1
|
Rajendran J, K J, M S S, Alluri LD, Giri J. Bioinspired silk protein modification to develop instant dissolvable microneedles with superior mechanical properties and long-term biomolecule stabilization. J Mater Chem B 2025. [PMID: 40390689 DOI: 10.1039/d4tb02836h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Dissolvable microneedles (DMNs) obtained from silk proteins have been considered most promising due to the biocompatibility, tuneable mechanical properties, and superior biomolecule stabilization properties of their silk matrix, required for cold chain-free storage and transport of therapeutic biomolecules and vaccines. However, despite their excellent potential, silk-based microneedles with instant dissolvability, superior mechanical properties, and storage stability have not yet been reported. Reported DMNs prepared with <5% silk concentration without β-sheets show poor mechanical and storage stability. Conversely, silk MNs prepared using <5% silk treated with an organic solvent or >5% silk may have sufficient mechanical properties but lose their instant dissolubility due to β-sheet formation during solvent treatment and storage, respectively. Thus, herein, we address these challenges for the first time via the biomimetic modification of silk proteins to mimic the molecular structure of human serum albumin (HSA) and silk protein molecules in the silk gland lumen of silkworms, resulting in high solubility and low viscosity. Our biomimetic modified silk (MS) allowed us to prepare DMNs in higher concentrations (>10% w/v up to 20% w/v) with a stabilizing agent (>10% w/v), exhibiting superior mechanical properties of >45 N and instant dissolvability even after 6 months of storage at RT without inducing β-sheet formation. Furthermore, MS-DMN facilitated the exceptional storage stability of platelet-rich plasma (PRP) with >80% retention for six months when stored at 4 °C or 25 °C and >90% at 40 °C at 75% RH for one month, as confirmed through in vitro cell proliferation assay, in ova (CAM assay), and in vivo diabetic wound studies. Thus, our novel biomimetic MS-DMN exhibits superior mechanical properties and exceptional biomolecule storage stability, enabling potential cold chain-free preservation and transportation for various biomedical applications.
Collapse
Affiliation(s)
- Jayakumar Rajendran
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| | - Jeyashree K
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| | - Sujith M S
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| | - Lalitha Devi Alluri
- Department of Pharmacology, G. Pulla Reddy College of Pharmacy, Hyderabad, Telangana, 500028, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Telangana, 502284, India.
| |
Collapse
|
2
|
Schwingenschlögl-Maisetschläger V, Vila XM, Duman I, Okuducu C, Kuess P, Hacker M, Kraule C, Teuschl-Woller A, Pichler V. Sustainable and standardized fabrication, recycling, and sterilization of salt-bed casted silk fibroin sponges. Int J Biol Macromol 2025; 312:144212. [PMID: 40373911 DOI: 10.1016/j.ijbiomac.2025.144212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/17/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Silk fibroin, as a highly versatile biomaterial, is increasingly applied in research, medicine and other sterile applications. The rising usage calls for a robust, standardized and reproducible silk scaffold production and a higher need for silk resources. In this study we standardized the silk fibroin sponges fabrication, set up a quality control protocol, introduced a recycling method to reduce the resources needed and analyzed a sterilization method for translation into preclinical applications. In overall, the development of a fast and efficient quality control protocol led to a reduction in batch-to-batch variabilities. Recycling of silk remnants led to a significant reduction of required silk cocoons of approximately 40 %, with the silk scaffold offering similar product properties as the non-recycled sponges. With the introduction of the recycling trial, we correspond to the requirements for green biomaterials including waste reduction, life cycle introduction and a reduction of environmental impact. Under sterilization conditions, the silk scaffold demonstrated high stability proving that gamma sterilization can be used for bigger batch applications and medical translation. Our establishment of a recycling possibility can pave the way for broader, standardized and "greener" biomedical applications of silk fibroin.
Collapse
Affiliation(s)
- Verena Schwingenschlögl-Maisetschläger
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Xavier Monforte Vila
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
| | - Irem Duman
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| | - Ceren Okuducu
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Department of Obstetrics and Gynaecology, Medical University of Graz, Auenburggerplatz 14, 8036 Graz, Austria
| | - Peter Kuess
- Department of Radiation Oncology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Christian Kraule
- DOC medikus GmbH, Novomaticstraße 19, 2352 Gumpoldskirchen, Austria
| | - Andreas Teuschl-Woller
- Department Life Science Engineering, University of Applied Sciences Technikum Wien, Höchstädtplatz 6, 1200 Vienna, Austria
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria; Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria.
| |
Collapse
|
3
|
Libera V, Malaspina R, Bittolo Bon S, Cardinali MA, Chiesa I, De Maria C, Paciaroni A, Petrillo C, Comez L, Sassi P, Valentini L. Conformational transitions in redissolved silk fibroin films and application for printable self-powered multistate resistive memory biomaterials. RSC Adv 2024; 14:22393-22402. [PMID: 39010927 PMCID: PMC11248567 DOI: 10.1039/d4ra02830a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
3D printing of water stable proteins with elastic properties offers a broad range of applications including self-powered biomedical devices driven by piezoelectric biomaterials. Here, we present a study on water-soluble silk fibroin (SF) films. These films were prepared by mixing degummed silk fibers and calcium chloride (CaCl2) in formic acid, resulting in a silk I-like conformation, which was then converted into silk II by redissolving in phosphate buffer (PBS). Circular dichroism, Raman and infrared (IR) spectroscopies were used to investigate the transitions of secondary structure in silk I and silk II as the pH of the solvent and the sonication time were changed. We showed that a solvent with low pH (e.g. 4) maintains the silk I β-turn structure; in contrast solvent with higher pH (e.g. 7.4) promotes β-sheet features of silk II. Ultrasonic treatment facilitates the transition to water stable silk II only for the SF redissolved in PBS. SF from pH 7.4 solution has been printed using extrusion-based 3D printing. A self-powered memristor was realized, comprising an SF-based electric generator and an SF 3D-printed memristive unit connected in series. By exploiting the piezoelectric properties of silk II with higher β-sheet content and Ca2+ ion transport phenomena, the application of an input voltage driven by a SF generator to SF 3D printed holey structures induces a variation from an initial low resistance state (LRS) to a high resistance state (HRS) that recovers in a few minutes, mimicking the transient memory, also known as short-term memory. Thanks to this holistic approach, these findings can contribute to the development of self-powered neuromorphic networks based on biomaterials with memory capabilities.
