1
|
Pandey K, Dasgupta CN. Role of nanobionics to improve the photosynthetic productivity in plants and algae: an emerging approach. 3 Biotech 2025; 15:74. [PMID: 40060293 PMCID: PMC11885746 DOI: 10.1007/s13205-025-04244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/16/2025] [Indexed: 04/13/2025] Open
Abstract
The domain of nanobionics has gained attention since its inception due to its potential applicability in plant, microalgal treatments, productivity enhancement. This review compares the intake and mobilization of nanoparticles (NPs) in plant and algal cell. In plants, NPs enter from root or other openings, and then carried by apoplastic or symplastic transport and accumulated in various parts, whereas in algae, NPs enter via endocytosis, passive transmission pathways, traverse the algal cell cytoplasm. This study demonstrated the mechanisms of metal-based NPs such as zinc (Zn), silver (Ag), iron (Fe), copper (Cu), titanium (Ti), and silica (Si) for seed priming or plant treatments to improve productivity. These metal NPs are used as nano-fertilizer for plant growths. It has also been observed that these NPs can reduce pathogenic infection and help to cope up with environmental stresses including heavy metals contamination such as arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). Overall, the photosynthetic productivity increases through NPs as it increases ability to enhance light capture, improve electron transport, and optimize carbon fixation pathways and withstand stresses. These advancements not only elevate biomass production in plant improving agricultural output but also support the sustainable generation of biofuels and bioproducts from algae.
Collapse
Affiliation(s)
- Komal Pandey
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh 226028 India
| | - Chitralekha Nag Dasgupta
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh 226028 India
| |
Collapse
|
2
|
Gad ES, Salem SS, Selim S, Almuhayawi MS, Alruhaili MH, Al Jaouni SK, Saddiq AA, Owda ME. A comprehensive study on characterization of biosynthesized copper-oxide nanoparticles, their capabilities as anticancer and antibacterial agents, and predicting optimal docking poses into the cavity of S. aureus DHFR. PLoS One 2025; 20:e0319791. [PMID: 40168419 PMCID: PMC11960894 DOI: 10.1371/journal.pone.0319791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/08/2025] [Indexed: 04/03/2025] Open
Abstract
The eco-friendly method of producing copperـoxide nanoparticles through the use of okra fruit extract is a simple, economical, rapid, and sustainable technique. The resultant copperـoxide nanoparticles (CuO NP) were analyzed with several analytical methods, such as UV-vis spectroscopy, FourierـTransform Infrared Spectroscopy (FT-IR), and X-Ray Diffraction (XRD), Zeta potential, TransmissionـElectron Microscopy (TEM) and EnergyـDispersive X-ray (EDX) analysis. The CuO NP exhibited a maximum absorbance at 381 nm. The formation of CuO NP was further confirmed by characteristic bands observed at 534 and 588 cm-1. The monoclinic structure of the CuO NP was identified with prominent peaks detected at 2θ values of 32.47°, 35.43°, 38.64°, 48.68°, 53.38°, 58.14°, 61.39°, 66.11°, 67.82°, 72.27°, and 74.96°. The overall findings indicate that the nanoparticles had an average diameter in the approximate range of 10 to 30 nm based on the TEM analysis. The cytotoxicity study, conducted on Human Fibroblast normal HFB4 cell lines, indicated that the halfـmaximal inhibitory concentration (IC50) dose was 236.34 μg/mL. An IC50 dose of 109.46 μg/mL was found in antitumor effect studies using breast adenocarcinoma Mcf- 7 cell lines, revealing a good level of safety for CuO NP. According to the antibacterial study, Staphylococcus aureus and Bacillus cereus had inhibition zone diameters (IZDs) of 29.5 ± 0.7 mm and 24.6 ± 1.2 mm, respectively, making them the most vulnerable bacteria to CuO NP. In contrast, P. aeruginosa was the least sensitive strain, with a minimum IZD of 15 ± 1.6 mm. Compared to gram-negative infections, the CuO NPs were found to have a significantly higher antibacterial effectiveness versus Gram -positive pathogens. Molecular docking against dihydrofolate reductase (DHFR) of Staphylococcus aureus (PDB ID: 6P9Z) illustrated that the CuO NP was partially interlocked with the active site of 6P9Z by the fitting energy value of -44.93 kcal/mol through five classical hydrogen bonds with Ala7, Gln9, Thr46, Ser49, and Phe92. The last one is also generated by the marketing antifolate agent methotrexate (MTX), adding some MTX-like character to the CuO NP inhibitor.
