1
|
Zeng X, Joshi PU, Lawton A, Manchester L, Heldt CL, Perry SL. Exploring the effects of excipients on complex coacervation. J Colloid Interface Sci 2025; 695:137808. [PMID: 40359635 DOI: 10.1016/j.jcis.2025.137808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/22/2025] [Accepted: 05/04/2025] [Indexed: 05/15/2025]
Abstract
Complex coacervation is an associative liquid-liquid phase separation phenomenon that takes place due to the electrostatic complexation of oppositely-charged polyelectrolytes and the entropic gains associated with the release of bound counterions and rearrangement of solvent. The aqueous nature of coacervation has resulted in its broad use in systems requiring high biocompatibility. The significance of electrostatic interactions in coacervates has meant that studies investigating the phase behaviors of these systems have tended to focus on parameters such as the charge stoichiometry of the polyions, the solution pH, and the ionic strength. However, the equilibrium that exists between the polymer-rich coacervate phase and the polymer-poor supernatant phase represents a balance among attractive electrostatic interactions and excluded volume repulsions as well as osmotic pressure effects. As such, we hypothesize that it should be possible to tune coacervate phase behavior via the addition of non-electrostatic excipients which would partition between the two phases and potentially alter both the solvent quality and the osmotic pressure balance. In particular, our work focuses on small molecule excipients such as sugars, amino acids, and other additives that have a history of use in vaccine formulation. We quantified the ability of these excipients to partition into the coacervate phase, and their potential for destabilizing the phase separation. Furthermore, we demonstrate that these additives can be combined with complex coacervation in the context of a virus formulation.
Collapse
Affiliation(s)
- Xianci Zeng
- Department of Chemical Engineering, University of Massachusetts Amherst, United States
| | - Pratik U Joshi
- Department of Chemical Engineering, Michigan Technological University, United States
| | - Alexander Lawton
- Department of Chemical Engineering, University of Massachusetts Amherst, United States
| | - Lynn Manchester
- Department of Chemical Engineering, Michigan Technological University, United States
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University, United States.
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, United States.
| |
Collapse
|
2
|
Vasuja P, Kunal. Virovory: control of viral pathogenesis by the protists and the way forward. Crit Rev Microbiol 2025:1-9. [PMID: 40255028 DOI: 10.1080/1040841x.2025.2493908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 04/22/2025]
Abstract
The interactions between viruses and protists have been crucially impacting the ecosystem. In recent studies, it has been found that the protists are not only able to consume, ingest or inactivate a variety of viruses, resulting in a reduction of the viral load, but instead, they can treat viruses as the exclusive source of nutrients, exhibiting "Virovory" (virus-only diet). These small protists can act as virosomes (organisms harnessing nutrients from the viruses) and utilize the viruses as the only source of nourishment, implying the protist to multiply and grow. The viral reduction was previously thought to be only because of the action of abiotic factors (temperature, ultraviolet light, chemicals, membrane adsorption, etc.). However, virovory suggests that organic material flow in microbial communities, the impact of viruses on the food web and, the role of protists in regulating viral populations are crucial factors in ecosystem dynamics. In this review, ingestion, digestion, and inactivation of a variety of viruses by protists are discussed. Several questions can be answered by further research on understanding the mechanisms behind the inactivation of viruses, the impact of reduced viral load on other microbial populations, and the large-scale employability of these little protists in removing pathogenic viruses from the environment.