Collapse
Affiliation(s)
- Valeria Libera
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia Via A. Pascoli 06123 Perugia Italy
| | - Rocco Malaspina
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia Via A. Pascoli 06123 Perugia Italy
| | - Silvia Bittolo Bon
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia Via A. Pascoli 06123 Perugia Italy
| | - Martina Alunni Cardinali
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Irene Chiesa
- Department of Ingegneria dell'Informazione, Research Center E. Piaggio, University of Pisa Largo Lucio Lazzarino 1 Pisa 56122 Italy
| | - Carmelo De Maria
- Department of Ingegneria dell'Informazione, Research Center E. Piaggio, University of Pisa Largo Lucio Lazzarino 1 Pisa 56122 Italy
| | - Alessandro Paciaroni
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia Via A. Pascoli 06123 Perugia Italy
| | - Caterina Petrillo
- Dipartimento di Fisica e Geologia, Università degli Studi di Perugia Via A. Pascoli 06123 Perugia Italy
| | - Lucia Comez
- CNR-IOM - Istituto Officina dei Materiali, National Research Council of Italy Via Alessandro Pascoli 06123 Perugia Italy
| | - Paola Sassi
- Department of Chemistry, Biology and Biotechnology, University of Perugia Via Elce di Sotto 8 06123 Perugia Italy
| | - Luca Valentini
- Civil and Environmental Engineering Department, INSTM Research Unit, University of Perugia Strada di Pentima 8 05100 Terni Italy
| |
Collapse
|
4
|
Li Y, Gong JY, Wang P, Fu H, Yousef F, Xie R, Wang W, Liu Z, Pan DW, Ju XJ, Chu LY. Dissolving microneedle system containing Ag nanoparticle-decorated silk fibroin microspheres and antibiotics for synergistic therapy of bacterial biofilm infection. J Colloid Interface Sci 2024; 661:123-138. [PMID: 38295695 DOI: 10.1016/j.jcis.2024.01.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 02/27/2024]
Abstract
Most cases of delayed wound healing are associated with bacterial biofilm infections due to high antibiotic resistance. To improve patient compliance and recovery rates, it is critical to develop minimally invasive and efficient methods to eliminate bacterial biofilms as an alternative to clinical debridement techniques. Herein, we develop a dissolving microneedle system containing Ag nanoparticles (AgNPs)-decorated silk fibroin microspheres (SFM-AgNPs) and antibiotics for synergistic treatment of bacterial biofilm infection. Silk fibroin microspheres (SFM) are controllably prepared in an incompatible system formed by a mixture of protein and carbohydrate solutions by using a mild all-aqueous phase method and serve as biological templates for the synthesis of AgNPs. The SFM-AgNPs exert dose- and time-dependent broad-spectrum antibacterial effects by inducing bacterial adhesion. The combination of SFM-AgNPs with antibiotics breaks the limitation of the antibacterial spectrum and achieves better efficacy with reduced antibiotic dosage. Using hyaluronic acid (HA) as the soluble matrix, the microneedle system containing SFM-AgNPs and anti-Gram-positive coccus drug (Mupirocin) inserts into the bacterial biofilms with sufficient strength, thereby effectively delivering the antibacterial agents and realizing good antibiofilm effect on Staphylococcus aureus-infected wounds. This work demonstrates the great potential for the development of novel therapeutic systems for eradicating bacterial biofilm infections.
Collapse
Affiliation(s)
- Yao Li
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jue-Ying Gong
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Po Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Han Fu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Faraj Yousef
- Department of Chemical Engineering, University of Chester, Chester CH1 4BJ, United Kingdom
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Da-Wei Pan
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Wang Y, Wang H, Lu B, Yu K, Xie R, Lan G, Xie J, Hu E, Lu F. A sandwich-like silk fibroin/polysaccharide composite dressing with continual biofluid draining for wound exudate management. Int J Biol Macromol 2023; 253:127000. [PMID: 37739294 DOI: 10.1016/j.ijbiomac.2023.127000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Optimal wound healing requires a wet microenvironment without over-hydration. Inspired by capillarity and transpiration, we have developed a sandwich-like fibers/sponge dressing with continuous exudate drainage to maintain appropriate wound moisture. This dressing is prepared by integrating a three-layer structure using the freeze-drying method. Layer I, as the side that contacts with the skin directly, consists of a hydrophobic silk fibroin membrane; Layer II, providing the pumping action, is made of superabsorbent chitosan-konjac glucomannan sponge; Layer III, accelerating evaporation sixfold compared to natural evaporation, is constructed with a graphene oxide soaked hydrophilic cellulose acetate membrane. Animal experiments showed that the composite dressing had superior wound-healing characteristics, with wounds decreasing to 24.8% of their original size compared to 28.5% for the commercial dressing and 43.2% for the control. The enhanced wound healing can be ascribed to the hierarchical porous structure serves as the fluid-driving factor in this effort; the hydrophilicity of a membrane composed of silk fibroin nanofibers is adjustable to regulate fluid-transporting capacity; and the photothermal effect of graphene oxide guarantees exudates that have migrated to the top layer to evaporate continuously. These findings indicate the unidirectional wicking dressing has the potential to become the next generation of clinical dressings.
Collapse
Affiliation(s)
- Yixin Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Haoyu Wang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Bitao Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Kun Yu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Guangqian Lan
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China
| | - Jing Xie
- Department of Stomatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Enling Hu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | - Fei Lu
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing 400715, China.
| |
Collapse
|
6
|
Lu H, Jian M, Gan L, Zhang Y, Li S, Liang X, Wang H, Zhu M, Zhang Y. Highly strong and tough silk by feeding silkworms with rare earth ion-modified diets. Sci Bull (Beijing) 2023; 68:2973-2981. [PMID: 37798179 DOI: 10.1016/j.scib.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/15/2023] [Accepted: 09/13/2023] [Indexed: 10/07/2023]
Abstract
Nature-derived silk fibers possess excellent biocompatibility, sustainability, and mechanical properties, yet producing strong and tough silk fibers in a facile and large-scale manner remains a significant challenge. Herein, we report a simple method for preparing strong and tough silk fibers by feeding silkworms rare earth ion-modified diets. The resulting silk fibers exhibit significantly increased tensile strength and toughness, with average values of 0.85 ± 0.07 GPa and 156 ± 13 MJ m-3, respectively, and maximum values of 0.97 ± 0.04 GPa and 188 ± 19 MJ m-3, approaching those of spider dragline silk. Our findings suggest that the incorporation of rare earth ions (La3+ or Eu3+) into the silk fibers contributes to this enhancement. Structure analysis reveals a reduction in content and an improvement in orientation of β-sheet nanocrystals in silk fibers. X-ray photoelectron spectroscopy analysis confirms the chemical interaction between rare earth ions with β-sheet nanocrystals. The structural evolution and chemical interactions lead to the simultaneous enhancement in both strength and toughness. This work presents a simple, scalable, and effective strategy for producing ultra-strong and tough silk fibers with potential applications in areas requiring super structural materials, such as personal protection and aerospace.
