1
|
León A, Sallaberry I, Fuster RG, Sotelo FB, Aparicio GI, Estrada LC, Scorticati C. Non-synonymous single nucleotide polymorphisms (nsSNPs) within the extracellular domains of the GPM6A gene impair hippocampal neuron development. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119913. [PMID: 39938689 DOI: 10.1016/j.bbamcr.2025.119913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/31/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025]
Abstract
Psychiatric disorders are complex pathologies influenced by both environmental and genetic factors, ultimately leading to synaptic plasticity dysfunction. Altered expression levels of neuronal glycoprotein GPM6a or polymorphisms within the GPM6A gene are associated with neuropsychiatric disorders like schizophrenia, depression, and claustrophobia. This protein promotes neurite outgrowth, filopodia formation, dendritic spine, and synapse maintenance in vitro. Although strong evidence suggests that its extracellular domains (ECs) are responsible for its function, the molecular mechanisms linking GPM6a to the onset of such diseases remain unknown. To gain knowledge of these mechanisms, we characterized new non-synonymous polymorphisms (nsSNPs) within the ECs of GPM6a. We identified six nsSNPs (T71P, T76I, M154V, F156Y, R163Q, and T210N) that impair GPM6a-induced plasticity in neuronal cultures without affecting GPM6a expression, folding, and localization to the cell membrane. However, we observed that some of these modified GPM6a's distribution at the cell membrane. Additionally, one of the nsSNPs exhibited alterations in GPM6a oligomerization, highlighting the importance of this amino acid in establishing homophilic cis interactions. Furthermore, we observed that the ability of GPM6a's extracellular domains to interact and induce cell aggregation was significantly decreased in several of the nsSNP variants studied here. Altogether, these results provide new insights into the key residues within GPM6a's extracellular regions that are crucial for its self-association, which is essential for promoting neuronal morphogenesis. Besides, these findings highlight the importance of reverse genetics approaches to gain knowledge on GPM6a's mechanisms of action and the genetic susceptibility of certain GPM6A variants.
Collapse
Affiliation(s)
- Antonella León
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Ignacio Sallaberry
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física y CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| | - Rocío Gutiérrez Fuster
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Facundo Brizuela Sotelo
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina
| | - Gabriela Inés Aparicio
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| | - Laura Cecilia Estrada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física y CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| | - Camila Scorticati
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, San Martín, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Hai-Na Z, Jun-Jie J, Guang-Meng X. Peptides derived from growth factors: Exploring their diverse impact from antimicrobial properties to neuroprotection. Biomed Pharmacother 2024; 176:116830. [PMID: 38824833 DOI: 10.1016/j.biopha.2024.116830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/21/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Growth factor-derived peptides are bioactive molecules that play a crucial role in various physiological processes within the human body. Over the years, extensive research has revealed their diverse applications, ranging from antimicrobial properties to their potential in neuroprotection and treating various diseases. These peptides exhibit innate immune responses and have been found to possess potent antimicrobial properties against a wide range of pathogens. Growth factor-derived peptides have demonstrated the ability to promote neuronal survival, prevent cell death, and stimulate neural regeneration. As a result, they hold immense promise in the treatment of various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, as well as in the management of traumatic brain injuries. Moreover, growth factor-derived peptides have shown potential for supporting tissue repair and wound healing processes. By enhancing cell proliferation and migration, these peptides contribute to the regeneration of damaged tissues and promote a more efficient healing response. The applications of growth factor-derived peptides extend beyond their therapeutic potential in health; they also have a role in various disease conditions. For example, researchers have explored their influence on cancer cells, where some peptides have demonstrated anti-cancer properties, inhibiting tumor growth and promoting apoptosis in cancer cells. Additionally, their immunomodulatory properties have been investigated for potential applications in autoimmune disorders. Despite the immense promise shown by growth factor-derived peptides, some challenges need to be addressed. Nevertheless, ongoing research and advancements in biotechnology offer promising avenues to overcome these obstacles. The review summarizes the foundational biology of growth factors and the intricate signaling pathways in various physiological processes as well as diseases such as cancer, neurodegenerative disorders, cardiovascular ailments, and metabolic syndromes.