Collapse
Affiliation(s)
- Ehab S. Gad
- Department of Chemistry, College of Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Salem S. Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammed H. Alruhaili
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agents Unit, King Fahad Medical Research Center, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology and Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amna A. Saddiq
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Medhat E. Owda
- Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Suliman AA, El-Dewiny CY, Soliman MKY, Salem SS. Investigation of the Effects of Applying Bio-Magnesium Oxide Nanoparticle Fertilizer to Moringa Oleifera Plants on the Chemical and Vegetative Properties of the Plants' leaves. Biotechnol J 2025; 20:e202400536. [PMID: 40059570 DOI: 10.1002/biot.202400536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 05/13/2025]
Abstract
Magnesium (Mg) is necessary for plants as a structural element or an enzyme cofactor. It also plays a significant role in the light and dark responses of photosynthesis. Moringa plants are considered one of the most important medicinal plants that humans need for nutrition. The aim of the study is to provide Mg to plants in an easy and simple way. Therefore, it is widely available in human food due to its nutritional importance. In this experiment, the treatment was done on the Moringa plant as, one of the medicinal plants that is increasingly used in fresh form. The experiment was conducted at the research farm of the National Research Center. Magnesium oxide has been extracted and prepared in a natural way that is safe for humans, plants, and soil. Trichoderma viride filtrate was used as a chelating agent in an environmentally friendly process to create magnesium oxide nanoparticle (MgO-NPs). FTIR, TEM, and SEM-EDX were utilized to analyze and characterize the synthesized. Plants were treated with different doses to determine the optimal concentration for the plant. The effect of treatment on plants was to improve vegetation such, as a number of leaves (232.15), leaf area (273.97 cm2), and fresh weight (3693.17 g). It also increased dry matter in the plant (171.8 g), chemical properties, and elements.
Collapse
Affiliation(s)
- Ahmed A Suliman
- Horticultural Crops Technology Department, National Research Centre, Giza, Egypt
| | | | - Mohamed K Y Soliman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Qin M, Yan J, Li R, Jia T, Sun X, Liu Z, El-Sheikh MA, Ahmad P, Liu P. Integrated physiological, transcriptomic, and metabolomic investigation reveals that MgO NPs mediate the alleviation of cadmium stress in tobacco seedlings through ABA-regulated lignin synthesis. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136693. [PMID: 39616846 DOI: 10.1016/j.jhazmat.2024.136693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 01/28/2025]
Abstract
The harmful influence caused by cadmium (Cd) to agriculture is severe and enduring. Efforts to reduce the damage by Cd to crop is an important topic. In this study, we investigated the effect of MgO NPs on tobacco seedlings' growth under Cd stress and explored its mechanism. Results showed Cd inhibited seedling growth, but MgO NPs alleviated this toxicity. With MgO NPs, shoot and root fresh weight increased by 35.12 % and 45.73 %. This was mainly due to MgO NPs reducing Cd accumulation by 40 % in root and 20.48 % in shoot compared to Cd treatment. MgO NPs not only reduced Cd accumulation but redistributed it to inactive cell walls: up to 55 % in shoot and 22 % in root (compared to 47 % and 22 % in Cd treatment). The primary mechanism was the change in cell wall's main ingredient: lignin. MgO NPs increased lignin content by 50.62 % compared to Cd treatment. To further investigate the underlying molecular mechanism, multi-omics analysis was conducted. Comparing Cd + MgO NPs with Cd, 1358 DEGs (694 up, 664 down) and 160 DEMs (44 up, 116 down) were identified. Furthermore, we identified ABA-regulated phenylpropanoid pathway as the key mechanism for lignin synthesis. MgO NPs boosted ABA levels by 6.72 % compared to Cd treatment. The multi-omics analysis revealed upregulation of ABA synthesis and signal transduction, leading to increased phenylpropanoid pathway metabolites and gene expressions. Notably, POD, a key enzyme, increased by 92.05 %. It was concluded that MgO NPs represent a highly efficient alternative for enhancing plant resistance to Cd.