Collapse
Affiliation(s)
- Haojie Lu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Muqiang Jian
- Beijing Graphene Institute, Beijing 100095, China
| | - Linli Gan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shuo Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xiaoping Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haomin Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Mengjia Zhu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
7
|
Zhao P, Yang P, Zhou W, Liu H, Jin X, Zhu X. Injectable Sealants Based on Silk Fibroin for Fast Hemostasis and Wound Repairing. Adv Healthc Mater 2023; 12:e2301310. [PMID: 37531236 DOI: 10.1002/adhm.202301310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/17/2023] [Indexed: 08/04/2023]
Abstract
Uncontrollable blood loss poses fatality risks and most recently developed sealants still share common limitations on controversial components, degradability, mechanical strength or gelation time. Herein, series of injectable sealants based on silk fibroin (SF) is developed. Random coil/β-sheet conformation transition in SF is achieved by forming dendritic intermediates under induction of the structurally compatible and chemically complementary assembly peptide (Ac-KAEA-KAEA-KAEA-KAEA-NH2 , KA16 ). A ratio of 1:5 (KA-SF-15) shown an accelerating gelation process (≈12 s) and enhanced mechanical strength at physiological conditions. The interweaved nanofibers effectively impeded the bleeding within 30 s and no obvious adverse effects are observed. The supramolecular interactions and in vivo degradation benefit the inflammatory host cells infiltration and cytokines diffusion. Without any exogenous factors, the increased expression of VEGF and PDGF led to a positive feedback regulation on fibroblasts and vascular endothelial cell growth/proliferation and promoted the wound healing. These findings indicated the few assembly-peptide can accelerate fibroin gelation transition at a limited physiological condition, and the injectable amino acid-based sealants show obvious advantages on biocompatibility, degradability, rapid gelation and matched strength, with strong potential to act as next generation of biomedical materials.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Peilang Yang
- Department of Burn, Ruijin Hospital Affliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wei Zhou
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Haoyang Liu
- Shanghai World Foreign Language Academy, 400 Baihua Street, Shanghai, 200233, P. R. China
| | - Xin Jin
- State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xinyuan Zhu
- State Key Laboratory of Metal Matrix Composites, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Ceccarini M, Chiesa I, Ripanti F, Cardinali MA, Micalizzi S, Scattini G, De Maria C, Paciaroni A, Petrillo C, Comez L, Bertelli M, Sassi P, Pascucci L, Beccari T, Valentini L. Electrospun Nanofibrous UV Filters with Bidirectional Actuation Properties Based on Salmon Sperm DNA/Silk Fibroin for Biomedical Applications. ACS OMEGA 2023; 8:38233-38242. [PMID: 37867705 PMCID: PMC10586176 DOI: 10.1021/acsomega.3c04563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/23/2023] [Indexed: 10/24/2023]
Abstract
In this study, we dissolved Bombyx mori degummed silk [i.e., silk fibroin (SF)] and salmon sperm deoxyribonucleic acid (DNA) in water and used a bioinspired spinning process to obtain an electrospun nanofibrous SF-based patch (ESF). We investigated the bidirectional macroscale actuation behavior of ESF in response to water vapor and its UV-blocking properties as well as those of ESF/DNA films. Fourier transform infrared (FTIR) results suggest that the formation of β-sheet-rich structures promotes the actuation effect. ESF/DNA film with high-ordered and β-sheet-rich structures exhibits higher electrical conductivity and is water-insoluble. Given the intrinsic ability of both SF and DNA to absorb UV radiation, we performed biological experiments on the viability of keratinocyte HaCaT cells after exposure to solar spectrum components. Our findings indicate that the ESF/DNA patch is photoprotective and can increase the cellular viability of keratinocytes after UV exposure. Furthermore, we demonstrated that ESF/DNA patches treated with water vapor can serve as suitable scaffolds for tissue engineering and can improve tissue regeneration when cellularized with HaCaT cells. The 3D shape morphing capability of these patches, along with their potential as UV filters, could offer significant practical advantages in tissue engineering.
Collapse
Affiliation(s)
| | - Irene Chiesa
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Francesca Ripanti
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Martina Alunni Cardinali
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - Simone Micalizzi
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Gabriele Scattini
- Dipartimento
di Medicina Veterinaria, University of Perugia, Via S. Costanzo, 4, Perugia 06126, Italy
| | - Carmelo De Maria
- Department
of Ingegneria dell’Informazione and Research Center E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, Pisa 56122, Italy
| | - Alessandro Paciaroni
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Caterina Petrillo
- Dipartimento
di Fisica e Geologia, Università
degli Studi di Perugia, Via A. Pascoli, Perugia 06123, Italy
| | - Lucia Comez
- Istituto
Officina dei Materiali-IOM, National Research Council-CNR, Via Alessandro Pascoli, Perugia 06123, Italy
| | | | - Paola Sassi
- Department
of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, Perugia 06123, Italy
| | - Luisa Pascucci
- Dipartimento
di Medicina Veterinaria, University of Perugia, Via S. Costanzo, 4, Perugia 06126, Italy
| | - Tommaso Beccari
- Department
of Pharmaceutical Science, University of
Perugia, Perugia 06123, Italy
| | - Luca Valentini
- Civil
and Environmental Engineering Department and INSTM Research Unit, University of Perugia, Strada di Pentima 8, Terni 05100, Italy
| |
Collapse
|
9
|
Yang F, Cai B, Gu H, Wang F. Comparative Investigation on the Structure and Properties of Protein Films from Domestic and Wild Silkworms through Ultrasonic Regeneration. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
|
10
|
Sun R, Zheng R, Zhu W, Zhou X, Liu L, Cao H. Directed Self-Assembly of Heterologously Expressed Hagfish EsTKα and EsTKγ for Functional Hydrogel. Front Bioeng Biotechnol 2022; 10:960586. [PMID: 35935505 PMCID: PMC9354048 DOI: 10.3389/fbioe.2022.960586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Hagfish slime proteins have long been considered useful due to their potential applications in novel green, environmental, and functional bionic materials. The two main component proteins in the slime thread of hagfish, (opt)EsTKα and (opt)EsTKγ, were used as raw materials. However, the methods available to assemble these two proteins are time- and labor-intensive. The conditions affecting protein self-assembly, such as the pH of the assembly buffer, protein concentration, and the protein addition ratio, were the subject of the present research. Through a series of tests, the self-assembly results of a variety of assembly conditions were explored. Finally, a simplified protein self-assembly method was identified that allows for simple, direct assembly of the two proteins directly. This method does not require protein purification. Under the optimal assembly conditions obtained by exploration, a new gel material was synthesized from the hagfish protein through self-assembly of the (opt)EsTKα and (opt)EsTKγ. This assembly method has the benefits of being a simple, time-saving, and efficient. The self-assembled protein gel products were verified by SDS polyacrylamide gel electrophoresis (SDS-PAGE) and contained (opt)EsTKα and (opt)EsTKγ proteins. Scanning electron microscopy (SEM) was used to investigate the self-assembled protein gel after freeze-drying, and it was observed that the self-assembled protein formed a dense, three-dimensional porous network structure, meaning that it had good water retention. Evaluation of the gel with atomic force microscopy (AFM) indicated that the surface of the protein fiber skeleton show the network-like structure and relatively smooth. Characterization by circular dichroism (CD) and Fourier transform infrared spectroscopy (FT-IR) demonstrated that the two proteins were successfully assembled, and that the assembled protein had a secondary structure dominated by α-helices. The rheological properties of the self-assembled products were tested to confirm that they were indeed hydrogel property.
Collapse
|
11
|
Cai B, Mazahreh J, Ma Q, Wang F, Hu X. Ultrasound-assisted fabrication of biopolymer materials: A review. Int J Biol Macromol 2022; 209:1613-1628. [PMID: 35452704 DOI: 10.1016/j.ijbiomac.2022.04.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
There is an urgent need to develop technologies that can physically manipulate the structure of biocompatible and green polymer materials in order to tune their performance in an efficient, repeatable, easy-to-operate, chemical-free, non-contact, and highly controllable manner. Ultrasound technology produces a cavitation effect that promotes the generation of free radicals, the fracture of chemical chain segments and a rapid change of morphology. The cavitation effects are accompanied by thermal, chemical, and biological effects that interact with the material being studied. With its high efficiency, cleanliness, and reusability applications, ultrasound has a vast range of opportunity within the field of natural polymer-based materials. This work expounds the basic principle of ultrasonic cavitation and analyzes the influence that ultrasonic strength, temperature, frequency and induced liquid surface tension on the physical and chemical properties of biopolymer materials. The mechanism and the influence that ultrasonic modification has on materials is discussed, with highlighted details on the agglomeration, degradation, morphology, structure, and the mechanical properties of these novel materials from naturally derived polymers.