Collapse
Affiliation(s)
- Pooja Vasuja
- Department of Life Sciences, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, Haryana, India
| | - Kunal
- Department of Life Sciences, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary (SGT) University, Gurugram, Haryana, India
| |
Collapse
|
3
|
Zajac JWP, Muralikrishnan P, Tohidian I, Zeng X, Heldt CL, Perry SL, Sarupria S. Flipping out: role of arginine in hydrophobic interactions and biological formulation design. Chem Sci 2025; 16:6780-6792. [PMID: 40110519 PMCID: PMC11915020 DOI: 10.1039/d4sc08672d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025] Open
Abstract
Arginine has been a mainstay in biological formulation development for decades. To date, the way arginine modulates protein stability has been widely studied and debated. Here, we employed a hydrophobic polymer to decouple hydrophobic effects from other interactions relevant to protein folding. While existing hypotheses for the effects of arginine can generally be categorized as either direct or indirect, our results indicate that direct and indirect mechanisms of arginine co-exist and oppose each other. At low concentrations, arginine was observed to stabilize hydrophobic polymer folding via a sidechain-dominated direct mechanism, while at high concentrations, arginine stabilized polymer folding via a backbone-dominated indirect mechanism. Upon introducing partially charged polymer sites, arginine destabilized polymer folding. Further, we found arginine-induced destabilization of a model virus similar to direct-mechanism destabilization of the charged polymer and concentration-dependent stabilization of a model protein similar to the indirect mechanism of hydrophobic polymer stabilization. These findings highlight the modular nature of the widely used additive arginine, with relevance in the information-driven design of stable biological formulations.
Collapse
Affiliation(s)
- Jonathan W P Zajac
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| | - Praveen Muralikrishnan
- Department of Chemical Engineering and Materials Science, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| | - Idris Tohidian
- Department of Chemical Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Xianci Zeng
- Department of Chemical Engineering, University of Massachusetts Amherst MA 01003 USA
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University Houghton MI 49931 USA
| | - Sarah L Perry
- Department of Chemical Engineering, University of Massachusetts Amherst MA 01003 USA
| | - Sapna Sarupria
- Department of Chemistry, University of Minnesota Minneapolis MN 55455 USA
- Chemical Theory Center, University of Minnesota Minneapolis MN 55455 USA
| |
Collapse
|
4
|
Sharma V, Manchester L, Holstein M, Xu X, Ghose S, Heldt CL. Impact of Eco-Friendly Surfactant Structure and Class on Enveloped Virus Inactivation. Biotechnol J 2025; 20:e70023. [PMID: 40285390 DOI: 10.1002/biot.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/12/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Sustainable and effective strategies for virus inactivation are crucial for ensuring the safety and quality of biological products. The European Union's (EU) 2021 ban on Triton X-100 for viral inactivation in biomanufacturing has pushed the field to find sustainable alternatives with equal effectiveness. We aim to increase the sustainability of biopharmaceutical production by ensuring the effectiveness of eco-friendly surfactant-mediated virus inactivation by comparing the antiviral efficacy of Triton X-100 to glucosides and amine oxides. RESULTS Surfactants were evaluated for antiviral efficacy against herpes viruses, SuHV and HSV, and the retrovirus XMuLV. The surfactants demonstrated equivalent or superior inactivation efficacy compared to Triton X-100. Herpes viruses were inactivated similarly with all surfactants. For XMuLV, surfactants with longer alkyl chains achieved maximum log reduction values (LRV) at 1x CMC, outperforming Triton X-100, which required 2x CMC for comparable efficacy. Surfactants with bulky headgroups, such as LAPAO, showed lower efficacy against XMuLV. At a salt concentration of 2 M ionic strength, the antiviral efficacy of Triton X-100 and TDAO decreased for the herpes viruses. Variability in inactivation was observed among the surfactants at 0.5x CMC, indicating that surfactant characteristics influence their antiviral performance below CMC. CONCLUSIONS Adding salt enhanced the antiviral efficacy of surfactants by lowering their CMC while maintaining consistent virus inactivation. Among the surfactants tested, the glucoside with a longer tail, n-nonyl-β-D-glucoside (NG), emerged as the most robust and could function as an eco-friendly surfactant for virus inactivation in bioprocessing. For NG, virus inactivation was independent of all variables tested.