Collapse
Affiliation(s)
- Mengzhan Qin
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Jiyuan Yan
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Runze Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Tao Jia
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Xiaodong Sun
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China
| | - Mohamed A El-Sheikh
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Parvaiz Ahmad
- Department of Botany, GDC, Pulwama 192301, Jammu and Kashmir, India
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, Shandong province, China.
| |
Collapse
|
5
|
Soliman MKY, Amin MAA, Nowwar AI, Hendy MH, Salem SS. Green synthesis of selenium nanoparticles from Cassia javanica flowers extract and their medical and agricultural applications. Sci Rep 2024; 14:26775. [PMID: 39500933 PMCID: PMC11538282 DOI: 10.1038/s41598-024-77353-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Nanostructured materials are advantageous within numerous fields of medicine owing to their intriguing qualities, which include their size, reactive surface, bioactivity, potential for modification, and optical characteristics. Cassia javanica flower extract was used as a chelating agent in an environmentally friendly process to create SeNPs FTIR, XRD, and TEM, SAED were utilized to analyze and characterize the synthesized. The findings showed that the MIC of Se NPs against B. subtilis and S. aureus was 500 µg/ml. Conversely, the MIC for P. aeruginosa, E. coli, and C. albicans were 125, 250, and 62.5 µg/ml, respectively. Hence, SeNPs considerably reduced the activity; the inhibition peaked at 77.6% at 250 µg/ml to reach 49.04% at 7.8 µg/ml. Which showed the greatest suppression of MRSA biofilm formation without affecting bacterial growth. SeNPs showed an intriguing antioxidant capacity, achieving an IC50 of 53.34 µg/ml. This study looked how soaking seeds before sowing them with Se NPs at 50, 100, and 200 ppm affected the plants' development in different parameters, as well as their yield of Vicia faba L. The growth conditions were effectively increased by soaking application of various quantities of Se NPs. The highest values of dry weight/pod (g), number of seeds/plant, weight of 100 seeds (g), and number of pods/plant were caused by high concentrations of Se NPs, by 28.43, 89.60, 18.20, and 94.11%, respectively.
Collapse
Affiliation(s)
- Mohamed K Y Soliman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mohamed Abdel-Aal Amin
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Abdelatti Ibrahim Nowwar
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Mahmoud H Hendy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
6
|
Tolisano C, Priolo D, Brienza M, Puglia D, Del Buono D. Do Lignin Nanoparticles Pave the Way for a Sustainable Nanocircular Economy? Biostimulant Effect of Nanoscaled Lignin in Tomato Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:1839. [PMID: 38999679 PMCID: PMC11243829 DOI: 10.3390/plants13131839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
Agriculture has a significant environmental impact and is simultaneously called to major challenges, such as responding to the need to develop more sustainable cropping systems with higher productivity. In this context, the present study aimed to obtain lignin nanoparticles (LNs) from pomace, a waste product of the olive oil chain, to be used as a nanobiostimulant in tomato plants. The biostimulant effect of this biopolymer is known, but its reduction to nanometer size can emphasize this property. Tomato plants were subjected to different LN dosages (25, 50, and 100 mg L-1) by foliar application, and inductive effects on photosynthetic machinery, aerial and root biomass production, and root morphology were observed. The treated plants showed increased efficiency in catching and using light, while they reduced the fraction dissipated as heat or potentially toxic to cells for the possibility of creating reactive oxygen species (ROS). Finally, this benefit was matched by increased pigment content and a stimulatory action on the content of nitrogen (NBI) and antioxidant substances such as flavonoids. In conclusion, the present study broadens the horizon of substances with biostimulant action by demonstrating the validity and efficacy of nanobiostimulants obtained from biological residues from the olive oil production chain.
