteoarthritis.
Collapse
Affiliation(s)
- Yiming Chen
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huiyi Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
| | - Zhaojie Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
- School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Tongji University, Shanghai, 200065, China
- School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Qian Cheng
- Institute of Acoustics, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital affiliated to Tongji University School of Medicine, Tongji University, Shanghai, 200065, China.
- Frontiers Science Center for Intelligent Autonomous Systems, Shanghai, 201210, China.
| |
Collapse
|
4
|
Zhong YX, Liao JC, Liu X, Tian H, Deng LR, Long L. Low intensity focused ultrasound: a new prospect for the treatment of Parkinson's disease. Ann Med 2023; 55:2251145. [PMID: 37634059 PMCID: PMC10461511 DOI: 10.1080/07853890.2023.2251145] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/17/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023] Open
Abstract
Background: As a chronic and progressive neurodegenerative disease, Parkinson's disease (PD) still lacks effective and safe targeted drug therapy. Low-intensity focused ultrasound (LIFU), a new method to stimulate the brain and open the blood-brain barrier (BBB), has been widely concerned by PD researchers due to its non-invasive characteristics.Methods: PubMed was searched for the past 10 years using the terms 'focused ultrasound', 'transcranial ultrasound', 'pulse ultrasound', and 'Parkinson's disease'. Relevant citations were selected from the authors' references. After excluding articles describing high-intensity focused ultrasound or non-Parkinson's disease applications, we found more than 100 full-text analyses for pooled analysis.Results: Current preclinical studies have shown that LIFU could improve PD motor symptoms by regulating microglia activation, increasing neurotrophic factors, reducing oxidative stress, and promoting nerve repair and regeneration, while LIFU combined with microbubbles (MBs) can promote drugs to cross the BBB, which may become a new direction of PD treatment. Therefore, finding an efficient drug carrier system is the top priority of applying LIFU with MBs to deliver drugs.Conclusions: This article aims to review neuro-modulatory effect of LIFU and the possible biophysical mechanism in the treatment of PD, summarize the latest progress in delivering vehicles with MBs, and discuss its advantages and limitations.
Collapse
Affiliation(s)
- Yun-Xiao Zhong
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jin-Chi Liao
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xv Liu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hao Tian
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li-Ren Deng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ling Long
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Lin Z, Gao L, Hou N, Zhi X, Zhang Y, Che Z, Deng A. Application of low-intensity pulsed ultrasound on tissue resident stem cells: Potential for ophthalmic diseases. Front Endocrinol (Lausanne) 2023; 14:1153793. [PMID: 37008913 PMCID: PMC10063999 DOI: 10.3389/fendo.2023.1153793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/07/2023] [Indexed: 03/19/2023] Open
Abstract
INTRODUCTION Tissue-resident stem cells (TRSCs) have the ability to self-renew and differentiate throughout an individual's lifespan, and they utilize both mechanisms to maintain homeostasis and regenerate damaged tissues. Several studies suggest that these stem cells can serve as a potential source for cell-replacement-based therapy by promoting differentiation or expansion. In recent years, low-intensity pulsed ultrasound (LIPUS) has been demonstrated to effectively stimulate stem cell proliferation and differentiation, promote tissue regeneration, and inhibit inflammatory responses. AIMS To present a comprehensive overview of current application and mechanism of LIPUS on tissue resident stem cells. METHODS We searched PubMed, Web of Science for articles on the effects of LIPUS on tissue resident stem cells and its application. RESULTS The LIPUS could modulate cellular activities such as cell viability, proliferation and differentiation of tissue resident stem cells and related cells through various cellular signaling pathways. Currently, LIPUS, as the main therapeutic ultrasound, is being widely used in the treatment of preclinical and clinical diseases. CONCLUSION The stem cell research is the hot topic in the biological science, while in recent years, increasing evidence has shown that TRSCs are good targets for LIPUS-regulated regenerative medicine. LIPUS may be a novel and valuable therapeutic approach for the treatment of ophthalmic diseases. How to further improve its efficiency and accuracy, as well as the biological mechanism therein, will be the focus of future research.
