1
|
Agoni C, Fernández-Díaz R, Timmons PB, Adelfio A, Gómez H, Shields DC. Molecular Modelling in Bioactive Peptide Discovery and Characterisation. Biomolecules 2025; 15:524. [PMID: 40305228 PMCID: PMC12025251 DOI: 10.3390/biom15040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
Molecular modelling is a vital tool in the discovery and characterisation of bioactive peptides, providing insights into their structural properties and interactions with biological targets. Many models predicting bioactive peptide function or structure rely on their intrinsic properties, including the influence of amino acid composition, sequence, and chain length, which impact stability, folding, aggregation, and target interaction. Homology modelling predicts peptide structures based on known templates. Peptide-protein interactions can be explored using molecular docking techniques, but there are challenges related to the inherent flexibility of peptides, which can be addressed by more computationally intensive approaches that consider their movement over time, called molecular dynamics (MD). Virtual screening of many peptides, usually against a single target, enables rapid identification of potential bioactive peptides from large libraries, typically using docking approaches. The integration of artificial intelligence (AI) has transformed peptide discovery by leveraging large amounts of data. AlphaFold is a general protein structure prediction tool based on deep learning that has greatly improved the predictions of peptide conformations and interactions, in addition to providing estimates of model accuracy at each residue which greatly guide interpretation. Peptide function and structure prediction are being further enhanced using Protein Language Models (PLMs), which are large deep-learning-derived statistical models that learn computer representations useful to identify fundamental patterns of proteins. Recent methodological developments are discussed in the context of canonical peptides, as well as those with modifications and cyclisations. In designing potential peptide therapeutics, the main outstanding challenge for these methods is the incorporation of diverse non-canonical amino acids and cyclisations.
Collapse
Affiliation(s)
- Clement Agoni
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, D04 C1P Dublin, Ireland
- Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Raúl Fernández-Díaz
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- IBM Research, D15 HN66 Dublin, Ireland
| | | | - Alessandro Adelfio
- Nuritas Ltd., Joshua Dawson House, D02 RY95 Dublin, Ireland; (P.B.T.); (A.A.); (H.G.)
| | - Hansel Gómez
- Nuritas Ltd., Joshua Dawson House, D02 RY95 Dublin, Ireland; (P.B.T.); (A.A.); (H.G.)
| | - Denis C. Shields
- School of Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
- Conway Institute of Biomolecular and Biomedical Science, University College Dublin, D04 C1P Dublin, Ireland
| |
Collapse
|
2
|
Gahlawat S, Siess J, Losada N, Timm J, Nanda V, Shreiber DI. Impact of vascular Ehlers-Danlos Syndrome-associated Gly substitutions on structure, function, and mechanics using bacterial collagen. Matrix Biol 2025; 135:87-98. [PMID: 39645092 DOI: 10.1016/j.matbio.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/13/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Vascular Ehlers-Danlos syndrome (vEDS) arises from mutations in collagen-III, a major structural component of the extracellular matrix (ECM) in vascularized tissues, including blood vessels. Fibrillar collagens form a triple-helix that is characterized by a canonical (Gly-X-Y)n sequence. The substitution of another amino acid for Gly within this conserved repeating sequence is associated with several hereditary connective tissue disorders, including vEDS. The clinical severity of vEDS depends on the identity of the substituted amino acid and its location. In this study, we engineered recombinant bacterial collagen-like proteins (CLPs) with previously reported Gly→X (X=Ser or Arg) vEDS substitutions within the integrin-binding site. Employing a combination of biophysical techniques, enzymatic digestion assays, integrin binding affinity assays, and computational modeling, we assessed the impact of Gly→X substitutions on structure, stability, function, and mechanical properties. While constructs with Ser or Arg substitutions maintained a triple-helix structure, Arg substitution significantly reduced global thermal stability, heightened susceptibility to trypsin digestion, and altered integrin α2-inserted (α2I) domain binding. Molecular dynamics (MD) simulations also demonstrated distinct effects of different Gly substitutions on the triple-helix structure - Arg substitutions induced notable bulging at the substitution site and disrupted interchain hydrogen bonds compared to Ser substitutions. Additionally, steered MD simulations revealed that Arg substitution led to a significant decrease in the Young's modulus of the triple-helix. Bacterial CLPs have proved to be a powerful model for studying the underlying mechanisms of vEDS-causing mutations in collagen-III. Serine and arginine substitutions differentially perturb cell-matrix interactions and ECM in a manner consistent with clinical vEDS severity.