Collapse
Affiliation(s)
- Ciro Tolisano
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Dario Priolo
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Borgo XX Giugno 74, 06121 Perugia, Italy
| | - Monica Brienza
- Dipartimento di Scienze, Università degli Studi della Basilicata, Via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Debora Puglia
- Department of Civil and Environmental Engineering, University of Perugia, Strada di Pentima 5, 05100 Terni, Italy
| | - Daniele Del Buono
- Department of Civil and Environmental Engineering, University of Perugia, Strada di Pentima 5, 05100 Terni, Italy
| |
Collapse
|
7
|
Almahdy AG, El-Sayed A, Eltarahony M. A novel functionalized CuTi hybrid nanocomposites: facile one-pot mycosynthesis, characterization, antimicrobial, antibiofilm, antifouling and wastewater disinfection performance. Microb Cell Fact 2024; 23:148. [PMID: 38783243 PMCID: PMC11112895 DOI: 10.1186/s12934-024-02400-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND The continuous progress in nanotechnology is rapid and extensive with overwhelming futuristic aspects. Through modernizing inventive synthesis protocols, a paradigm leapfrogging in novelties and findings are channeled toward fostering human health and sustaining the surrounding environment. Owing to the overpricing and jeopardy of physicochemical synthesizing approaches, the quest for ecologically adequate schemes is incontestable. By developing environmentally friendly strategies, mycosynthesis of nanocomposites has been alluring. RESULTS Herein, a novel architecture of binary CuO and TiO2 in nanocomposites form was fabricated using bionanofactory Candida sp., for the first time. For accentuating the structural properties of CuTi nanocomposites (CuTiNCs), various characterization techniques were employed. UV-Vis spectroscopy detected SPR at 350 nm, and XRD ascertained the crystalline nature of a hybrid system. However, absorption peaks at 8, 4.5, and 0.5 keV confirmed the presence of Cu, Ti and oxygen, respectively, in an undefined assemblage of polygonal-spheres of 15-75 nm aggregated in the fungal matrix of biomolecules as revealed by EDX, SEM and TEM. However, FTIR, ζ-potential and TGA reflected long-term stability (- 27.7 mV) of self-functionalized CuTiNCs. Interestingly, a considerable and significant biocide performance was detected at 50 µg/mL of CuTiNCs against some human and plant pathogens, compared to monometallic counterparts. Further, CuTiNCs (200 µg/mL) ceased significantly the development of Staphylococcus aureus, Pseudomonas aeruginosa and Candida albicans biofilms by 80.3 ± 1.4, 68.7 ± 3.0 and 55.7 ± 3.0%, respectively. Whereas, 64.63 ± 3.5 and 89.82 ± 4.3% antimicrofouling potentiality was recorded for 100 and 200 µg/ml of CuTiNCs, respectively; highlighting their destructive effect against marine microfoulers cells and decaying of their extracellular polymeric skeleton as visualized by SEM. Moreover, CuTiNCs (100 and 200 µg/ml) exerted significantly outstanding disinfection potency within 2 h by reducing the microbial load (i.e., total plate count, mold & yeast, total coliforms and faecal Streptococcus) in domestic and agricultural effluents reached >50%. CONCLUSION The synergistic efficiency provided by CuNPs and TiNPs in mycofunctionalized CuTiNCs boosted its recruitment as antiphytopathogenic, antibiofilm, antimicrofouling and disinfectant agent in various realms.