Collapse
|
6
|
Du M, Li Y, Zhang Q, Zhang J, Ouyang S, Chen Z. The impact of low intensity ultrasound on cells: Underlying mechanisms and current status. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 174:41-49. [PMID: 35764177 DOI: 10.1016/j.pbiomolbio.2022.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 06/10/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Low intensity ultrasound (LIUS) has been adopted for a variety of therapeutic purposes because of its bioeffects such as thermal, mechanical, and cavitation effects. The mechanism of impact and cellular responses of LIUS in cellular regulations have been revealed, which helps to understand the role of LIUS in tumor treatment, stem cell therapy, and nervous system regulation. The review summarizes the bioeffects of LIUS at the cellular level and its related mechanisms, detailing the corresponding theoretical basis and latest research in the study of LIUS in the regulation of cells. In the future, the design of specific LIUS-mediated treatment strategies may benefit from promising investigations which is hoped to provide encouraging therapeutic data.
Collapse
Affiliation(s)
- Meng Du
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Yue Li
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; Laboratory of Ultrasound Molecular Imaging, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Zhang
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Jiaming Zhang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuming Ouyang
- The First Affiliated Hospital, Center for Reproductive Medicine, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Zhiyi Chen
- The First Affiliated Hospital, Medical Imaging Centre, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China; The Seventh Affiliated Hospital, Hunan Veterans Administration Hospital, Hengyang Medical School, University of South China, Changsha, Hunan, China.
| |
Collapse
|
7
|
de Lucas B, Pérez LM, Bernal A, Gálvez BG. Ultrasound Therapy: Experiences and Perspectives for Regenerative Medicine. Genes (Basel) 2020; 11:genes11091086. [PMID: 32957737 PMCID: PMC7563547 DOI: 10.3390/genes11091086] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/13/2020] [Accepted: 09/16/2020] [Indexed: 12/15/2022] Open
Abstract
Ultrasound has emerged as a novel tool for clinical applications, particularly in the context of regenerative medicine. Due to its unique physico-mechanical properties, low-intensity ultrasound (LIUS) has been approved for accelerated fracture healing and for the treatment of established non-union, but its utility has extended beyond tissue engineering to other fields, including cell regeneration. Cells and tissues respond to acoustic ultrasound by switching on genetic repair circuits, triggering a cascade of molecular signals that promote cell proliferation, adhesion, migration, differentiation, and extracellular matrix production. LIUS also induces angiogenesis and tissue regeneration and has anti-inflammatory and anti-degenerative effects. Accordingly, the potential application of ultrasound for tissue repair/regeneration has been tested in several studies as a stand-alone treatment and, more recently, as an adjunct to cell-based therapies. For example, ultrasound has been proposed to improve stem cell homing to target tissues due to its ability to create a transitional and local gradient of cytokines and chemokines. In this review, we provide an overview of the many applications of ultrasound in clinical medicine, with a focus on its value as an adjunct to cell-based interventions. Finally, we discuss the various preclinical and clinical studies that have investigated the potential of ultrasound for regenerative medicine.
Collapse
Affiliation(s)
- Beatriz de Lucas
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
| | - Laura M. Pérez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
| | - Aurora Bernal
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain;
| | - Beatriz G. Gálvez
- Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, 28670 Madrid, Spain; (B.d.L.); (L.M.P.)
- Correspondence:
| |
Collapse
|
8
|
Huang D, Gao Y, Wang S, Zhang W, Cao H, Zheng L, Chen Y, Zhang S, Chen J. Impact of low-intensity pulsed ultrasound on transcription and metabolite compositions in proliferation and functionalization of human adipose-derived mesenchymal stromal cells. Sci Rep 2020; 10:13690. [PMID: 32792566 PMCID: PMC7426954 DOI: 10.1038/s41598-020-69430-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 06/02/2020] [Indexed: 01/09/2023] Open
Abstract
To investigate the effect of low-intensity pulsed ultrasound (LIPUS) on the proliferation of human adipose-derived mesenchymal stromal cells (hASCs) and uncovered its stimulation mechanism. LIPUS at 30 mW/cm2 was applied for 5 min/day to promote the proliferation of hASCs. Flow cytometry was used to study the cell surface markers, cell cycle, and apoptosis of hASCs. The proliferation of hASCs was detected by cell counting kit-8, cell cycle assay, and RT-PCR. The expression of hASCs cytokines was determined by ELISA. The differences between transcriptional genes and metabolites were analyzed by transcript analysis and metabolomic profiling experiments. The number of cells increased after LIPUS stimulation, but there was no significant difference in cell surface markers. The results of flow cytometry, RT-PCR, and ELISA after LIPUS was administered showed that the G1 and S phases of the cell cycle were prolonged. The expression of cell proliferation related genes (CyclinD1 and c-myc) and the paracrine function related gene (SDF-1α) were up-regulated. The expression of cytokines was increased, while the apoptosis rate was decreased. The results of transcriptome experiments showed that there were significant differences in 27 genes;15 genes were up-regulated, while 12 genes were down-regulated. The results of metabolomics experiments showed significant differences in 30 metabolites; 7 metabolites were up-regulated, and 23 metabolites were down-regulated. LIPUS at 30 mW/cm2 intensity can promote the proliferation of hASCs cells in an undifferentiating state, and the stem-cell property of hASCs was maintained. CyclinD1 gene, c-myc gene, and various genes of transcription and products of metabolism play an essential role in cell proliferation. This study provides an important experimental and theoretical basis for the clinical application of LIPUS in promoting the proliferation of hASCs cells.