Collapse
Affiliation(s)
- Sonal Gahlawat
- Department of Biomedical Engineering, Rutgers University - New Brunswick, Piscataway, New Jersey 08854, United States
| | - Jan Siess
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey 08854, United States; Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Natalie Losada
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States; Department of Chemistry and Chemical Biology, Rutgers University - New Brunswick, Piscataway, New Jersey 08854, United States
| | - Jennifer Timm
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States; Department of Marine and Coastal Sciences, Rutgers University - New Brunswick, New Brunswick, New Jersey 08901, United States
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, United States
| | - David I Shreiber
- Department of Biomedical Engineering, Rutgers University - New Brunswick, Piscataway, New Jersey 08854, United States.
| |
Collapse
|
3
|
Zhou L, Li J, Shi Y, Wu L, Zhu W, Xu Z. Preferred microenvironments of halogen bonds and hydrogen bonds revealed using statistics and QM/MM calculation studies. Phys Chem Chem Phys 2023. [PMID: 37367726 DOI: 10.1039/d3cp02096g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Hydrogen bonds (HBs) and halogen bonds (XBs) are two essential non-covalent interactions for molecular recognition and drug design. As proteins are heterogeneous in structure, the microenvironments of protein structures should have effects on the formation of HBs and XBs with ligands. However, there are no systematic studies reported on this effect to date. For quantitatively describing protein microenvironments, we defined the local hydrophobicities (LHs) and local dielectric constants (LDCs) in this study. With the defined parameters, we conducted an elaborate database survey on the basis of 22 011 ligand-protein structures to explore the microenvironmental preference of HBs (91 966 in total) and XBs (1436 in total). The statistics show that XBs prefer hydrophobic microenvironments compared to HBs. The polar residues like ASP are more likely to form HBs with ligands, while nonpolar residues such as PHE and MET prefer XBs. Both the LHs and LDCs (10.69 ± 4.36 for HBs; 8.86 ± 4.00 for XBs) demonstrate that XBs are prone to hydrophobic microenvironments compared with HBs with significant differences (p < 0.001), indicating that evaluating their strengths in the corresponding environments should be necessary. Quantum Mechanics-Molecular Mechanics (QM/MM) calculations reveal that in comparison with vacuum environments, the interaction energies of HBs and XBs are decreased to varying degrees given different microenvironments. In addition, the strengths of HBs are impaired more than those of XBs when the local dielectric constant's difference between the XB microenvironments and the HB microenvironments is large.
Collapse
Affiliation(s)
- Liping Zhou
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jintian Li
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yulong Shi
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Leyun Wu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Weiliang Zhu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Zhijian Xu
- Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
4
|
Lee YCJ, Javdan B, Cowan A, Smith K. More than skin deep: cyclic peptides as wound healing and cytoprotective compounds. Front Cell Dev Biol 2023; 11:1195600. [PMID: 37325572 PMCID: PMC10267460 DOI: 10.3389/fcell.2023.1195600] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
The prevalence and cost of wounds pose a challenge to patients as well as the healthcare system. Wounds can involve multiple tissue types and, in some cases, become chronic and difficult to treat. Comorbidities may also decrease the rate of tissue regeneration and complicate healing. Currently, treatment relies on optimizing healing factors rather than administering effective targeted therapies. Owing to their enormous diversity in structure and function, peptides are among the most prevalent and biologically important class of compounds and have been investigated for their wound healing bioactivities. A class of these peptides, called cyclic peptides, confer stability and improved pharmacokinetics, and are an ideal source of wound healing therapeutics. This review provides an overview of cyclic peptides that have been shown to promote wound healing in various tissues and in model organisms. In addition, we describe cytoprotective cyclic peptides that mitigate ischemic reperfusion injuries. Advantages and challenges in harnessing the healing potential for cyclic peptides from a clinical perspective are also discussed. Cyclic peptides are a potentially attractive category of wound healing compounds and more research in this field could not only rely on design as mimetics but also encompass de novo approaches as well.