Collapse
Affiliation(s)
- Zhang Hai-Na
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Jiang Jun-Jie
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun 130000, PR China
| | - Xu Guang-Meng
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, PR China.
| |
Collapse
|
3
|
Martina CE, Crowe JE, Meiler J. Glycan masking in vaccine design: Targets, immunogens and applications. Front Immunol 2023; 14:1126034. [PMID: 37033915 PMCID: PMC10076883 DOI: 10.3389/fimmu.2023.1126034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/28/2023] [Indexed: 04/11/2023] Open
Abstract
Glycan masking is a novel technique in reverse vaccinology in which sugar chains (glycans) are added on the surface of immunogen candidates to hide regions of low interest and thus focus the immune system on highly therapeutic epitopes. This shielding strategy is inspired by viruses such as influenza and HIV, which are able to escape the immune system by incorporating additional glycosylation and preventing the binding of therapeutic antibodies. Interestingly, the glycan masking technique is mainly used in vaccine design to fight the same viruses that naturally use glycans to evade the immune system. In this review we report the major successes obtained with the glycan masking technique in epitope-focused vaccine design. We focus on the choice of the target antigen, the strategy for immunogen design and the relevance of the carrier vector to induce a strong immune response. Moreover, we will elucidate the different applications that can be accomplished with glycan masking, such as shifting the immune response from hyper-variable epitopes to more conserved ones, focusing the response on known therapeutic epitopes, broadening the response to different viral strains/sub-types and altering the antigen immunogenicity to elicit higher or lower immune response, as desired.
Collapse
Affiliation(s)
- Cristina E. Martina
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jens Meiler
- Department of Chemistry, Vanderbilt University, Nashville, TN, United States
- Center for Structural Biology, Vanderbilt University, Nashville, TN, United States
- Institute for Drug Discovery, Leipzig University Medical School, Leipzig, Germany
| |
Collapse
|
4
|
Rahmani N, Mohammadi M, Manaheji H, Maghsoudi N, Katinger H, Baniasadi M, Zaringhalam J. Carbamylated erythropoietin improves recognition memory by modulating microglia in a rat model of pain. Behav Brain Res 2022; 416:113576. [PMID: 34506840 DOI: 10.1016/j.bbr.2021.113576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 09/04/2021] [Accepted: 09/04/2021] [Indexed: 11/18/2022]
Abstract
Patients with chronic pain often complain about memory impairments. Experimental studies have shown neuroprotective effects of Carbamylated erythropoietin (Cepo-Fc) in the treatment of cognitive dysfunctions. However, little is currently known about its precise molecular mechanisms in a model of inflammatory pain. Therefore, this study aimed to investigate neuroprotective effects of Cepo-Fc against cognitive impairment induced by the inflammatory model of Complete Freund's Adjuvant (CFA). Carbamylated erythropoietin was administrated Intraperitoneally (i.p) on the day CFA injection, continued for a 21-days period. After conducting the behavioral tests (thermal hyperalgesia and novel object recognition test), western blot and ELISA were further preformed on days 0, 7, and 21. The results of this study indicate that Cepo-Fc can effectively reverse the CFA induced thermal hyperalgesia and recognition memory impairment. Additionally, Cepo-Fc noticeably decreased the hippocampal microglial expression, production of hippocampal IL-1β, and hippocampal apoptosis and necroptosis induced by the inflammatory pain. Therefore, our findings suggest that neuroprotective effects of Cepo-Fc in the treatment of pain related recognition memory impairment may be mediated through reducing hippocampal microglial expression as well as IL-1β production.
Collapse
Affiliation(s)
- Nasser Rahmani
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mola Mohammadi
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Homa Manaheji
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nader Maghsoudi
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hermann Katinger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Mansoureh Baniasadi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Zaringhalam
- Physiology Department, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Neurophysiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Introducing the brain erythropoietin circle to explain adaptive brain hardware upgrade and improved performance. Mol Psychiatry 2022; 27:2372-2379. [PMID: 35414656 PMCID: PMC9004453 DOI: 10.1038/s41380-022-01551-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 12/30/2022]
Abstract
Executive functions, learning, attention, and processing speed are imperative facets of cognitive performance, affected in neuropsychiatric disorders. In clinical studies on different patient groups, recombinant human (rh) erythropoietin (EPO) lastingly improved higher cognition and reduced brain matter loss. Correspondingly, rhEPO treatment of young rodents or EPO receptor (EPOR) overexpression in pyramidal neurons caused remarkable and enduring cognitive improvement, together with enhanced hippocampal long-term potentiation. The 'brain hardware upgrade', underlying these observations, includes an EPO induced ~20% increase in pyramidal neurons and oligodendrocytes in cornu ammonis hippocampi in the absence of elevated DNA synthesis. In parallel, EPO reduces microglia numbers and dampens their activity and metabolism as prerequisites for undisturbed EPO-driven differentiation of pre-existing local neuronal precursors. These processes depend on neuronal and microglial EPOR. This novel mechanism of powerful postnatal neurogenesis, outside the classical neurogenic niches, and on-demand delivery of new cells, paralleled by dendritic spine increase, let us hypothesize a physiological procognitive role of hypoxia-induced endogenous EPO in brain, which we imitate by rhEPO treatment. Here we delineate the brain EPO circle as working model explaining adaptive 'brain hardware upgrade' and improved performance. In this fundamental regulatory circle, neuronal networks, challenged by motor-cognitive tasks, drift into transient 'functional hypoxia', thereby triggering neuronal EPO/EPOR expression.