Collapse
Affiliation(s)
- Denggao Huang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yuanhui Gao
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Shunlan Wang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Wei Zhang
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada
| | - Hui Cao
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Linlin Zheng
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Yang Chen
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China
| | - Shufang Zhang
- Department of Central Laboratory, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208, Hainan, China.
| | - Jie Chen
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, T6G 2V4, Canada.
| |
Collapse
|
9
|
Liu DD, Ullah M, Concepcion W, Dahl JJ, Thakor AS. The role of ultrasound in enhancing mesenchymal stromal cell-based therapies. Stem Cells Transl Med 2020; 9:850-866. [PMID: 32157802 PMCID: PMC7381806 DOI: 10.1002/sctm.19-0391] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have been a popular platform for cell-based therapy in regenerative medicine due to their propensity to home to damaged tissue and act as a repository of regenerative molecules that can promote tissue repair and exert immunomodulatory effects. Accordingly, a great deal of research has gone into optimizing MSC homing and increasing their secretion of therapeutic molecules. A variety of methods have been used to these ends, but one emerging technique gaining significant interest is the use of ultrasound. Sound waves exert mechanical pressure on cells, activating mechano-transduction pathways and altering gene expression. Ultrasound has been applied both to cultured MSCs to modulate self-renewal and differentiation, and to tissues-of-interest to make them a more attractive target for MSC homing. Here, we review the various applications of ultrasound to MSC-based therapies, including low-intensity pulsed ultrasound, pulsed focused ultrasound, and extracorporeal shockwave therapy, as well as the use of adjunctive therapies such as microbubbles. At a molecular level, it seems that ultrasound transiently generates a local gradient of cytokines, growth factors, and adhesion molecules that facilitate MSC homing. However, the molecular mechanisms underlying these methods are far from fully elucidated and may differ depending on the ultrasound parameters. We thus put forth minimal criteria for ultrasound parameter reporting, in order to ensure reproducibility of studies in the field. A deeper understanding of these mechanisms will enhance our ability to optimize this promising therapy to assist MSC-based approaches in regenerative medicine.
Collapse
Affiliation(s)
- Daniel D. Liu
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| | - Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| | | | - Jeremy J. Dahl
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| | - Avnesh S. Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Department of RadiologyStanford UniversityPalo AltoCalifornia
| |
Collapse
|
10
|
Ni Y, Wang J, Wang Z, Zhang X, Cao X, Ding Z. Alpha-lipoic acid inhibits proliferation and migration of human vascular endothelial cells through downregulating HSPA12B/VEGF signaling axis. Cell Stress Chaperones 2020; 25:455-466. [PMID: 32219685 PMCID: PMC7192994 DOI: 10.1007/s12192-020-01086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/20/2020] [Accepted: 03/05/2020] [Indexed: 11/30/2022] Open
Abstract
Endothelial cells play essential roles in angiogenesis. Heat shock protein A12B (HSPA12B), a novel member of the multigene Hsp70 family, expresses specifically in endothelial cells. Alpha-lipoic acid (LA) has been used for the treatment of human diabetic complications for more than 20 years. However, little is known whether LA impacts endothelial proliferation and migration. To address these questions, primary human umbilical vein endothelial cells (HUVECs) were isolated and treated with LA. We found that LA reduced viable HUVECs but not caused LDH leakage and nuclear condensation, suggesting an inhibitory effect of LA on HUVEC proliferation. We also noticed that LA impeded wound closure of HUVEC monolayers. The expressions of C-Myc, VEGF, and eNOS and phosphorylation of focal adhesion kinase were reduced by LA. Moreover, LA decreased the expression of heat shock protein A12B (HSPA12B). Notably, overexpression of HSPA12B in endothelial cells prevented the LA-induced loss of VEGF. More importantly, HSPA12B overexpression attenuated the LA-induced inhibition of endothelial proliferation and migration. Collectively, the results demonstrated that LA inhibited proliferative and migratory abilities in human vascular endothelial cells through the downregulation of the HSPA12B/VEGF signaling axis. The data suggest that besides the treatment in diabetic complications, LA might represent a viable therapeutic potential for human diseases that involve high angiogenic activities such as cancers.
