1
|
Di Santo A, Accinno M, Errante F, Capone M, Vultaggio A, Simoncini E, Zipoli G, Cosmi L, Annunziato F, Rovero P, Real Fernandez F. Quantitative evaluation of adalimumab and anti-adalimumab antibodies in sera using a surface plasmon resonance biosensor. Clin Biochem 2024; 133-134:110838. [PMID: 39489392 DOI: 10.1016/j.clinbiochem.2024.110838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/10/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVES Monitoring of therapeutic antibody adalimumab (ADL) and of anti-adalimumab antibodies (AAA) in autoimmune diseases patients' sera has achieved increased attention since several studies showed a correlation between AAA levels and treatment failure. We evaluated a new surface plasmon resonance (SPR)-based method that, with slight changes in the analysis condition and in the ligand immobilized on the chip surface, allows to monitor both AAA and ADL. This new label-free method does not require sample pretreatments, and it is fully automated, only requiring the preparation of the chip, which can be used for multiple analysis, and the preparation of the sample sets. DESIGN & METHODS Sera from ADL-treated patients (n = 47) and controls (n = 13) were included in this study. Quantitative analysis of AAA and ADL were performed separately using a new SPR-biosensor, and a commercially available ELISA kit. Agreement was defined by overall, positive, and negative agreement. Wilson Score was used to calculate confidence intervals (CI) on binomial probability and Spearman's rho and Bland-Altman test were used to assess correlations. RESULTS ELISA and SPR-based assay were able to identify circulating AAA in ADL-treated patients, with the percentage of positivity varying among the methods, with an overall agreement of 79%. AAA were detected in 18 (38 %) out of the 47 treated patients by the ELISA whereas SPR-based assay detected 10 (21 %) out of 47 samples. CONCLUSIONS Real-time label free SPR-based protocol for both AAA and ADL quantification has been set-up. Although quantitative differences were observed when compared with ELISA, the agreement among methodologies was high, particularly for ADL quantification within the therapeutic window of the drug.
Collapse
Affiliation(s)
- Andrea Di Santo
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Matteo Accinno
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Fosca Errante
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Manuela Capone
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Department of Laboratory Medicine, Azienda Usl Toscana Centro, Florence, Italy
| | - Alessandra Vultaggio
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Eleonora Simoncini
- Clinical Trials Task Force - Ethics and Care Unit, Azienda Usl Toscana Centro, Florence, Italy
| | - Giuditta Zipoli
- Clinical Trials Task Force - Ethics and Care Unit, Azienda Usl Toscana Centro, Florence, Italy
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Immunoallergology Unit, Careggi University Hospital, Florence, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy; Flow Cytometry Diagnostic Center and Immunotherapy, Careggi University Hospital, Florence, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy.
| | - Feliciana Real Fernandez
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Sesto Fiorentino (FI) I-50019, Italy.
| |
Collapse
|
2
|
Cordone V. Biochemical and molecular determinants of the subclinical inflammatory mechanisms in Rett syndrome. Arch Biochem Biophys 2024; 757:110046. [PMID: 38815782 DOI: 10.1016/j.abb.2024.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
To date, Rett syndrome (RTT), a genetic disorder mainly caused by mutations in the X-linked MECP2 gene, is increasingly considered a broad-spectrum pathology, instead of just a neurodevelopmental disease, due to the multitude of peripheral co-morbidities and the compromised metabolic pathways, affecting the patients. The altered molecular processes include an impaired mitochondrial function, a perturbed redox homeostasis, a chronic subclinical inflammation and an improper cholesterol metabolism. The persistent subclinical inflammatory condition was first defined ten years ago, as a previously unrecognized feature of RTT, playing a role in the pathology progress and modulation of phenotypical severity. In light of this, the present work aims at reviewing the current knowledge on the chronic inflammatory status and the altered immune/inflammatory functions in RTT, as well as investigating the emerging mechanisms underlying this condition with a special focus on the latest findings about inflammasome system, autoimmunity responses and intestinal micro- and mycobiota. On these bases, although further research is needed, future therapeutic strategies able to re-establish an adequate immune/inflammatory response could represent potential approaches for RTT patients.