Collapse
Affiliation(s)
- Ying-Chiang J. Lee
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Bahar Javdan
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, United States
| | - Alexis Cowan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Keith Smith
- Merck & Co., Inc., Kenilworth, NJ, United States
| |
Collapse
|
5
|
Zhang Q, Li X, Huang K, Huang Y, Zhao S, Liu S, Li Y. Controlling the Trimerization of the Collagen Triple-Helix by Solvent Switching. Biomacromolecules 2023; 24:1689-1699. [PMID: 36967667 DOI: 10.1021/acs.biomac.2c01475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Collagen hybridizing peptides (CHPs) are a powerful tool for targeting collagen damage in pathological tissues due to their ability to specifically form a hybrid collagen triple-helix with the denatured collagen chains. However, CHPs have a strong tendency to self-trimerize, requiring preheating or complicated chemical modifications to dissociate their homotrimers into monomers, which hinders their applications. To control the self-assembly of CHP monomers, we evaluated the effects of 22 cosolvents on the triple-helix structure: unlike typical globular proteins, the CHP homotrimers (as well as the hybrid CHP-collagen triple helix) cannot be destabilized by the hydrophobic alcohols and detergents (e.g., SDS) but can be effectively dissociated by the cosolvents that dominate hydrogen bonds (e.g., urea, guanidinium salts, and hexafluoroisopropanol). Our study provided a reference for the solvent effects on natural collagen and a simple effective solvent-switch method, enabling CHP utilization in automated histopathology staining and in vivo imaging and targeting of collagen damage.
Collapse
|
6
|
Timm J, Pike DH, Mancini JA, Tyryshkin AM, Poudel S, Siess JA, Molinaro PM, McCann JJ, Waldie KM, Koder RL, Falkowski PG, Nanda V. Design of a minimal di-nickel hydrogenase peptide. SCIENCE ADVANCES 2023; 9:eabq1990. [PMID: 36897954 PMCID: PMC10005181 DOI: 10.1126/sciadv.abq1990] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/07/2023] [Indexed: 06/07/2023]
Abstract
Ancestral metabolic processes involve the reversible oxidation of molecular hydrogen by hydrogenase. Extant hydrogenase enzymes are complex, comprising hundreds of amino acids and multiple cofactors. We designed a 13-amino acid nickel-binding peptide capable of robustly producing molecular hydrogen from protons under a wide variety of conditions. The peptide forms a di-nickel cluster structurally analogous to a Ni-Fe cluster in [NiFe] hydrogenase and the Ni-Ni cluster in acetyl-CoA synthase, two ancient, extant proteins central to metabolism. These experimental results demonstrate that modern enzymes, despite their enormous complexity, likely evolved from simple peptide precursors on early Earth.