Collapse
Affiliation(s)
- Bowen Cai
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Janine Mazahreh
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Qingyu Ma
- School of Computer and Electrical Information/School of Artificial Intelligence, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
12
|
Shang Z, Yan Y, Jiang J, Wang J, Yin X. Facile fabrication of silk fibroin/graphene oxide composite films and real‐time morphological observation in stretching. J Appl Polym Sci 2021. [DOI: 10.1002/app.51403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zihan Shang
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| | - Yinan Yan
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
- Nanobiological Medicine Laboratory National Engineering Research Centre for Nanotechnology Shanghai China
| | - Jie Jiang
- Nanobiological Medicine Laboratory National Engineering Research Centre for Nanotechnology Shanghai China
| | - Jielin Wang
- School of Materials Science and Engineering Shanghai Jiao Tong University Shanghai China
| | - Xiaoying Yin
- College of Chemistry and Chemical Engineering Shanghai University of Engineering Science Shanghai China
| |
Collapse
|
13
|
Cai B, Gu H, Wang F, Printon K, Gu Z, Hu X. Ultrasound regulated flexible protein materials: Fabrication, structure and physical-biological properties. ULTRASONICS SONOCHEMISTRY 2021; 79:105800. [PMID: 34673337 PMCID: PMC8560629 DOI: 10.1016/j.ultsonch.2021.105800] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 05/03/2023]
Abstract
Ultrasound can be used in the biomaterial field due to its high efficiency, easy operation, no chemical treatment, repeatability and high level of control. In this work, we demonstrated that ultrasound is able to quickly regulate protein structure at the solution assembly stage to obtain the designed properties of protein-based materials. Silk fibroin proteins dissolved in a formic acid-CaCl2 solution system were treated in an ultrasound with varying times and powers. By altering these variables, the silks physical properties and structures can be fine-tuned and the results were investigated with Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), gas permeability and water contact angle measurements. Ultrasonic treatment aids the interactions between the calcium ions and silk molecular chains which leads to increased amounts of intermolecular β-sheets and α-helix. This unique structural change caused the silk film to be highly insoluble in water while also inducing a hydrophilic swelling property. The ultrasound-regulated silk materials also showed higher thermal stability, better biocompatibility and breathability, and favorable mechanical strength and flexibility. It was also possible to tune the enzymatic degradation rate and biological response (cell growth and proliferation) of protein materials by changing ultrasound parameters. This study provides a unique physical and non-contact material processing method for the wide applications of protein-based biomaterials.
Collapse
Affiliation(s)
- Bowen Cai
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Hanling Gu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Kyle Printon
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Zhenggui Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA; Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
14
|
Kawahara Y, Sekiguchi T, Shinahara Y, Nagasawa N, Nishikawa Y, Yoshioka T, Tamada Y. Structure of the Gamma Ray Irradiation-Curable Liquid Silk 3D Scaffold with Cell-Adhesive Property. J MACROMOL SCI B 2021. [DOI: 10.1080/00222348.2021.1954754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yutaka Kawahara
- Division of Environmental Engineering Science, Gunma University, Kiryu, Japan
| | | | | | - Naotsugu Nagasawa
- Takasaki Advanced Radiation Research Institute, National Institutes for Quantum and Radiological Science and Technology, Takasaki, Gunma, Japan
| | - Yukihiro Nishikawa
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Taiyo Yoshioka
- Silk Materials Research Unit, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Yasushi Tamada
- Department of Applied Biology, Shinshu University, Ueda, Japan
| |
Collapse
|
15
|
Zhang Y, Han F, Fan S, Zhang Y. Low-Power and Tunable-Performance Biomemristor Based on Silk Fibroin. ACS Biomater Sci Eng 2021; 7:3459-3468. [PMID: 34165975 DOI: 10.1021/acsbiomaterials.1c00513] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Biomemristors have attracted significant attention because of their potential applications in logic operations, nonvolatile memory, and synaptic emulators, thus leading to the urgent need to improve memristive performance. In this work, a silk fibroin (SF)-based memristor, integrated with both low power and low operating current simultaneously, has been reported. Doping the SF with Ag and an ethanol-based post-treatment promote microcrystal formation in the bulk of the SF. This induces carrier transport along fixed, short paths and results in a low set voltage, low operating current, and high memristive stability. Such performances can greatly reduce power consumption and heat generation, beneficial for the accuracy and durability of memristor devices. The memristive mechanism of SF-based memristors with different Ag contents is the space-charge-limited conduction (SCLC) mechanism. In addition, the nonlinear transmission property of SF-based memristors suggests useful applications in bioelectronics.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Fang Han
- College of Information Science and Technology, Donghua University, Shanghai 201620, P. R. China
| | - Suna Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
16
|
Lee S, Kim SH, Jo Y, Ju W, Kim H, Kweon H. Conformation Transition Kinetics of Silk Fibroin in Aqueous Solution Explored Using Circular Dichroism Spectroscopy. ChemistrySelect 2021. [DOI: 10.1002/slct.202004180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sora Lee
- Sericultural and Apicultural Materials Division National Institute of Agricultural Science, RDA Wanju-gun 55365, Republic of Korea
| | - Soo Hyun Kim
- Sericultural and Apicultural Materials Division National Institute of Agricultural Science, RDA Wanju-gun 55365, Republic of Korea
| | - You‐Young Jo
- Sericultural and Apicultural Materials Division National Institute of Agricultural Science, RDA Wanju-gun 55365, Republic of Korea
| | - Wan‐Taek Ju
- Sericultural and Apicultural Materials Division National Institute of Agricultural Science, RDA Wanju-gun 55365, Republic of Korea
| | - Hyun‐Bok Kim
- Sericultural and Apicultural Materials Division National Institute of Agricultural Science, RDA Wanju-gun 55365, Republic of Korea
| | - HaeYong Kweon
- Sericultural and Apicultural Materials Division National Institute of Agricultural Science, RDA Wanju-gun 55365, Republic of Korea
| |
Collapse
|
17
|
Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 119:111597. [DOI: 10.1016/j.msec.2020.111597] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 09/04/2020] [Accepted: 10/03/2020] [Indexed: 01/19/2023]
|
18
|
Structural and physical analysis of underwater silk from housing nest composites of a tropical chironomid midge. Int J Biol Macromol 2020; 163:934-942. [DOI: 10.1016/j.ijbiomac.2020.07.070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 02/04/2023]
|
19
|
Decay behavior and stability of free radicals of silk fibroin with alkali/urea pretreatment induced by electron beam irradiation. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Zhang X, Zhou J, Xu Y. Optimized parameters for the preparation of silk fibroin drug-loaded microspheres based on the response surface method and a genetic algorithm-backpropagation neural network model. J Biomed Mater Res B Appl Biomater 2020; 109:6-18. [PMID: 32748484 DOI: 10.1002/jbm.b.34676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 11/10/2022]
Abstract
Using silk fibroin as the base material, the drug-loaded microspheres are prepared by an emulsification method. In order to determine the drug-loading and drug-release performance parameters of the microspheres, the central composite design method is used to design and investigate the effects of the parameters of the microsphere preparation process, such as the oil-water ratio, stirring temperature, and stirring rate, on the microsphere particle size, drug-loading rate, and drug release rate. The "overall desirability" is taken as a comprehensive evaluation index, and the response surface method (RSM) and genetic algorithm-backpropagation (GA-BP) neural network GA-BP model are used to predict and evaluate the parameters of the drug-loaded microsphere preparation process. The root-mean-square error values obtained from the RSM and BP-GA model experiments are 0.000325 and 0.00022, respectively. The results show that the BP-GA model has better prediction accuracy and optimization ability than the RSM. The optimal microsphere preparation process conditions were determined to be as follows: a water-oil ratio of 10:1, at a temperature of 45°C with stirring at a speed of 400 rpm, the particle size of the microspheres is 1.392 μm, the drug-loading rate is 3.218%, and the drug release rate is 51.991%. The results of this study indicate that this approach is an effective method for the optimization of the parameters of the drug-loaded microsphere preparation process.