Collapse
Affiliation(s)
- Asmaa G Almahdy
- Botany and Microbiology Department, Faculty of science, Damietta University, Damietta, Egypt
| | - Ahmed El-Sayed
- Botany and Microbiology Department, Faculty of science, Damietta University, Damietta, Egypt
| | - Marwa Eltarahony
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El- Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
8
|
Liu J, Zhang N, Shen B, Zhang L, Zhang Z, Zhu L, Jiang L. Deinococcus wulumuqiensis R12 synthesized silver nanoparticles with peroxidase-like activity for synergistic antibacterial application. Biotechnol J 2024; 19:e2300584. [PMID: 38651247 DOI: 10.1002/biot.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
The use of a combination of several antibacterial agents for therapy holds great promise in reducing the dosage and side effects of these agents, improving their efficiency, and inducing potential synergistic therapeutic effects. Herein, this study provides an innovative antibacterial treatment strategy by synergistically combining R12-AgNPs with H2O2 therapy. R12-AgNPs were simply produced with the supernatant of an ionizing radiation-tolerant bacterium Deinococcus wulumuqiensis R12 by one-step under room temperature. In comparison with chemically synthesized AgNPs, the biosynthesized AgNPs presented fascinating antibacterial activity and peroxidase-like properties, which endowed it with the capability to catalyze the decomposition of H2O2 to generate hydroxyl radical. After the combination of R12-AgNPs and H2O2, an excellent synergistic bacteriostatic activity was observed for both Escherichia coli and Staphylococcus aureus, especially at low concentrations. In addition, in vitro cytotoxicity tests showed R12-AgNPs had good biocompatibility. Thus, this work presents a novel antibacterial agent that exhibits favorable synergistic antibacterial activity and low toxicity, without the use of antibiotics or a complicated synthesis process.
Collapse
Affiliation(s)
- Jingjia Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Nan Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Liling Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, P.R. China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, P.R. China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
9
|
Elkady FM, Hashem AH, Salem SS, El-Sayyad GS, Tawab AA, Alkherkhisy MM, Abdulrahman MS. Unveiling biological activities of biosynthesized starch/silver-selenium nanocomposite using Cladosporium cladosporioides CBS 174.62. BMC Microbiol 2024; 24:78. [PMID: 38459502 PMCID: PMC10921769 DOI: 10.1186/s12866-024-03228-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 02/18/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Microbial cells capability to tolerate the effect of various antimicrobial classes represent a major worldwide health concern. The flexible and multi-components nanocomposites have enhanced physicochemical characters with several improved properties. Thus, different biological activities of biosynthesized starch/silver-selenium nanocomposite (St/Ag-Se NC) were assessed. METHODOLOGY The St/Ag-Se NC was biosynthesized using Cladosporium cladosporioides CBS 174.62 (C. cladosporioides) strain. The shape and average particle size were investigated using scanning electron microscope (SEM) and high-resolution transmission electron microscope (HR-TEM), respectively. On the other hand, the St/Ag-Se NC effect on two cancer cell lines and red blood cells (RBCs) was evaluated and its hydrogen peroxide (H2O2) scavenging effect was assessed. Moreover, its effects on various microbial species in both planktonic and biofilm growth forms were examined. RESULTS The St/Ag-Se NC was successfully biosynthesized with oval and spherical shape and a mean particle diameter of 67.87 nm as confirmed by the HR-TEM analysis. St/Ag-Se NC showed promising anticancer activity toward human colorectal carcinoma (HCT-116) and human breast cancer (MCF-7) cell lines where IC50 were 21.37 and 19.98 µg/ml, respectively. Similarly, little effect on RBCs was observed with low nanocomposite concentration. As well, the highest nanocomposite H2O2 scavenging activity (42.84%) was recorded at a concentration of 2 mg/ml. Additionally, Staphylococcus epidermidis (S. epidermidis) ATCC 12,228 and Candida albicans (C. albicans) ATCC 10,231 were the highly affected bacterial and fungal strains with minimum inhibitory concentrations (MICs) of 18.75 and 50 µg/ml, respectively. Moreover, the noticeable effect of St/Ag-Se NC on microbial biofilm was concentration dependent. A high biofilm suppression percentage, 87.5% and 68.05%, were recorded with S. epidermidis and Staphylococcus aureus (S. aureus) when exposed to 1 mg/ml and 0.5 mg/ml, respectively. CONCLUSION The biosynthesized St/Ag-Se NC showed excellent antioxidant activity, haemocompatibility, and anti-proliferative effect at low concentrations. Also, it exhibited promising antimicrobial and antibiofilm activities.