Collapse
Affiliation(s)
- Jennifer Timm
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Douglas H. Pike
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Joshua A. Mancini
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Alexei M. Tyryshkin
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Saroj Poudel
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08901, USA
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jan A. Siess
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Paul M. Molinaro
- Department of Physics, The City College of New York, New York, NY 10016, USA
| | - James J. McCann
- Department of Physics, The City College of New York, New York, NY 10016, USA
| | - Kate M. Waldie
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY 10016, USA
| | - Paul G. Falkowski
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences and Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Reed BD, Meyer MJ, Abramzon V, Ad O, Ad O, Adcock P, Ahmad FR, Alppay G, Ball JA, Beach J, Belhachemi D, Bellofiore A, Bellos M, Beltrán JF, Betts A, Bhuiya MW, Blacklock K, Boer R, Boisvert D, Brault ND, Buxbaum A, Caprio S, Choi C, Christian TD, Clancy R, Clark J, Connolly T, Croce KF, Cullen R, Davey M, Davidson J, Elshenawy MM, Ferrigno M, Frier D, Gudipati S, Hamill S, He Z, Hosali S, Huang H, Huang L, Kabiri A, Kriger G, Lathrop B, Li A, Lim P, Liu S, Luo F, Lv C, Ma X, McCormack E, Millham M, Nani R, Pandey M, Parillo J, Patel G, Pike DH, Preston K, Pichard-Kostuch A, Rearick K, Rearick T, Ribezzi-Crivellari M, Schmid G, Schultz J, Shi X, Singh B, Srivastava N, Stewman SF, Thurston TR, Thurston TR, Trioli P, Tullman J, Wang X, Wang YC, Webster EAG, Zhang Z, Zuniga J, Patel SS, Griffiths AD, van Oijen AM, McKenna M, Dyer MD, Rothberg JM. Real-time dynamic single-molecule protein sequencing on an integrated semiconductor device. Science 2022; 378:186-192. [PMID: 36227977 DOI: 10.1126/science.abo7651] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Studies of the proteome would benefit greatly from methods to directly sequence and digitally quantify proteins and detect posttranslational modifications with single-molecule sensitivity. Here, we demonstrate single-molecule protein sequencing using a dynamic approach in which single peptides are probed in real time by a mixture of dye-labeled N-terminal amino acid recognizers and simultaneously cleaved by aminopeptidases. We annotate amino acids and identify the peptide sequence by measuring fluorescence intensity, lifetime, and binding kinetics on an integrated semiconductor chip. Our results demonstrate the kinetic principles that allow recognizers to identify multiple amino acids in an information-rich manner that enables discrimination of single amino acid substitutions and posttranslational modifications. With further development, we anticipate that this approach will offer a sensitive, scalable, and accessible platform for single-molecule proteomic studies and applications.
Collapse
Affiliation(s)
| | | | | | - Omer Ad
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | - Omer Ad
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | - Pat Adcock
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | | | - Gün Alppay
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Mel Davey
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | | | | | | | | | | | | | - Zhaoyu He
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | | | | | - Le Huang
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | - Ali Kabiri
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | | | | | - An Li
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | - Peter Lim
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | | | | | - Caixia Lv
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | | | | | | | - Roger Nani
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xin Wang
- Quantum-Si, Inc., Guilford, CT 06437, USA
| | | | | | | | | | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew D Griffiths
- Laboratoire de Biochimie, ESPCI Paris, Université PSL, CNRS UMR 8231, Paris, France
| | - Antoine M van Oijen
- Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | | | | | | |
Collapse
|
8
|
McCann JJ, Pike DH, Brown MC, Crouse DT, Nanda V, Koder RL. Computational design of a sensitive, selective phase-changing sensor protein for the VX nerve agent. SCIENCE ADVANCES 2022; 8:eabh3421. [PMID: 35857443 PMCID: PMC9258810 DOI: 10.1126/sciadv.abh3421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The VX nerve agent is one of the deadliest chemical warfare agents. Specific, sensitive, real-time detection methods for this neurotoxin have not been reported. The creation of proteins that use biological recognition to fulfill these requirements using directed evolution or library screening methods has been hampered because its toxicity makes laboratory experimentation extraordinarily expensive. A pair of VX-binding proteins were designed using a supercharged scaffold that couples a large-scale phase change from unstructured to folded upon ligand binding, enabling fully internal binding sites that present the maximum surface area possible for high affinity and specificity in target recognition. Binding site residues were chosen using a new distributed evolutionary algorithm implementation in protCAD. Both designs detect VX at parts per billion concentrations with high specificity. Computational design of fully buried molecular recognition sites, in combination with supercharged phase-changing chassis proteins, enables the ready development of a new generation of small-molecule biosensors.