Collapse
Affiliation(s)
- Xujing Zhang
- Department of Mechanical Engineering, Xinjiang University, Xinjiang, China
| | - Jianping Zhou
- Department of Mechanical Engineering, Xinjiang University, Xinjiang, China.,Department of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yan Xu
- Department of Mechanical Engineering, Xinjiang University, Xinjiang, China
| |
Collapse
|
21
|
Liu K, Fan Z, Wang T, Gao Z, Zhong J, Xiang G, Lei W, Shi Z, Feng Y, Mao Y, Tao TH. All-Aqueous-Processed Injectable In Situ Forming Macroporous Silk Gel Scaffolds for Minimally Invasive Intracranial and Osteological Therapies. Adv Healthc Mater 2020; 9:e2000879. [PMID: 32548917 DOI: 10.1002/adhm.202000879] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 12/15/2022]
Abstract
Hydrogels are widely utilized in regenerative medicine for drug delivery and tissue repair due to their superior biocompatibility and high similarity to the extracellular matrix. For minimally invasive therapies, in situ forming gel scaffolds are desirable, but technical challenges remain to be overcome to achieve the balance between tissue-like strength and cell-sized porosity, especially for intracranial and osteological therapies. Here, a new method-inspired by the liquid crystalline spinning process in natural silk fibers-is reported for preparing injectable silk gel scaffolds with favorable preclinical efficacy and unique characteristics including 1) in situ gelling for minimally invasive surgeries, 2) controllable porosity for efficient cellular infiltration and desirable degradation, 3) resilient and tunable mechanical properties that are compatible with the modulus regime of native soft tissues, and 4) all-aqueous processing that avoids toxic solvents and enables facile loading of bioactive agents. Moreover, hierarchically structured heterogeneous silk gel scaffolds with variable porosity and bioactive agent gradients within 3D matrices can be achieved for sustained drug release and guided tissue regeneration. Preclinical efficacy studies in rodent models show efficient bacterium and glioma inhibition and positive effects on bone regeneration and vascularization.
Collapse
Affiliation(s)
- Keyin Liu
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
| | - Zhen Fan
- Department of NeurosurgeryHuashan Hospital of Fudan University Shanghai 200040 China
| | - Tianji Wang
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical University Xi'an 710032 China
| | - Zhiheng Gao
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
| | - Junjie Zhong
- Department of NeurosurgeryHuashan Hospital of Fudan University Shanghai 200040 China
| | - Geng Xiang
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical University Xi'an 710032 China
| | - Wei Lei
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical University Xi'an 710032 China
| | - Zhifeng Shi
- Department of NeurosurgeryHuashan Hospital of Fudan University Shanghai 200040 China
| | - Yafei Feng
- Department of OrthopedicsXijing HospitalThe Fourth Military Medical University Xi'an 710032 China
| | - Ying Mao
- Department of NeurosurgeryHuashan Hospital of Fudan University Shanghai 200040 China
| | - Tiger H. Tao
- State Key Laboratory of Transducer TechnologyShanghai Institute of Microsystem and Information TechnologyChinese Academy of Sciences Shanghai 200050 China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of Sciences Beijing 100049 China
- School of Physical Science and TechnologyShanghaiTech University Shanghai 200031 China
- Institute of Brain‐Intelligence TechnologyZhangjiang Laboratory Shanghai 200031 China
- Shanghai Research Center for Brain Science and Brain‐Inspired Intelligence Shanghai 200031 China
| |
Collapse
|
22
|
Wang W, Liu Y, Wang S, Fu X, Zhao T, Chen X, Shao Z. Physically Cross-Linked Silk Fibroin-Based Tough Hydrogel Electrolyte with Exceptional Water Retention and Freezing Tolerance. ACS APPLIED MATERIALS & INTERFACES 2020; 12:25353-25362. [PMID: 32347700 DOI: 10.1021/acsami.0c07558] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Flexible ionic conductive hydrogel is attracting significant interest as it could be one of the crucial components for multifunctional ionotronic devices. However, their features of inevitably drying out without package and freezing at subzero temperatures may greatly limit the applications of conventional hydrogels in specific situations. Here, we present an ionic conductive hydrogel with water retention and freezing tolerance that consists of silk fibroin, ionic liquid, water, and inorganic salt. It is discovered that the ionic liquid serves multiple purposes to prevent water evaporation, decrease the freezing point, provide the essential conductivity of the hydrogel, etc. As a binary mixed solvent, the ionic liquid/water mixture enhances both water retention and freezing tolerance of the hydrogel electrolyte. Based on the silk fibroin (SF)/1-ethyl-3-methylimidazolium acetate (EMImAc)/H2O/KCl hydrogel electrolyte, the flexible fiberlike supercapacitor could still function well at a temperature as low as -50 °C and after being stored in the open air for a long time. It is anticipated that this hydrogel will prove useful in developing new applications operating under harsh environments.
Collapse
Affiliation(s)
- Wenqi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Yizhuo Liu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Shiqiang Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xuemei Fu
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Tiancheng Zhao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Xin Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P. R. China
- Department of Macromolecular Science, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
23
|
Susanin AI, Sashina ES, Zakharov VV, Zaborski M, Kashirskii DA. Conformational Transitions of Silk Fibroin in Solutions under the Action of Ultrasound. RUSS J APPL CHEM+ 2018. [DOI: 10.1134/s1070427218070194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Thai silk fibroin gelation process enhancing by monohydric and polyhydric alcohols. Int J Biol Macromol 2018; 118:1726-1735. [PMID: 30017976 DOI: 10.1016/j.ijbiomac.2018.07.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 02/06/2023]
Abstract
Silk fibroin hydrogel is an interesting natural material in various biomedical applications. However, the self-assembled gelation takes a long time. In this work, different alcohol types are used as gelation enhancers for aqueous silk fibroin solution. Monohydric alcohols having carbon chain length from C1 to C4 and polyhydric alcohols with the number of mono- to tri- hydroxyl groups were used as the enhancers which are effective for rapid gelation. The addition of monohydric alcohol distinctively reduced the gelation time, comparing to the polyhydric alcohol. The gelation process is directly dependent on the polarity of alcohol and hydrophobicity. The alcohol mediated gelation imparts strong viscoelastic property and enhanced compressive modulus of resulting hydrogels. This is due to the effective formation of self-assembled beta sheet network of the silk fibroin chains facilitates the gelation process.
Collapse
|
25
|
Tao G, Cai R, Wang Y, Song K, Guo P, Zhao P, Zuo H, He H. Biosynthesis and Characterization of AgNPs-Silk/PVA Film for Potential Packaging Application. MATERIALS 2017; 10:ma10060667. [PMID: 28773026 PMCID: PMC5554048 DOI: 10.3390/ma10060667] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/06/2017] [Accepted: 06/13/2017] [Indexed: 02/06/2023]
Abstract
Bionanocomposite packaging materials have a bright future for a broad range of applications in the food and biomedical industries. Antimicrobial packaging is one of the bionanocomposite packaging materials. Silver nanoparticle (AgNP) is one of the most attractive antimicrobial agents for its broad spectrum of antimicrobial activity against microorganisms. However, the traditional method of preparing AgNPs-functionalized packaging material is cumbersome and not environmentally friendly. To develop an efficient and convenient biosynthesis method to prepare AgNPs-modified bionanocomposite material for packaging applications, we synthesized AgNPs in situ in a silk fibroin solution via the reduction of Ag⁺ by the tyrosine residue of fibroin, and then prepared AgNPs-silk/poly(vinyl alcohol) (PVA) composite film by blending with PVA. AgNPs were synthesized evenly on the surface or embedded in the interior of silk/PVA film. The prepared AgNPs-silk/PVA film exhibited excellent mechanical performance and stability, as well as good antibacterial activity against both Gram-negative and Gram-positive bacteria. AgNPs-silk/PVA film offers more choices to be potentially applied in the active packaging field.