Collapse
Affiliation(s)
- Valeria Cordone
- Department of Environmental and Prevention Sciences, University of Ferrara, Ferrara, Italy.
| |
Collapse
|
3
|
Stincarelli MA, Quagliata M, Di Santo A, Pacini L, Fernandez FR, Arvia R, Rinaldi S, Papini AM, Rovero P, Giannecchini S. SARS-CoV-2 inhibitory activity of a short peptide derived from internal fusion peptide of S2 subunit of spike glycoprotein. Virus Res 2023; 334:199170. [PMID: 37422270 PMCID: PMC10384657 DOI: 10.1016/j.virusres.2023.199170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/06/2023] [Indexed: 07/10/2023]
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has posed a great concern in human population. To fight coronavirus emergence, we have dissected the conserved amino acid region of the internal fusion peptide in the S2 subunit of Spike glycoprotein of SARS-CoV-2 to design new inhibitory peptides. Among the 11 overlapping peptides (9-23-mer), PN19, a 19-mer peptide, exhibited a powerful inhibitory activity against different SARS-CoV-2 clinical isolate variants in absence of cytotoxicity. The PN19 inhibitory activity was found to be dependent on conservation of the central Phe and C-terminal Tyr residues in the peptide sequence. Circular dichroism spectra of the active peptide exhibited an alpha-helix propensity, confirmed by secondary structure prediction analysis. The PN19 inhibitory activity, exerted in the first step of virus infection, was reduced after peptide adsorption treatment with virus-cell substrate during fusion interaction. Additionally, PN19 inhibitory activity was reduced by adding S2 membrane-proximal region derived peptides. PN19 showed binding ability to the S2 membrane proximal region derived peptides, confirmed by molecular modelling, playing a role in the mechanism of action. Collectively, these results confirm that the internal fusion peptide region is a good candidate on which develop peptidomimetic anti SARS-CoV-2 antivirals.
Collapse
Affiliation(s)
- Maria Alfreda Stincarelli
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Andrea Di Santo
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino 50019, Italy
| | - Lorenzo Pacini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Feliciana Real Fernandez
- CNR - Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Rosaria Arvia
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy
| | - Silvia Rinaldi
- CNR - Istituto di Chimica dei Composti Organometallici (CNR-ICCOM), Via Madonna del Piano 10, Sesto Fiorentino I-50019, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino 50019, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino 50019, Italy
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, Florence 50134, Italy.
| |
Collapse
|
4
|
Strauss P, Nuti F, Quagliata M, Papini AM, Hurevich M. Accelerated solid-phase synthesis of glycopeptides containing multiple N-glycosylated sites. Org Biomol Chem 2023; 21:1674-1679. [PMID: 36385318 DOI: 10.1039/d2ob01886a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Peptide fragments of glycoproteins containing multiple N-glycosylated sites are essential biochemical tools not only to investigate protein-protein interactions but also to develop glycopeptide-based diagnostics and immunotherapy. However, solid-phase synthesis of glycopeptides containing multiple N-glycosylated sites is hampered by difficult couplings, which results in a substantial drop in yield. To increase the final yield, large amounts of reagents but also time-consuming steps are required. Therefore, we propose herein to utilize heating and stirring in combination with low-loading solid supports to set up an accelerated route to obtain, by an efficient High-Temperature Fast Stirring Peptide Synthesis (HTFS-PS), glycopeptides containing multiple N-glycosylated sites using equimolar excess of the precious glycosylated building blocks.
Collapse
Affiliation(s)
- Poriah Strauss
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy.
| | - Mattan Hurevich
- The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
5
|
Quagliata M, Nuti F, Real-Fernandez F, Kirilova Kirilova K, Santoro F, Carotenuto A, Papini AM, Rovero P. Glucopeptides derived from myelin-relevant proteins and hyperglucosylated nontypeable Haemophilus influenzae bacterial adhesin cross-react with multiple sclerosis specific antibodies: A step forward in the identification of native autoantigens in multiple sclerosis. J Pept Sci 2023:e3475. [PMID: 36597597 DOI: 10.1002/psc.3475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 01/05/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory and autoimmune disorder, in which an antibody-mediated demyelination mechanism plays a critical role. We prepared two glucosylated peptides derived from the human myelin proteins, that is, oligodendrocyte-myelin glycoprotein (OMGp) and reticulon-4 receptor (RTN4R), selected by a bioinformatic approach for their conformational homology with CSF114(Glc), a designed β-turn antigenic probe derived from myelin oligodendrocyte glycoprotein (MOG), a glycoprotein present in the CNS. This synthetic antigen is specifically recognized by antibodies in sera of MS patients. We report herein the antigenic properties of these peptides, showing, on the one hand, that MS patient antibodies recognize the two glucosylated peptides and, on the other hand, that these antibodies cross-react with CSF114(Glc) and with the previously described hyperglucosylated nontypeable Haemophilus influenzae bacterial adhesin protein HMW1ct(Glc). These observations point to an immunological association between human and bacterial protein antigens, underpinning the hypothesis that molecular mimicry triggers the breakdown of self-tolerance in MS and suggesting that RTN4R and OMGp can be considered as autoantigens.