Collapse
Affiliation(s)
- Fathy M Elkady
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| | - Amr H Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt.
| | - Gharieb S El-Sayyad
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian (ACU), Giza, Egypt.
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt.
- Drug Microbiology Lab., Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Ahmed Abdel Tawab
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammad M Alkherkhisy
- Department of Microbiology and Immunology, Faculty of Medicine, Al-Azhar University, Cairo, 11884, Egypt
| | - Mohammed S Abdulrahman
- Microbiology and Immunology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, 11884, Egypt
| |
Collapse
|
10
|
Samuditha PS, Adassooriya NM, Salim N. Assessing phytotoxicity and tolerance levels of ZnO nanoparticles on Raphanus sativus: implications for widespread adoptions. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:115-125. [PMID: 38293272 PMCID: PMC10825799 DOI: 10.3762/bjnano.15.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024]
Abstract
The escalating release of zinc oxide nanoparticles (ZnO NPs) into the environment poses a substantial threat, potentially leading to increased concentrations of zinc (Zn) in the soil and subsequent phytotoxic effects. This study aimed to assess the effects of ZnO NPs on Raphanus sativus (R. sativus) concerning its tolerance levels, toxicity, and accumulation. ZnO NPs were synthesized by the wet chemical method and characterized by powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) spectroscopy, dynamic light scattering (DLS), and scanning electron microscopy (SEM). The effect of ZnO NPs (70 nm) on R. sativus grown in coir was evaluated. The application of 1,000 mg/L of ZnO NPs resulted in a significant increase (p < 0.05) in soluble protein content, carbohydrates, chlorophyll a (Chl-a), chlorophyll b (Chl-b), total chlorophylls, carotenoids, and antioxidants by 24.7%, 58.5%, 38.0%, 42.2%, 39.9%, 11.2%, and 7.7%, respectively. Interestingly, this dose had no impact on the indole acetic acid (IAA) content. Conversely, the use of 2,000 mg/L of ZnO NPs in the same medium led to a significant reduction (p < 0.05) in soluble protein content by 23.1%, accompanied by a notable increase in IAA by 31.1%, indicating potential toxicity. The use of atomic absorption spectroscopy confirmed the internalization of zinc in seedlings, with a statistically significant increase (p < 0.05). In control plants without ZnO NPs, Zn concentration was 0.36 mg/g, while at the highest ZnO NPs tested dose of 10,000 mg/L, it significantly rose to 1.76 mg/g, causing leaf chlorosis and stunted seedling growth. This suggests potential health risks related to Zn toxicity for consumers. Given the adverse effects on R. sativus at concentrations above 1000 mg/L, caution is advised in the application and release of ZnO NPs, highlighting the importance of responsible practices to mitigate harm to plant life and consumer health. The study demonstrated the tolerance of R. sativus to high Zn levels, classifying it as a Zn-tolerant species.
Collapse
Affiliation(s)
| | - Nadeesh Madusanka Adassooriya
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - Nazeera Salim
- Department of Botany, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|