Collapse
Affiliation(s)
- James J. McCann
- Department of Physics, The City College of New York, New York, NY 10031, USA
| | - Douglas H. Pike
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Mia C. Brown
- Department of Physics, The City College of New York, New York, NY 10031, USA
| | - David T. Crouse
- Department of Electrical and Computer Engineering, Clarkson University, Potsdam, NY 13699, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Ronald L. Koder
- Department of Physics, The City College of New York, New York, NY 10031, USA
- Graduate Programs of Physics, Biology, Chemistry, and Biochemistry, The Graduate Center of CUNY, New York, NY 10016, USA
| |
Collapse
|
9
|
Hulgan SAH, Hartgerink JD. Recent Advances in Collagen Mimetic Peptide Structure and Design. Biomacromolecules 2022; 23:1475-1489. [PMID: 35258280 DOI: 10.1021/acs.biomac.2c00028] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Collagen mimetic peptides (CMPs) fold into a polyproline type II triple helix, allowing the study of the structure and function (or misfunction) of the collagen family of proteins. This Perspective will focus on recent developments in the use of CMPs toward understanding the structure and controlling the stability of the triple helix. Triple helix assembly is influenced by various factors, including the single amino acid propensity for the triple helix fold, pairwise interactions between these amino acids, and long-range effects observed across the helix, such as bend, twist, and fraying. Important progress in creating a comprehensive and predictive understanding of these factors for peptides with exclusively natural amino acids has been made. In contrast, several groups have successfully developed unnatural amino acids that are engineered to stabilize the triple helical structure. A third approach to controlling the triple helical structure includes covalent cross-linking of the triple helix to stabilize the assembly, which eliminates the problematic equilibrium of unfolding into monomers and enforces compositional control. Advances in all these areas have resulted in significant improvements to our understanding and control of this important class of protein, allowing for the design and application of more chemically complex and well-controlled collagen mimetic biomaterials.
Collapse
Affiliation(s)
- Sarah A H Hulgan
- Rice University, Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| | - Jeffrey D Hartgerink
- Rice University, Department of Chemistry, 6100 Main Street, Houston, Texas 77005, United States
| |
Collapse
|
10
|
Abstract
Natural metalloproteins perform many functions - ranging from sensing to electron transfer and catalysis - in which the position and property of each ligand and metal, is dictated by protein structure. De novo protein design aims to define an amino acid sequence that encodes a specific structure and function, providing a critical test of the hypothetical inner workings of (metallo)proteins. To date, de novo metalloproteins have used simple, symmetric tertiary structures - uncomplicated by the large size and evolutionary marks of natural proteins - to interrogate structure-function hypotheses. In this Review, we discuss de novo design applications, such as proteins that induce complex, increasingly asymmetric ligand geometries to achieve function, as well as the use of more canonical ligand geometries to achieve stability. De novo design has been used to explore how proteins fine-tune redox potentials and catalyse both oxidative and hydrolytic reactions. With an increased understanding of structure-function relationships, functional proteins including O2-dependent oxidases, fast hydrolases, and multi-proton/multi-electron reductases, have been created. In addition, proteins can now be designed using xeno-biological metals or cofactors and principles from inorganic chemistry to derive new-to-nature functions. These results and the advances in computational protein design suggest a bright future for the de novo design of diverse, functional metalloproteins.
Collapse
Affiliation(s)
- Matthew J. Chalkley
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - Samuel I. Mann
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| | - William F. DeGrado
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California at San Francisco, San Francisco, (CA), USA
| |
Collapse
|
11
|
Biophysical analysis of the structural evolution of substrate specificity in RuBisCO. Proc Natl Acad Sci U S A 2020; 117:30451-30457. [PMID: 33199597 DOI: 10.1073/pnas.2018939117] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ribulose 1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant enzyme on Earth. However, its catalytic rate per molecule of protein is extremely slow and the binding of the primary substrate, CO2, is competitively displaced by O2. Hence, carbon fixation by RuBisCO is highly inefficient; indeed, in higher C3 plants, about 30% of the time the enzyme mistakes CO2 for O2 Using genomic and structural analysis, we identify regions around the catalytic site that play key roles in discriminating between CO2 and O2 Our analysis identified positively charged cavities directly around the active site, which are expanded as the enzyme evolved with higher substrate specificity. The residues that extend these cavities have recently been under selective pressure, indicating that larger charged pockets are a feature of modern RuBisCOs, enabling greater specificity for CO2 This paper identifies a key structural feature that enabled the enzyme to evolve improved CO2 sequestration in an oxygen-rich atmosphere and may guide the engineering of more efficient RuBisCOs.