Collapse
Affiliation(s)
- Gang Tao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Rui Cai
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Yejing Wang
- College of Biotechnology, Southwest University, Chongqing 400715, China.
| | - Kai Song
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Pengchao Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
| | - Hua Zuo
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China.
| | - Huawei He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China.
- Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China.
| |
Collapse
|
26
|
Xu L, Wang S, Sui X, Wang Y, Su Y, Huang L, Zhang Y, Chen Z, Chen Q, Du H, Zhang Y, Yan L. Mesenchymal Stem Cell-Seeded Regenerated Silk Fibroin Complex Matrices for Liver Regeneration in an Animal Model of Acute Liver Failure. ACS APPLIED MATERIALS & INTERFACES 2017; 9:14716-14723. [PMID: 28409921 DOI: 10.1021/acsami.7b02805] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The main limitation of liver transplantation as a treatment for end-stage liver disease or acute liver failure is the scarcity of liver organ donors. To develop an alternative therapy for acute liver failure, mesenchymal stem cell (MSC)-seeded regenerated silk fibroin (RSF) matrices were evaluated in vitro and in vivo. Adipose-derived mesenchymal stem cells (ADSCs) and bone marrow-derived mesenchymal stem cells (BMSCs) were planted and grown on RSF scaffolds to form a scaffold complex. The RSF-MSC scaffold complex (the experimental group) and neat RSF scaffolds (the control group) were then placed onto the liver surface of mice induced by CCl4 and detected after 5, 7, 14, 28, and 60 days. The growth and distribution of MSCs were tracked using fluorescence microscopy and live small animal fluorescence. Liver functions were tested using an automatic biochemistry analyzer. The histological kinetics of RSF complex and liver tissues were observed using hematoxylin & eosin staining. We found that MSCs exhibited good biocompatibility with RSF and differentiated to hepatocyte-like cells in vitro. Liver functions of the mice in the experimental group were significantly improved than that in the control group. Moreover, angiogenesis and hepatocyte-like cells were discovered in the RSF scaffolds in an animal model of acute liver failure on the fifth day and in the second month, respectively. The MSCs-RSF matrices show an obvious therapeutic ability for injured liver function of mice, which is more efficient than the neat RSF scaffolds.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Huang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | - Yunwei Zhang
- Emergency Department, Chinese Eighteenth PLA General Hospital , Yecheng 844900, China
| | | | | | | | - Yaopeng Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University , Shanghai 201620, China
| | | |
Collapse
|
27
|
Chen D, Yin Z, Wu F, Fu H, Kundu SC, Lu S. Orientational behaviors of silk fibroin hydrogels. J Appl Polym Sci 2017. [DOI: 10.1002/app.45050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daqi Chen
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering, Soochow University; Suzhou 215123 China
| | - Zhuping Yin
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering, Soochow University; Suzhou 215123 China
| | - Feng Wu
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering, Soochow University; Suzhou 215123 China
| | - Hua Fu
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering, Soochow University; Suzhou 215123 China
| | - Subhas C. Kundu
- Department of Biotechnology; Indian Institute of Technology Kharagpur; West Bengal 721302 India
- 3Bs Research Group; Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho; AvePark 4805-017 Barco Guimaraes Portugal
| | - Shenzhou Lu
- National Engineering Laboratory for Modern Silk; College of Textile and Clothing Engineering, Soochow University; Suzhou 215123 China
| |
Collapse
|
28
|
Kaushik S, Sarma MK, Thungon PD, Santhosh M, Goswami P. Thin films of silk fibroin and its blend with chitosan strongly promote biofilm growth of Synechococcus sp. BDU 140432. J Colloid Interface Sci 2016; 479:251-259. [DOI: 10.1016/j.jcis.2016.06.065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 01/08/2023]
|
29
|
Zhong J, Ma M, Li W, Zhou J, Yan Z, He D. Self-assembly of regenerated silk fibroin from random coil nanostructures to antiparallel β-sheet nanostructures. Biopolymers 2016; 101:1181-92. [PMID: 25088327 DOI: 10.1002/bip.22532] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 07/12/2014] [Accepted: 07/22/2014] [Indexed: 01/26/2023]
Abstract
In this work, we studied the effects of incubation concentration and time on the self-assembly behaviors of regenerated silk fibroin (RSF). Our results showed the assembly ways of RSF were concentration-dependent and there were four self-assembly ways of RSF: (i) At relatively low concentration (≤0.015%), RSF molecules assembled into protofilaments (random coil), and then the thickness decreased and the secondary conformation changed to antiparallel β-sheet; (ii) at the concentration of 0.015%, RSF molecules assembled into protofilaments (random coil), and then assembled into protofibrils (antiparallel β-sheet). The protofibrils experienced the appearance and disappearance of phase periodic intervals in turn; (iii) at the concentration of 0.03%, RSF molecules assembled into bead-like oligomers (random coil), and then assembled into protofibrils (antiparallel β-sheet), and finally the height and phase periodic intervals of RSF protofibrils disappeared in turn; and (iv) at the relatively high concentration (≥0.15%), RSF molecules assembled into protofilaments (random coil), then aggregated into blurry cuboid-like micelles (random coil), and finally self-arranged to form smooth and clear cuboid-like micelles (antiparallel β-sheet). These results provide useful insights into the process by which the RSF molecules self-assemble into protofilaments, protofibrils and micelles. Furthermore, our work will be beneficial to basic understanding of the nanoscale structure formations in different silk-based biomaterials.
Collapse
Affiliation(s)
- Jian Zhong
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | | | | | | | | | | |
Collapse
|
30
|
Zhou J, Zhang B, Liu X, Shi L, Zhu J, Wei D, Zhong J, Sun G, He D. Facile method to prepare silk fibroin/hyaluronic acid films for vascular endothelial growth factor release. Carbohydr Polym 2016; 143:301-9. [DOI: 10.1016/j.carbpol.2016.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 12/18/2015] [Accepted: 01/08/2016] [Indexed: 02/01/2023]
|
31
|
A novel electrospinning approach to fabricate high strength aqueous silk fibroin nanofibers. Int J Biol Macromol 2016; 87:201-7. [DOI: 10.1016/j.ijbiomac.2016.01.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 01/28/2016] [Accepted: 01/30/2016] [Indexed: 11/18/2022]
|
32
|
Chang H, Cheng T, Wu Y, Hu W, Long R, Liu C, Zhao P, Xia Q. Transcriptomic Analysis of the Anterior Silk Gland in the Domestic Silkworm (Bombyx mori) - Insight into the Mechanism of Silk Formation and Spinning. PLoS One 2015; 10:e0139424. [PMID: 26418001 PMCID: PMC4587926 DOI: 10.1371/journal.pone.0139424] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 09/14/2015] [Indexed: 01/08/2023] Open
Abstract
Silk proteins are synthesized in the middle and posterior silk glands of silkworms, then transit into the anterior of the silk gland, where the silk fibers are produced, stored and processed. The mechanism of formation and spinning of the silk fibers has not been fully elucidated, and transcriptome analyses specific to the anterior silk gland have not been reported. In the present study, we explored gene expression profiles in five regions of silk gland samples using the RNA-Seq method. As a result, there were 959,979,570 raw reads obtained, of which 583,068,172 reads were mapped to the silkworm genome. A total of 7419 genes were found to be expressed in terms of reads per kilobase of exon model per million mapped reads ≥ 5 in at least one sample. The gene numbers and expression levels of the expressed genes differed between these regions. The differentially expressed genes were analyzed, and 282 genes were detected as up-regulated in the anterior silk gland, compared with the other parts. Functions of these genes were addressed using the gene ontology and Kyoto Encyclopedia of Genes and Genomes databases, and seven key pathways were enriched. It suggested that the ion transportation, energy metabolism, protease inhibitors and cuticle proteins played essential roles in the process of silk formation and spinning in the anterior silk gland. In addition, 210 genes were found differently expressed between males and females, which should help to elucidate the mechanism of the quality difference in silk fibers from male and female silkworms.