Collapse
Affiliation(s)
- Vaishali Sharma
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan, USA
- Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| | - Lynn Manchester
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Melissa Holstein
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Caryn L Heldt
- Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|
5
|
Joshi P, Decker C, Zeng X, Sathyavageeswaran A, Perry SL, Heldt CL. Design Rules for the Sequestration of Viruses into Polypeptide Complex Coacervates. Biomacromolecules 2024; 25:741-753. [PMID: 38103178 PMCID: PMC10866146 DOI: 10.1021/acs.biomac.3c00938] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023]
Abstract
Encapsulation is a strategy that has been used to facilitate the delivery and increase the stability of proteins and viruses. Here, we investigate the encapsulation of viruses via complex coacervation, which is a liquid-liquid phase separation resulting from the complexation of oppositely charged polymers. In particular, we utilized polypeptide-based coacervates and explored the effects of peptide chemistry, chain length, charge patterning, and hydrophobicity to better understand the effects of the coacervating polypeptides on virus incorporation. Our study utilized two nonenveloped viruses, porcine parvovirus (PPV) and human rhinovirus (HRV). PPV has a higher charge density than HRV, and they both appear to be relatively hydrophobic. These viruses were compared to characterize how the charge, hydrophobicity, and patterning of chemistry on the surface of the virus capsid affects encapsulation. Consistent with the electrostatic nature of complex coacervation, our results suggest that electrostatic effects associated with the net charge of both the virus and polypeptide dominated the potential for incorporating the virus into a coacervate, with clustering of charges also playing a significant role. Additionally, the hydrophobicity of a virus appears to determine the degree to which increasing the hydrophobicity of the coacervating peptides can enhance virus uptake. Nonintuitive trends in uptake were observed with regard to both charge patterning and polypeptide chain length, with these parameters having a significant effect on the range of coacervate compositions over which virus incorporation was observed. These results provide insights into biophysical mechanisms, where sequence effects can control the uptake of proteins or viruses into biological condensates and provide insights for use in formulation strategies.
Collapse
Affiliation(s)
- Pratik
U. Joshi
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Claire Decker
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
| | - Xianci Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Arvind Sathyavageeswaran
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Sarah L. Perry
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Institute
for Applied Life Sciences, University of
Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Caryn L. Heldt
- Department
of Chemical Engineering, Michigan Technological
University, Houghton, Michigan 49931, United States
- Health
Research Institute, Michigan Technological
University, Houghton, Michigan 49931, United States
| |
Collapse
|
6
|
Rokni M, Rohani Bastami T, Meshkat Z, Reza Rahimi H, Zibaee S, Meshkat M, Fotouhi F, Serki E, Khoshakhlagh M, Dabirifar Z. Rapid and sensitive detection of SARS-CoV-2 virus in human saliva samples using glycan based nanozyme: a clinical study. Mikrochim Acta 2023; 191:36. [PMID: 38108890 DOI: 10.1007/s00604-023-06120-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 11/25/2023] [Indexed: 12/19/2023]
Abstract
A highly sensitive colorimetric method (glycan-based nano(e)zyme) was developed for sensitive and rapid detection of the SARS-CoV-2 virus based on N-acetyl neuraminic acid (sialic acid)-functionalized gold nanoparticles (SA-Au NZs). A number of techniques were used to characterize the prepared nanomaterials including XRD, FT-IR, UV-vis, DLS, and TEM. DLS analysis indicates an average hydrodynamic size of 34 nm, whereas TEM analysis indicates an average particle size of 15.78 nm. This observation confirms that water interacts with nanoparticle surfaces, resulting in a large hydrodynamic diameter. The peroxidase-like activity of SA-Au NZs was examined with SARS-CoV-2 and influenza viruses (influenza A (H1N1), influenza A (H3N2), and influenza B). UV-visible spectroscopy was used to monitor and record the results, as well as naked eye detection (photographs). SA-Au NZs exhibit a change in color from light red to purple when SARS-CoV-2 is present, and they exhibit a redshift in their spectrum. N-acetyl neuraminic acid interacts with SARS-CoV-2 spike glycoprotein, confirming its ability to bind glycans. As a result, SA-Au NZs can detect COVID-19 with sensitivity and specificity of over 95% and 98%, respectively. This method was approved by testing saliva samples from 533 suspected individuals at Ghaem Hospital of Mashhad, Mashhad, Iran. Sensitivity and specificity were calculated by comparing the results with the definitive results. The positive results were accompanied by a color change from bright red to purple within five minutes. Statistical analysis was performed based on variables such as age, gender, smoking, diabetes, hypertension, and lung involvement. In clinical trials, it was demonstrated that this method can be used to diagnose SARS-CoV-2 in a variety of places, such as medical centers, hospitals, airports, universities, and schools.
Collapse
Affiliation(s)
- Mehrdad Rokni
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 94771-67335, Iran
| | - Tahereh Rohani Bastami
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 94771-67335, Iran.