Collapse
|
12
|
Mancini JA, Pike DH, Tyryshkin AM, Haramaty L, Wang MS, Poudel S, Hecht M, Nanda V. Design of a Fe 4 S 4 cluster into the core of a de novo four-helix bundle. Biotechnol Appl Biochem 2020; 67:574-585. [PMID: 32770861 DOI: 10.1002/bab.2003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022]
Abstract
We explore the capacity of the de novo protein, S824, to incorporate a multinuclear iron-sulfur cluster within the core of a single-chain four-helix bundle. This topology has a high intrinsic designability because sequences are constrained largely by the pattern of hydrophobic and hydrophilic amino acids, thereby allowing for the extensive substitution of individual side chains. Libraries of novel proteins based on these constraints have surprising functional potential and have been shown to complement the deletion of essential genes in E. coli. Our structure-based design of four first-shell cysteine ligands, one per helix, in S824 resulted in successful incorporation of a cubane Fe4 S4 cluster into the protein core. A number of challenges were encountered during the design and characterization process, including nonspecific metal-induced aggregation and the presence of competing metal-cluster stoichiometries. The introduction of buried iron-sulfur clusters into the helical bundle is an initial step toward converting libraries of designed structures into functional de novo proteins with catalytic or electron-transfer functionalities.
Collapse
Affiliation(s)
- Joshua A Mancini
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Douglas H Pike
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Alexei M Tyryshkin
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Liti Haramaty
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Michael S Wang
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Saroj Poudel
- Environmental Biophysics and Molecular Ecology Program, Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ, USA.,Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| | - Michael Hecht
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Vikas Nanda
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School and the Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
13
|
Maurya NS, Kushwaha S, Mani A. Recent Advances and Computational Approaches in Peptide Drug Discovery. Curr Pharm Des 2020; 25:3358-3366. [PMID: 31544714 DOI: 10.2174/1381612825666190911161106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Drug design and development is a vast field that requires huge investment along with a long duration for providing approval to suitable drug candidates. With the advancement in the field of genomics, the information about druggable targets is being updated at a fast rate which is helpful in finding a cure for various diseases. METHODS There are certain biochemicals as well as physiological advantages of using peptide-based therapeutics. Additionally, the limitations of peptide-based drugs can be overcome by modulating the properties of peptide molecules through various biomolecular engineering techniques. Recent advances in computational approaches have been helpful in studying the effect of peptide drugs on the biomolecular targets. Receptor - ligand-based molecular docking studies have made it easy to screen compatible inhibitors against a target.Furthermore, there are simulation tools available to evaluate stability of complexes at the molecular level. Machine learning methods have added a new edge by enabling accurate prediction of therapeutic peptides. RESULTS Peptide-based drugs are expected to take over many popular drugs in the near future due to their biosafety, lower off-target binding chances and multifunctional properties. CONCLUSION This article summarises the latest developments in the field of peptide-based therapeutics related to their usage, tools, and databases.
Collapse
Affiliation(s)
- Neha S Maurya
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Sandeep Kushwaha
- Department of Plant Breeding, Sveriges lantbruksuniversitet, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
14
|
James JK, Nanda V. Comparative dynamics of tropomyosin in vertebrates and invertebrates. Proteins 2019; 88:265-273. [PMID: 31390486 DOI: 10.1002/prot.25797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/25/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022]
Abstract
Tropomyosin (Tpm) is an extended α-helical coiled-coil homodimer that regulates actinomyosin interactions in muscle. Molecular simulations of four Tpms, two from the vertebrate class Mammalia (rat and pig), and two from the invertebrate class Malacostraca (shrimp and lobster), showed that despite extensive sequence and structural homology across metazoans, dynamic behavior-particularly long-range structural fluctuations-were clearly distinct. Vertebrate Tpms were more flexible and sampled complex, multi-state conformational landscapes. Invertebrate Tpms were more rigid, sampling a highly constrained harmonic landscape. Filtering of trajectories by principle component analysis into essential subspaces showed significant overlap within but not between phyla. In vertebrate Tpms, hinge-regions decoupled long-range interhelical motions and suggested distinct domains. In contrast, crustacean Tpms did not exhibit long-range dynamic correlations-behaving more like a single rigid rod on the nanosecond time scale. These observations suggest there may be divergent mechanisms for Tpm binding to actin filaments, where conformational flexibility in mammalian Tpm allows a preorganized shape complementary to the filament surface, and where rigidity in the crustacean Tpm requires concerted bending and binding.