Collapse
Affiliation(s)
- Huaipu Chang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
- College of Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Tingcai Cheng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Yuqian Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Renwen Long
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Chun Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing, China
- * E-mail:
| |
Collapse
|
33
|
Zhou J, Zhang B, Shi L, Zhong J, Zhu J, Yan J, Wang P, Cao C, He D. Regenerated silk fibroin films with controllable nanostructure size and secondary structure for drug delivery. ACS APPLIED MATERIALS & INTERFACES 2014; 6:21813-21821. [PMID: 25536875 DOI: 10.1021/am502278b] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ability of drug release from SF materials was governed largely by their secondary structure. It is known that the breakage degree of the peptide chain during the silk fibroin (SF) dissolution can affect the structure, property, and applications of SF materials. To deeply understand this effect, we designed a reaction system based on CaCl2/H2O/C2H5OH ternary solvent with different ethanol content to obtain the regenerated SF films with different morphologies and secondary structures. The results showed that the globule-like nanostructure was observed in all regenerated SF films, and their size decreased significantly with reducing the ethanol content in the solvent. Correspondingly, the β-sheet structure content of the SF films increased. In addition, the contact angle and the elongation ratio increased, and water absorption decreased significantly with decreasing the ethanol content in the solvent. The accumulated release percents of doxorubicin from these SF films were significantly different with increasing the time. With smaller nanostructure size and more β-sheet content, the SF films had a slower drug release at the beginning. This study indicated the importance of the ethanol content in the solvent in controlling the structure and properties of the regenerated SF films, which would improve the application of SF in drug delivery.
Collapse
Affiliation(s)
- Juan Zhou
- National Engineering Research Center for Nanotechnology, Shanghai 200241, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bressner JE, Marelli B, Qin G, Klinker LE, Zhang Y, Kaplan DL, Omenetto FG. Rapid fabrication of silk films with controlled architectures via electrogelation. J Mater Chem B 2014; 2:4983-4987. [DOI: 10.1039/c4tb00833b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Silk protein aggregation kinetics revealed by Rheo-IR. Acta Biomater 2014; 10:776-84. [PMID: 24200713 DOI: 10.1016/j.actbio.2013.10.032] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/23/2013] [Accepted: 10/28/2013] [Indexed: 11/21/2022]
Abstract
The remarkable mechanical properties of silk fibres stem from a multi-scale hierarchical structure created when an aqueous protein "melt" is converted to an insoluble solid via flow. To directly relate a silk protein's structure and function in response to flow, we present the first application of a Rheo-IR platform, which couples cone and plate rheology with attenuated total reflectance infrared spectroscopy. This technique provides a new window into silk processing by linking shear thinning to an increase in molecular alignment, with shear thickening affecting changes in the silk protein's secondary structure. Additionally, compared to other static characterization methods for silk, Rheo-IR proved particularly useful at revealing the intrinsic difference between natural (native) and reconstituted silk feedstocks. Hence Rheo-IR offers important novel insights into natural silk processing. This has intrinsic academic merit, but it might also be useful when designing reconstituted silk analogues alongside other polymeric systems, whether natural or synthetic.
Collapse
|
36
|
Prosa M, Sagnella A, Posati T, Tessarolo M, Bolognesi M, Cavallini S, Toffanin S, Benfenati V, Seri M, Ruani G, Muccini M, Zamboni R. Integration of a silk fibroin based film as a luminescent down-shifting layer in ITO-free organic solar cells. RSC Adv 2014. [DOI: 10.1039/c4ra08390c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A bio-derived silk-fibroin film doped with a luminescent dye and its application as luminescent down-shifting layer in organic solar cells.
Collapse
Affiliation(s)
- Mario Prosa
- Consiglio Nazionale delle Ricerche (CNR) – Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)
- Bologna, Italy
| | - Anna Sagnella
- Consiglio Nazionale delle Ricerche (CNR) – Istituto per la Sintesi Organica e la Fotoreattività (ISOF)
- Bologna, Italy
| | | | - Marta Tessarolo
- Consiglio Nazionale delle Ricerche (CNR) – Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)
- Bologna, Italy
| | | | - Susanna Cavallini
- Consiglio Nazionale delle Ricerche (CNR) – Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)
- Bologna, Italy
| | - Stefano Toffanin
- Consiglio Nazionale delle Ricerche (CNR) – Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)
- Bologna, Italy
| | - Valentina Benfenati
- Consiglio Nazionale delle Ricerche (CNR) – Istituto per la Sintesi Organica e la Fotoreattività (ISOF)
- Bologna, Italy
| | - Mirko Seri
- Consiglio Nazionale delle Ricerche (CNR) – Istituto per la Sintesi Organica e la Fotoreattività (ISOF)
- Bologna, Italy
| | - Giampiero Ruani
- Consiglio Nazionale delle Ricerche (CNR) – Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)
- Bologna, Italy
| | - Michele Muccini
- Consiglio Nazionale delle Ricerche (CNR) – Istituto per lo Studio dei Materiali Nanostrutturati (ISMN)
- Bologna, Italy
| | - Roberto Zamboni
- Consiglio Nazionale delle Ricerche (CNR) – Istituto per la Sintesi Organica e la Fotoreattività (ISOF)
- Bologna, Italy
| |
Collapse
|
37
|
Posati T, Benfenati V, Sagnella A, Pistone A, Nocchetti M, Donnadio A, Ruani G, Zamboni R, Muccini M. Innovative Multifunctional Silk Fibroin and Hydrotalcite Nanocomposites: A Synergic Effect of the Components. Biomacromolecules 2013; 15:158-68. [DOI: 10.1021/bm401433b] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Tamara Posati
- Laboratory MIST E-R, Via P. Gobetti
101, I-40129 Bologna, Italy
| | - Valentina Benfenati
- Consiglio
Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via P. Gobetti101, I-40129 Bologna, Italy
| | - Anna Sagnella
- Consiglio
Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via P. Gobetti101, I-40129 Bologna, Italy
| | - Assunta Pistone
- Consiglio
Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via P. Gobetti101, I-40129 Bologna, Italy
| | - Morena Nocchetti
- Dipartimento
di Chimica, Università di Perugia, Via Elce di Sotto 10, 06123 Perugia, Italy
| | - Anna Donnadio
- Dipartimento
di Chimica, Università di Perugia, Via Elce di Sotto 10, 06123 Perugia, Italy
| | - Giampiero Ruani
- Consiglio
Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, I-40129 Bologna, Italy
| | - Roberto Zamboni
- Consiglio
Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), Via P. Gobetti101, I-40129 Bologna, Italy
| | - Michele Muccini
- Consiglio
Nazionale delle Ricerche, Istituto per lo Studio dei Materiali Nanostrutturati (CNR-ISMN), Via P. Gobetti 101, I-40129 Bologna, Italy
| |
Collapse
|
38
|
Jin Y, Hang Y, Luo J, Zhang Y, Shao H, Hu X. In vitro studies on the structure and properties of silk fibroin aqueous solutions in silkworm. Int J Biol Macromol 2013; 62:162-6. [DOI: 10.1016/j.ijbiomac.2013.08.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/16/2013] [Accepted: 08/19/2013] [Indexed: 11/16/2022]
|
39
|
Kundu B, Kundu SC. Bio-inspired fabrication of fibroin cryogels from the muga silkworm
Antheraea assamensis
for liver tissue engineering. Biomed Mater 2013; 8:055003. [DOI: 10.1088/1748-6041/8/5/055003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Bai S, Liu S, Zhang C, Xu W, Lu Q, Han H, Kaplan DL, Zhu H. Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process. Acta Biomater 2013; 9:7806-13. [PMID: 23628774 DOI: 10.1016/j.actbio.2013.04.033] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/15/2013] [Accepted: 04/18/2013] [Indexed: 11/29/2022]
Abstract
Silk fiber is one of the strongest and toughest biological materials with hierarchical structures, where nanofibril with size <20nm is a critical factor in determining its excellent mechanical properties. Although silk nanofibrils have been found in natural and regenerated silk solutions, there is no way to actively control nanofibril formation in aqueous solution. This study shows a simple but effective method of preparing silk nanofibrils by regulating the silk self-assembly process. Through a repeated drying-dissolving process, a silk fibroin solution composed of metastable nanoparticles was first prepared and then used to reassemble nanofibrils with different sizes and secondary conformations under various temperatures and concentrations. These nanofibrils have a similar size to that of natural fibers, providing a suitable unit to further assemble the hierarchical structure in vitro. Several important issues, such as the relationships between silk nanofibrils, secondary conformations and viscosity, are also investigated, giving a new insight into the self-assembly process. In summary, besides rebuilding silk nanofibrils in aqueous solution, this study provides an important model for furthering the understanding of silk structures, properties and forming mechanisms, making it possible to regenerate silk materials with exceptional properties in the future.