Collapse
|
6
|
Cho B, Yoo SJ, Kim SY, Lee CH, Lee YI, Lee SR, Moon C. Second-generation non-hematopoietic erythropoietin-derived peptide for neuroprotection. Redox Biol 2021; 49:102223. [PMID: 34953452 PMCID: PMC8715119 DOI: 10.1016/j.redox.2021.102223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 12/25/2022] Open
Abstract
Erythropoietin (EPO) is a well-known erythropoietic cytokine having a tissue-protective effect in various tissues against hypoxic stress, including the brain. Thus, its recombinants may function as neuroprotective compounds. However, despite considerable neuroprotective effects, the EPO-based therapeutic approach has side effects, including hyper-erythropoietic and tumorigenic effects. Therefore, some modified forms and derivatives of EPO have been proposed to minimize the side effects. In this study, we generated divergently modified new peptide analogs derived from helix C of EPO, with several amino acid replacements that interact with erythropoietin receptors (EPORs). This modification resulted in unique binding potency to EPOR. Unlike recombinant EPO, among the peptides, ML1-h3 exhibited a potent neuroprotective effect against oxidative stress without additional induction of cell-proliferation, owing to a differential activating mode of EPOR signaling. Furthermore, it inhibited neuronal death and brain injury under hypoxic stress in vitro and in an in vivo ischemic brain injury model. Therefore, the divergent modification of EPO-derivatives for affinity to EPOR could provide a basis for a more advanced and optimal neuroprotective strategy. Short peptides derived from helix C of EPO have a neuroprotective effect. Divergent modification of EPO-derived peptides has a differential affinity to EPOR. ML1 and its analogs have differential cell protective and proliferative effects. ML1-h3 protects neurons by suppressing in vitro oxidative stress. ML1-h3 mitigates brain injury in the in vivo mouse ischemic model without hematopoietic effect.
Collapse
Affiliation(s)
- Bongki Cho
- Department of Brain & Cognitive Sciences, Graduate School, DGIST, Daegu, 42988, South Korea; Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea; Division of Biotechnology, DGIST, Daegu, 42988, South Korea
| | - Seung-Jun Yoo
- Department of Brain & Cognitive Sciences, Graduate School, DGIST, Daegu, 42988, South Korea; Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea
| | - So Yeon Kim
- Department of Brain & Cognitive Sciences, Graduate School, DGIST, Daegu, 42988, South Korea; Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea
| | - Chang-Hun Lee
- Department of New Biology, DGIST, Daegu, 42988, South Korea; New Biology Research Center, DGIST, Daegu, 42988, South Korea
| | - Yun-Il Lee
- Division of Biotechnology, DGIST, Daegu, 42988, South Korea
| | - Seong-Ryong Lee
- Department of Pharmacology and ODR Center, Brain Research Institute, School of Medicine, Keimyung University, Daegu, 42601, South Korea.
| | - Cheil Moon
- Department of Brain & Cognitive Sciences, Graduate School, DGIST, Daegu, 42988, South Korea; Convergence Research Advanced Centre for Olfaction, DGIST, Daegu, 42988, South Korea.
| |
Collapse
|
7
|
Torres-Obreque KM, Meneguetti GP, Muso-Cachumba JJ, Feitosa VA, Santos JHPM, Ventura SPM, Rangel-Yagui CO. Building better biobetters: From fundamentals to industrial application. Drug Discov Today 2021; 27:65-81. [PMID: 34461236 DOI: 10.1016/j.drudis.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Biological drugs or biopharmaceuticals off patent open a large market for biosimilars and biobetters, follow-on biologics. Biobetters, in particular, are new drugs designed from existing ones with improved properties such as higher selectivity, stability, half-life and/or lower toxicity/immunogenicity. Glycosylation is one of the most used strategies to improve biological drugs, nonetheless bioconjugation is an additional alternative and refers to the covalent attachment of polymers to biological drugs. Extensive research on novel polymers is underway, nonetheless PEGylation is still the best alternative with the longest clinical track record. Innovative trends based on genetic engineering techniques such as fusion proteins and PASylation are also promising. In this review, all these alternatives wereexplored as well as current market trends, legislation and future perspectives.
Collapse
Affiliation(s)
- Karin M Torres-Obreque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna P Meneguetti
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Bionanomanufacturing Center, Institute for Technological Research (IPT), São Paulo, Brazil
| | - Jorge J Muso-Cachumba
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Valker A Feitosa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Bionanomanufacturing Center, Institute for Technological Research (IPT), São Paulo, Brazil
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sónia P M Ventura
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlota O Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|