Collapse
Affiliation(s)
- Jose K James
- Center for Advanced Biotechnology and Medicine, and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
15
|
James JK, Pike DH, Khan IJ, Nanda V. Structural and Dynamic Properties of Allergen and Non-Allergen Forms of Tropomyosin. Structure 2018; 26:997-1006.e5. [PMID: 29887498 PMCID: PMC6697176 DOI: 10.1016/j.str.2018.05.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 03/28/2018] [Accepted: 05/08/2018] [Indexed: 11/26/2022]
Abstract
To what extent do structural and biophysical features of food allergen proteins distinguish them from other proteins in our diet? Invertebrate tropomyosins (Tpms) as a class are considered "pan-allergens," inducing food allergy to shellfish and respiratory allergy to dust mites. Vertebrate Tpms are not known to elicit allergy or cross-reactivity, despite their high structural similarity and sequence identity to invertebrate homologs. We expect allergens are sufficiently stable against gastrointestinal proteases to survive for immune sensitization in the intestines, and that proteolytic stability will correlate with thermodynamic stability. Thermal denaturation of shrimp Tpm shows that it is more stable than non-allergen vertebrate Tpm. Shrimp Tpm is also more resistant to digestion. Molecular dynamics uncover local dynamics that select epitopes and global differences in flexibility between shrimp and pig Tpm that discriminate allergens from non-allergens. Molecular determinants of allergenicity depend not only on sequence but on contributions of protein structure and dynamics.
Collapse
Affiliation(s)
- Jose K James
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Douglas H Pike
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - I John Khan
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
16
|
Abstract
During the last two decades, the pharmaceutical industry has progressed from detecting small molecules to designing biologic-based therapeutics. Amino acid-based drugs are a group of biologic-based therapeutics that can effectively combat the diseases caused by drug resistance or molecular deficiency. Computational techniques play a key role to design and develop the amino acid-based therapeutics such as proteins, peptides and peptidomimetics. In this study, it was attempted to discuss the various elements for computational design of amino acid-based therapeutics. Protein design seeks to identify the properties of amino acid sequences that fold to predetermined structures with desirable structural and functional characteristics. Peptide drugs occupy a middle space between proteins and small molecules and it is hoped that they can target "undruggable" intracellular protein-protein interactions. Peptidomimetics, the compounds that mimic the biologic characteristics of peptides, present refined pharmacokinetic properties compared to the original peptides. Here, the elaborated techniques that are developed to characterize the amino acid sequences consistent with a specific structure and allow protein design are discussed. Moreover, the key principles and recent advances in currently introduced computational techniques for rational peptide design are spotlighted. The most advanced computational techniques developed to design novel peptidomimetics are also summarized.
Collapse
Affiliation(s)
- Tayebeh Farhadi
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed MohammadReza Hashemian
- Chronic Respiratory Diseases Research Center (CRDRC), National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Disease, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Liu H, Chen Q. Computational protein design for given backbone: recent progresses in general method-related aspects. Curr Opin Struct Biol 2016; 39:89-95. [PMID: 27348345 DOI: 10.1016/j.sbi.2016.06.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/18/2016] [Accepted: 06/15/2016] [Indexed: 10/21/2022]
Abstract
To achieve high success rate in protein design requires a reliable sequence design method to find amino acid sequences that stably fold into a desired backbone structure. This problem is addressed by computational protein design through the approach of energy minimization. Here we review recent method progresses related to improving the accuracy of this approach. First, the quality of the energy model is a key factor. Second, with structure sensitive energy functions, whether and how backbone flexibility is considered can have large effects on design accuracy, although usually only small adjustments of the backbone structure itself are involved. Third, the effective accuracy of design results can be boosted by post-processing a small number of designed sequences with complementary models that may not be efficient enough for full sequence optimization. Finally, computational method development will benefit greatly from increasingly efficient experimental approaches that can be applied to obtain extensive feedbacks.