Collapse
Affiliation(s)
- Yan Ni
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Juan Wang
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China
| | - Zhuyao Wang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaojin Zhang
- Department of Geriatrics, Jiangsu Provincial Key Laboratory of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Xiaofei Cao
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| | - Zhengnian Ding
- Department of Anesthesiology, First Affiliated Hospital with Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
11
|
Sahu N, Miller A, Viljoen HJ, Subramanian A. Continuous Low-Intensity Ultrasound Promotes Native-to-Native Cartilage Integration. Tissue Eng Part A 2019; 25:1538-1549. [PMID: 31190618 DOI: 10.1089/ten.tea.2018.0355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Failure of the host/graft interface to integrate impedes the success of cartilage repair protocols. Continuous low-intensity ultrasound (cLIUS) at the resonant frequency of 5 MHz is proposed as a treatment modality for promoting native-to-native cartilage integration in vitro. Cylindrical incisions (4 mm) simulating chondral discontinuity were made in bovine cartilage and osteochondral explants, and maintained under cLIUS stimulation (14 kPa [5 MHz, 2.5 Vpp], 20 min, four times/day) for 28 days. Incised cartilage and osteochondral explants were categorized into three study groups; Group I: cLIUS was applied immediately upon incision; Group II: cLIUS was applied after 14 days following incision; Group-III: after 14 days following incision, explants were treated with 0.1% hyaluronidase and 30 U/mL collagenase VII. As a separate study group, incised osteochondral explants were treated immediately with cLIUS at a nonresonant frequency of 2 MHz (14 kPa [2 MHz, 6 Vpp], 20 min, four times/day). Cellular migration was analyzed by scratch assays, and by visualizing migrating cells into the hydrogel core of cartilage/hydrogel constructs. Explants under cLIUS (5 MHz) displayed higher percent apposition along with gap closures when compared with untreated controls and explants treated with cLIUS at 2 MHz. cLIUS (5 MHz)-treated explants were immunopositive for type II collagen. The strength of native-to-native cartilage integration was higher (p = 0.005) in cLIUS-treated cartilage explants at 0.19 ± 0.08 MPa as compared with 0.05 ± 0.03 MPa in untreated controls. Enhanced cartilage phenotype coupled with increased cellular migration were noted under cLIUS (5 MHz), alluding to the observed integration between cartilage interfaces. Collectively, cLIUS at cell resonant frequency promoted integrative cartilage repair, therefore, has the potential to improve cartilage repair outcomes. Impact Statement Lack of integration between the host and graft cartilage interfaces impedes the success of cartilage repair techniques. Continuous low-intensity ultrasound (cLIUS) is documented to induce chondrogenesis and chondrocyte phenotype. However, integrative cartilage repair under cLIUS has not been evaluated. Our results demonstrated integration between cartilage interfaces, increased percent apposition, increased strength of integration, and maintenance of cartilage phenotype under cLIUS (5 MHz). Integrative repair under cLIUS (5 MHz) stemmed from enhanced migration of cells and increased expression of cartilage-specific genes, namely SOX9 and COL2A1. Thus, cLIUS has the potential to improve the outcomes of grafting protocols for cartilage repair.