- Industrial Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hamid Reza Rahimi
- Department of Medical Genetics and Molecular Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Zibaee
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Mashhad, Iran
| | - Mojtaba Meshkat
- Department of Community Medicine, Faculty of Medicine, Mashhad Medical Sciences, Islamic Azad University, Mashhad, Iran
| | - Fatemeh Fotouhi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Serki
- Department of Clinical Biochemistry, Mashhad University of Medical Science, Mashhad, Iran Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahdieh Khoshakhlagh
- Department of Clinical Biochemistry, Mashhad University of Medical Science, Mashhad, Iran Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zeynab Dabirifar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 94771-67335, Iran
| |
Collapse
|
7
|
Tate P, Mastrodomenico V, Cunha C, McClure J, Barron AE, Diamond G, Mounce BC, Kirshenbaum K. Peptidomimetic Oligomers Targeting Membrane Phosphatidylserine Exhibit Broad Antiviral Activity. ACS Infect Dis 2023; 9:1508-1522. [PMID: 37530426 PMCID: PMC10425984 DOI: 10.1021/acsinfecdis.3c00063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Indexed: 08/03/2023]
Abstract
The development of durable new antiviral therapies is challenging, as viruses can evolve rapidly to establish resistance and attenuate therapeutic efficacy. New compounds that selectively target conserved viral features are attractive therapeutic candidates, particularly for combating newly emergent viral threats. The innate immune system features a sustained capability to combat pathogens through production of antimicrobial peptides (AMPs); however, these AMPs have shortcomings that can preclude clinical use. The essential functional features of AMPs have been recapitulated by peptidomimetic oligomers, yielding effective antibacterial and antifungal agents. Here, we show that a family of AMP mimetics, called peptoids, exhibit direct antiviral activity against an array of enveloped viruses, including the key human pathogens Zika, Rift Valley fever, and chikungunya viruses. These data suggest that the activities of peptoids include engagement and disruption of viral membrane constituents. To investigate how these peptoids target lipid membranes, we used liposome leakage assays to measure membrane disruption. We found that liposomes containing phosphatidylserine (PS) were markedly sensitive to peptoid treatment; in contrast, liposomes formed exclusively with phosphatidylcholine (PC) showed no sensitivity. In addition, chikungunya virus containing elevated envelope PS was more susceptible to peptoid-mediated inactivation. These results indicate that peptoids mimicking the physicochemical characteristics of AMPs act through a membrane-specific mechanism, most likely through preferential interactions with PS. We provide the first evidence for the engagement of distinct viral envelope lipid constituents, establishing an avenue for specificity that may enable the development of a new family of therapeutics capable of averting the rapid development of resistance.
Collapse
Affiliation(s)
- Patrick
M. Tate
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Vincent Mastrodomenico
- Department
of Microbiology and Immunology, Loyola University
Chicago Medical Center, Maywood, Illinois 60130, United States
| | - Christina Cunha
- Department
of Microbiology and Immunology, Loyola University
Chicago Medical Center, Maywood, Illinois 60130, United States
| | | | - Annelise E. Barron
- Maxwell
Biosciences, Austin, Texas 78738, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Gill Diamond
- Department
of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky 40292, United States
| | - Bryan C. Mounce
- Department
of Microbiology and Immunology, Loyola University
Chicago Medical Center, Maywood, Illinois 60130, United States
| | - Kent Kirshenbaum
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Maxwell
Biosciences, Austin, Texas 78738, United States
| |
Collapse
|
8
|
Nüse B, Holland T, Rauh M, Gerlach RG, Mattner J. L-arginine metabolism as pivotal interface of mutual host-microbe interactions in the gut. Gut Microbes 2023; 15:2222961. [PMID: 37358082 PMCID: PMC10294761 DOI: 10.1080/19490976.2023.2222961] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 06/05/2023] [Indexed: 06/27/2023] Open
Abstract
L-arginine (L-arg) is a versatile amino acid and a central intestinal metabolite in mammalian and microbial organisms. Thus, L-arg participates as precursor of multiple metabolic pathways in the regulation of cell division and growth. It also serves as a source of carbon, nitrogen, and energy or as a substrate for protein synthesis. Consequently, L-arg can simultaneously modify mammalian immune functions, intraluminal metabolism, intestinal microbiota, and microbial pathogenesis. While dietary intake, protein turnover or de novo synthesis usually supply L-arg in sufficient amounts, the expression of several key enzymes of L-arg metabolism can change rapidly and dramatically following inflammation, sepsis, or injury. Consequently, the availability of L-arg can be restricted due to increased catabolism, transforming L-arg into an essential amino acid. Here, we review the enzymatic pathways of L-arg metabolism in microbial and mammalian cells and their role in immune function, intraluminal metabolism, colonization resistance, and microbial pathogenesis in the gut.