Collapse
Affiliation(s)
- Haiyan Liu
- School of Life Sciences, University of Science and Technology of China, China; Hefei National Laboratory for Physical Sciences at the Microscales, China; Collaborative Innovation Center of Chemistry for Life Sciences, Hefei, Anhui 230027, China; Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China.
| | - Quan Chen
- School of Life Sciences, University of Science and Technology of China, China
| |
Collapse
|
18
|
Maeda Y, Fang J, Ikezoe Y, Pike DH, Nanda V, Matsui H. Molecular Self-Assembly Strategy for Generating Catalytic Hybrid Polypeptides. PLoS One 2016; 11:e0153700. [PMID: 27116246 PMCID: PMC4846159 DOI: 10.1371/journal.pone.0153700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 04/03/2016] [Indexed: 12/13/2022] Open
Abstract
Recently, catalytic peptides were introduced that mimicked protease activities and showed promising selectivity of products even in organic solvents where protease cannot perform well. However, their catalytic efficiency was extremely low compared to natural enzyme counterparts presumably due to the lack of stable tertiary fold. We hypothesized that assembling these peptides along with simple hydrophobic pockets, mimicking enzyme active sites, could enhance the catalytic activity. Here we fused the sequence of catalytic peptide CP4, capable of protease and esterase-like activities, into a short amyloidogenic peptide fragment of Aβ. When the fused CP4-Aβ construct assembled into antiparallel β-sheets and amyloid fibrils, a 4.0-fold increase in the hydrolysis rate of p-nitrophenyl acetate (p-NPA) compared to neat CP4 peptide was observed. The enhanced catalytic activity of CP4-Aβ assembly could be explained both by pre-organization of a catalytically competent Ser-His-acid triad and hydrophobic stabilization of a bound substrate between the triad and p-NPA, indicating that a design strategy for self-assembled peptides is important to accomplish the desired functionality.
Collapse
Affiliation(s)
- Yoshiaki Maeda
- Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, New York, United State of America
| | - Justin Fang
- Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, New York, United State of America
| | - Yasuhiro Ikezoe
- Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, New York, United State of America
| | - Douglas H. Pike
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United State of America
| | - Vikas Nanda
- Department of Biochemistry, Center for Advanced Biotechnology and Medicine and the Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United State of America
| | - Hiroshi Matsui
- Department of Chemistry, Hunter College and the Graduate Center, City University of New York, New York, New York, United State of America
- Department of Biochemistry, Weill Medical College of Cornell University, New York, New York, United State of America
| |
Collapse
|
19
|
Rational, computer-enabled peptide drug design: principles, methods, applications and future directions. Future Med Chem 2015; 7:2173-93. [PMID: 26510691 DOI: 10.4155/fmc.15.142] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Peptides provide promising templates for developing drugs to occupy a middle space between small molecules and antibodies and for targeting 'undruggable' intracellular protein-protein interactions. Importantly, rational or in cerebro design, especially when coupled with validated in silico tools, can be used to efficiently explore chemical space and identify islands of 'drug-like' peptides to satisfy diverse drug discovery program objectives. Here, we consider the underlying principles of and recent advances in rational, computer-enabled peptide drug design. In particular, we consider the impact of basic physicochemical properties, potency and ADME/Tox opportunities and challenges, and recently developed computational tools for enabling rational peptide drug design. Key principles and practices are spotlighted by recent case studies. We close with a hypothetical future case study.
Collapse
|
20
|
Parmar AS, Xu F, Pike DH, Belure SV, Hasan NF, Drzewiecki KE, Shreiber DI, Nanda V. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides. Biochemistry 2015; 54:4987-97. [PMID: 26225466 PMCID: PMC5335877 DOI: 10.1021/acs.biochem.5b00502] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.
Collapse
Affiliation(s)
- Avanish S. Parmar
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad-500046, Telangana, INDIA
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Fei Xu
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Douglas H. Pike
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Sandeep V. Belure
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Nida F. Hasan
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Kathryn E. Drzewiecki
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - David I. Shreiber
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | - Vikas Nanda
- Center for Advanced Biotechnology and Medicine, Department of Biochemistry and Molecular Biology Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|