Collapse
Affiliation(s)
- Neety Sahu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - April Miller
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York
| | - Hendrik J Viljoen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska
| | - Anuradha Subramanian
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, Alabama
| |
Collapse
|
12
|
Sahu N, Viljoen HJ, Subramanian A. Continuous low-intensity ultrasound attenuates IL-6 and TNFα-induced catabolic effects and repairs chondral fissures in bovine osteochondral explants. BMC Musculoskelet Disord 2019; 20:193. [PMID: 31054572 PMCID: PMC6499975 DOI: 10.1186/s12891-019-2566-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/11/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Cartilage repair outcomes are compromised in a pro-inflammatory environment; therefore, the mitigation of pro-inflammatory responses is beneficial. Treatment with continuous low-intensity ultrasound (cLIUS) at the resonant frequency of 5 MHz is proposed for the repair of chondral fissures under pro-inflammatory conditions. METHODS Bovine osteochondral explants, concentrically incised to create chondral fissures, were maintained under cLIUS (14 kPa (5 MHz, 2.5 Vpp), 20 min, 4 times/day) for a period of 28 days in the presence or absence of cytokines, interleukin-6 (IL-6) or tumor necrosis factor (TNF)α. Outcome assessments included histological and immunohistochemical staining of the explants; and the expression of catabolic and anabolic genes by qRT-PCR in bovine chondrocytes. Cell migration was assessed by scratch assays, and by visualizing migrating cells into the hydrogel core of cartilage-hydrogel constructs. RESULTS Both in the presence and absence of cytokines, higher percent apposition along with closure of fissures were noted in cLIUS-stimulated explants as compared to non-cLIUS-stimulated explants on day 14. On day 28, the percent apposition was not significantly different between unstimulated and cLIUS-stimulated explants exposed to cytokines. As compared to non-cLIUS-stimulated controls, on day 28, cLIUS preserved the distribution of proteoglycans and collagen II in explants despite exposure to cytokines. cLIUS enhanced the cell migration irrespective of cytokine treatment. IL-6 or TNFα-induced increases in MMP13 and ADAMTS4 gene expression was rescued by cLIUS stimulation in chondrocytes. Under cLIUS, TNFα-induced increase in NF-κB expression was suppressed, and the expression of collagen II and TIMP1 genes were upregulated. CONCLUSION cLIUS repaired chondral fissures, and elicited pro-anabolic and anti-catabolic effects, thus demonstrating the potential of cLIUS in improving cartilage repair outcomes.
Collapse
Affiliation(s)
- Neety Sahu
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0643, USA
| | - Hendrik J Viljoen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, 68588-0643, USA
| | - Anuradha Subramanian
- Department of Chemical and Materials Engineering, University of Alabama at Huntsville, Huntsville, Alabama, 35899, USA.
| |
Collapse
|
13
|
Osborn J, Aliabouzar M, Zhou X, Rao R, Zhang LG, Sarkar K. Enhanced Osteogenic Differentiation of Human Mesenchymal Stem Cells Using Microbubbles and Low Intensity Pulsed Ultrasound on 3D Printed Scaffolds. ACTA ACUST UNITED AC 2018; 3:e1800257. [PMID: 32627376 DOI: 10.1002/adbi.201800257] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/08/2018] [Indexed: 11/05/2022]
Abstract
Lipid-coated microbubbles, clinically approved as contrast enhancing agents for ultrasound imaging, are investigated for the first time for their possible applications in bone tissue engineering. Effects of microbubbles (average diameter 1.1 µm) coated by a mixture of lipids (1,2-dipalmitoyl-sn-glycero-3-phosphocholine, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000], and 1,2-dipalmitoyl-3-trimethylmmonium-propane) in the presence of low intensity pulsed ultrasound (LIPUS) on human mesenchymal stem cells seeded on 3D printed poly(lactic acid) porous scaffolds are investigated. LIPUS stimulation (30 mW cm-2 , 1.5 MHz, 20% duty cycle) for 3 min a day with 0.5% v/v microbubbles results in a significant increase in proliferation (up to 19.3%) when compared to control after 1, 3, and 5 d. A 3-week osteogenic differentiation study shows a significant increase in total protein content (up to 27.5%), calcium deposition (up to 4.3%), and alkaline phosphatase activity (up to 43.1%) initiated by LIPUS with and without the presence of microbubbles. The microbubbles are found to remain stable during exposure, and their sustained oscillations demonstrably help focus the LIPUS energy toward enhanced cellular response. Integrating LIPUS and microbubbles promises to be a novel and effective strategy for bone tissue engineering and regeneration therapies.
Collapse
Affiliation(s)
- Jenna Osborn
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Mitra Aliabouzar
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Xuan Zhou
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Raj Rao
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA.,Orthopaedic Surgery, School of Medicine, George Washington University, Washington, DC, 20052, USA
| | - Lijie Grace Zhang
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| | - Kausik Sarkar
- Mechanical and Aerospace Engineering, George Washington University, Washington, DC, 20052, USA
| |
Collapse
|