Collapse
Affiliation(s)
- Björn Nüse
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Tim Holland
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Roman G. Gerlach
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Jochen Mattner
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, FAUErlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Sorci M, Fink TD, Sharma V, Singh S, Chen R, Arduini BL, Dovidenko K, Heldt CL, Palermo EF, Zha RH. Virucidal N95 Respirator Face Masks via Ultrathin Surface-Grafted Quaternary Ammonium Polymer Coatings. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25135-25146. [PMID: 35613701 PMCID: PMC9185690 DOI: 10.1021/acsami.2c04165] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
N95 respirator face masks serve as effective physical barriers against airborne virus transmission, especially in a hospital setting. However, conventional filtration materials, such as nonwoven polypropylene fibers, have no inherent virucidal activity, and thus, the risk of surface contamination increases with wear time. The ability of face masks to protect against infection can be likely improved by incorporating components that deactivate viruses on contact. We present a facile method for covalently attaching antiviral quaternary ammonium polymers to the fiber surfaces of nonwoven polypropylene fabrics that are commonly used as filtration materials in N95 respirators via ultraviolet (UV)-initiated grafting of biocidal agents. Here, C12-quaternized benzophenone is simultaneously polymerized and grafted onto melt-blown or spunbond polypropylene fabric using 254 nm UV light. This grafting method generated ultrathin polymer coatings which imparted a permanent cationic charge without grossly changing fiber morphology or air resistance across the filter. For melt-blown polypropylene, which comprises the active filtration layer of N95 respirator masks, filtration efficiency was negatively impacted from 72.5 to 51.3% for uncoated and coated single-ply samples, respectively. Similarly, directly applying the antiviral polymer to full N95 masks decreased the filtration efficiency from 90.4 to 79.8%. This effect was due to the exposure of melt-blown polypropylene to organic solvents used in the coating process. However, N95-level filtration efficiency could be achieved by wearing coated spunbond polypropylene over an N95 mask or by fabricating N95 masks with coated spunbond as the exterior layer. Coated materials demonstrated broad-spectrum antimicrobial activity against several lipid-enveloped viruses, as well as Staphylococcus aureus and Escherichia coli bacteria. For example, a 4.3-log reduction in infectious MHV-A59 virus and a 3.3-log reduction in infectious SuHV-1 virus after contact with coated filters were observed, although the level of viral deactivation varied significantly depending on the virus strain and protocol for assaying infectivity.