Collapse
Affiliation(s)
- S Bai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Fan S, Zhang Y, Shao H, Hu X. Electrospun regenerated silk fibroin mats with enhanced mechanical properties. Int J Biol Macromol 2013; 56:83-8. [DOI: 10.1016/j.ijbiomac.2013.01.033] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/28/2013] [Accepted: 01/29/2013] [Indexed: 11/15/2022]
|
42
|
Xu S, Wu P. Monodisperse spherical CaCO3 superstructure self-assembled by vaterite lamella under control of regenerated silk fibroin via compressed CO2. CrystEngComm 2013. [DOI: 10.1039/c3ce40181b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Ma Y, Berland S, Andrieu JP, Feng Q, Bédouet L. What is the difference in organic matrix of aragonite vs. vaterite polymorph in natural shell and pearl? Study of the pearl-forming freshwater bivalve mollusc Hyriopsis cumingii. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 33:1521-9. [PMID: 23827604 DOI: 10.1016/j.msec.2012.12.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/30/2012] [Accepted: 12/17/2012] [Indexed: 11/16/2022]
Abstract
Aragonite pearl, vaterite pearl and shell nacre of the freshwater mollusc Hyriopsis cumingii (Zhejiang province, China) were chosen to analyze microstructure and organic composition in the different habits of calcium carbonate. SEM and TEM were used to reveal the microstructure and mineralogical phase. We found that tablets in vaterite exhibited more irregular texture and were packaged with more organic matrices than in aragonite forms. Then a peculiar method was introduced to extract water soluble matrix (WSM), acid soluble matrix (ASM) and acid insoluble matrix (AIM) from the three samples, and biochemical analysis of these organic matrixes involved in crystal formation and polymorph selection was carried out. High performance liquid chromatography (HPLC) confirms the hydrophobic pattern of the organic matrix intermingled with mineral, the opposite of the early mobilizable water soluble fraction. Amino acid composition confirms hydrophobic residues as major components of all the extracts, but it reveals an imbalance in acidic residues rates in WSM vs. ASM and in aragonite vs. vaterite. Electrophoresis gives evidence for signatures in proteins with a 140 kDa material specific for aragonite in WSM. Conversely all ASM extracts reveal the presence of about 55 kDa components, including a discrete band in vaterite extract.
Collapse
Affiliation(s)
- Yufei Ma
- State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
44
|
Preparation of regenerated silk fibroin/silk sericin fibers by coaxial electrospinning. Int J Biol Macromol 2012; 51:980-6. [DOI: 10.1016/j.ijbiomac.2012.08.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 06/25/2012] [Accepted: 08/13/2012] [Indexed: 11/22/2022]
|
45
|
Gronau G, Krishnaji ST, Kinahan ME, Giesa T, Wong JY, Kaplan DL, Buehler MJ. A review of combined experimental and computational procedures for assessing biopolymer structure-process-property relationships. Biomaterials 2012; 33:8240-55. [PMID: 22938765 DOI: 10.1016/j.biomaterials.2012.06.054] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/22/2012] [Indexed: 02/08/2023]
Abstract
Tailored biomaterials with tunable functional properties are desirable for many applications ranging from drug delivery to regenerative medicine. To improve the predictability of biopolymer materials functionality, multiple design parameters need to be considered, along with appropriate models. In this article we review the state of the art of synthesis and processing related to the design of biopolymers, with an emphasis on the integration of bottom-up computational modeling in the design process. We consider three prominent examples of well-studied biopolymer materials - elastin, silk, and collagen - and assess their hierarchical structure, intriguing functional properties and categorize existing approaches to study these materials. We find that an integrated design approach in which both experiments and computational modeling are used has rarely been applied for these materials due to difficulties in relating insights gained on different length- and time-scales. In this context, multiscale engineering offers a powerful means to accelerate the biomaterials design process for the development of tailored materials that suit the needs posed by the various applications. The combined use of experimental and computational tools has a very broad applicability not only in the field of biopolymers, but can be exploited to tailor the properties of other polymers and composite materials in general.
Collapse
Affiliation(s)
- Greta Gronau
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Mass. Ave., Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Wu X, Hou J, Li M, Wang J, Kaplan DL, Lu S. Sodium dodecyl sulfate-induced rapid gelation of silk fibroin. Acta Biomater 2012; 8:2185-92. [PMID: 22406911 DOI: 10.1016/j.actbio.2012.03.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 02/07/2012] [Accepted: 03/02/2012] [Indexed: 11/16/2022]
Abstract
The in situ formation of injectable silk fibroin (SF) hydrogels have potential advantages over various other biomaterials due to the minimal invasiveness during application. Biomaterials need to gel rapidly under physiological conditions after injection. In the current paper, a novel way to accelerate SF gelation using an anionic surfactant, sodium dodecyl sulfate (SDS), as a gelling agent is reported. The mechanism of SDS-induced rapid gelation was determined. At low surfactant concentrations, hydrophobic interactions among the SF chains played a dominant role in the association, leading to decreased gelation time. At higher concentrations of surfactant, electrostatic repulsive forces among micellar aggregates gradually became dominant and gelation was hindered. Gel formation involves the connection of clusters formed by the accumulation of nanoparticles. This process is accompanied by the rapid formation of β-sheet structures due to hydrophobic and electrostatic interactions. It is expected that the silk hydrogel with short gelation time will be used as an injectable hydrogel in drug delivery or cartilage tissue engineering.
Collapse
Affiliation(s)
- Xilong Wu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, People's Republic of China
| | | | | | | | | | | |
Collapse
|
47
|
Sun M, Zhang Y, Zhao Y, Shao H, Hu X. The structure–property relationships of artificial silk fabricated by dry-spinning process. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm32576d] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Chen M, Shao Z, Chen X. Paclitaxel-loaded silk fibroin nanospheres. J Biomed Mater Res A 2011; 100:203-10. [DOI: 10.1002/jbm.a.33265] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 08/26/2011] [Accepted: 09/06/2011] [Indexed: 01/01/2023]
|
49
|
Bio-inspired capillary dry spinning of regenerated silk fibroin aqueous solution. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2011.07.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
50
|
|