Collapse
Affiliation(s)
- Mirco Sorci
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Tanner D. Fink
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Vaishali Sharma
- Department
of Biological Sciences, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
| | - Sneha Singh
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
- Department
of Chemical Engineering, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
| | - Ruiwen Chen
- Department
of Materials Science and Engineering, Rensselaer
Polytechnic Institute, 110 8th Street, Troy, New
York 12180, United
States
| | - Brigitte L. Arduini
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Katharine Dovidenko
- Center
for Materials, Devices, and Integrated Systems, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| | - Caryn L. Heldt
- Health
Research Institute, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
- Department
of Chemical Engineering, Michigan Technological
University, 1400 Townsend Drive, Houghton, Michigan 49931, United
States
| | - Edmund F. Palermo
- Department
of Materials Science and Engineering, Rensselaer
Polytechnic Institute, 110 8th Street, Troy, New
York 12180, United
States
| | - R. Helen Zha
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, United States
| |
Collapse
|
10
|
Elveborg S, Monteil VM, Mirazimi A. Methods of Inactivation of Highly Pathogenic Viruses for Molecular, Serology or Vaccine Development Purposes. Pathogens 2022; 11:271. [PMID: 35215213 PMCID: PMC8879476 DOI: 10.3390/pathogens11020271] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/30/2022] Open
Abstract
The handling of highly pathogenic viruses, whether for diagnostic or research purposes, often requires an inactivation step. This article reviews available inactivation techniques published in peer-reviewed journals and their benefits and limitations in relation to the intended application. The bulk of highly pathogenic viruses are represented by enveloped RNA viruses belonging to the Togaviridae, Flaviviridae, Filoviridae, Arenaviridae, Hantaviridae, Peribunyaviridae, Phenuiviridae, Nairoviridae and Orthomyxoviridae families. Here, we summarize inactivation methods for these virus families that allow for subsequent molecular and serological analysis or vaccine development. The techniques identified here include: treatment with guanidium-based chaotropic salts, heat inactivation, photoactive compounds such as psoralens or 1.5-iodonaphtyl azide, detergents, fixing with aldehydes, UV-radiation, gamma irradiation, aromatic disulfides, beta-propiolacton and hydrogen peroxide. The combination of simple techniques such as heat or UV-radiation and detergents such as Tween-20, Triton X-100 or Sodium dodecyl sulfate are often sufficient for virus inactivation, but the efficiency may be affected by influencing factors including quantity of infectious particles, matrix constitution, pH, salt- and protein content. Residual infectivity of the inactivated virus could have disastrous consequences for both laboratory/healthcare personnel and patients. Therefore, the development of inactivation protocols requires careful considerations which we review here.
Collapse
Affiliation(s)
- Simon Elveborg
- Department of Clinical Microbiology, Uppsala University Hospital, 751 85 Uppsala, Sweden;
- Clinical Microbiology, Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Vanessa M. Monteil
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
| | - Ali Mirazimi
- Department of Laboratory Medicine, Karolinska Institutet, 141 52 Huddinge, Sweden;
- National Veterinary Institute, 751 89 Uppsala, Sweden
| |
Collapse
|
11
|
Joshi PU, Meingast CL, Xu X, Holstein M, Feroz H, Ranjan S, Ghose S, Li ZJ, Heldt CL. Virus inactivation at moderately low pH varies with virus and buffer properties. Biotechnol J 2021; 17:e2100320. [PMID: 34874097 DOI: 10.1002/biot.202100320] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/12/2022]
Abstract
BACKGROUND Virus inactivation is a critical operation in therapeutic protein manufacturing. Low pH buffers are a widely used strategy to ensure robust enveloped virus clearance. However, the choice of model virus can give varying results in viral clearance studies. Pseudorabies virus (SuHV) or herpes simplex virus-1 (HSV-1) are frequently chosen as model viruses to demonstrate the inactivation for the herpes family. RESULTS In this study, SuHV, HSV-1, and equine arteritis virus (EAV) were used to compare the inactivation susceptibility at pH 4.0 and 4°C. SuHV and HSV-1 are from the same family, and EAV was chosen as a small, enveloped virus. Glycine, acetate, and citrate buffers at pH 4.0 and varying buffer strengths were studied. The inactivation susceptibility was found to be in the order of SuHV > HSV > EAV. The buffer effectiveness was found to be in the order of citrate > acetate > glycine. The smaller virus, EAV, remained stable and infectious in all the buffer types and compositions studied. CONCLUSION The variation in inactivation susceptibility of herpes viruses indicated that SuHV and HSV cannot be interchangeably used as a virus model for inactivation studies. Smaller viruses might remain adventitiously infective at moderately low pH.
Collapse
Affiliation(s)
- Pratik U Joshi
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA.,Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| | - Christa L Meingast
- Health Research Institute, Michigan Technological University, Houghton, Michigan, USA.,Department of Environmental Engineering, Michigan Technological University, Houghton, Michigan, USA
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Melissa Holstein
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Hasin Feroz
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Swarnim Ranjan
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol Myers Squibb, Devens, Massachusetts, USA
| | - Caryn L Heldt
- Department of Chemical Engineering, Michigan Technological University, Houghton, Michigan, USA.,Health Research Institute, Michigan Technological University, Houghton, Michigan, USA
| |
Collapse
|