Collapse
Affiliation(s)
- Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Institute of Chemistry of Organometallic Compounds (ICCOM), National Research Council of Italy (CNR), Sesto Fiorentino, Italy
| | - Kalina Kirilova Kirilova
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
- University of Burgos, Burgos, Spain
| | - Federica Santoro
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Naples, Italy
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Staśkiewicz A, Quagliata M, Real-Fernandez F, Nuti F, Lanzillo R, Brescia-Morra V, Rusche H, Jewginski M, Carotenuto A, Brancaccio D, Aharoni R, Arnon R, Rovero P, Latajka R, Papini AM. Role of Helical Structure in MBP Immunodominant Peptides for Efficient IgM Antibody Recognition in Multiple Sclerosis. Front Chem 2022; 10:885180. [PMID: 35795217 PMCID: PMC9250970 DOI: 10.3389/fchem.2022.885180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/26/2022] [Indexed: 11/30/2022] Open
Abstract
The involvement of Myelin Basic Protein (MBP) in Multiple Sclerosis (MS) has been widely discussed in the literature. This intrinsically disordered protein has an interesting α-helix motif, which can be considered as a conformational epitope. In this work we investigate the importance of the helical structure in antibody recognition by MBP peptides of different lengths. Firstly, we synthesized the peptide MBP (81–106) (1) and observed that its elongation at both N- and C-termini, to obtain the peptide MBP (76–116) (2) improves IgM antibody recognition in SP-ELISA, but destabilizes the helical structure. Conversely, in competitive ELISA, MBP (81–106) (1) is recognized more efficiently by IgM antibodies than MBP (76–116) (2), possibly thanks to its more stable helical structure observed in CD and NMR conformational experiments. These results are discussed in terms of different performances of peptide antigens in the two ELISA formats tested.
Collapse
Affiliation(s)
- Agnieszka Staśkiewicz
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Michael Quagliata
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Vincenzo Brescia-Morra
- Multiple Sclerosis Clinical Care and Research Centre, Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Naples, Italy
| | - Hendrik Rusche
- Fischer Analytics GmbH, Weiler, Germany
- CY PeptLab Platform of Peptide and Protein Chemistry and Biology and UMR 8076 CNRS-BioCIS, CNRS, CY Cergy Paris Université, Neuville sur Oise, France
| | - Michal Jewginski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples “Federico II”, Naples, Italy
| | - Rina Aharoni
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Arnon
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, Sesto Fiorentino, Italy
| | - Rafal Latajka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Sesto Fiorentino, Italy
- CY PeptLab Platform of Peptide and Protein Chemistry and Biology and UMR 8076 CNRS-BioCIS, CNRS, CY Cergy Paris Université, Neuville sur Oise, France
- *Correspondence: Anna Maria Papini,
| |
Collapse
|
7
|
Mazzoleni A, Real‐Fernandez F, Nuti F, Lanzillo R, Brescia Morra V, Dambruoso P, Bertoldo M, Rovero P, Mallet J, Papini AM. Selective Capture of Anti-N-glucosylated NTHi Adhesin Peptide Antibodies by a Multivalent Dextran Conjugate. Chembiochem 2022; 23:e202100515. [PMID: 34761861 PMCID: PMC9300045 DOI: 10.1002/cbic.202100515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Indexed: 12/15/2022]
Abstract
Tentacle-like polymers decorated with several copies of peptide antigens can be interesting tools for increasing the ability to capture circulating antibodies in patient sera, using cooperative effects for stronger avidity. We previously showed that antibodies from multiple sclerosis (MS) patient sera preferentially recognize hyperglucosylated adhesin protein HMW1ct of non-typeable Haemophilus influenzae (NTHi). We selected the C-terminal HMW1ct(1347-1354) minimal epitope and prepared the diglucosylated analogue Ac-KAN(Glc)VTLN(Glc)TTG-K(N3 )-NH2 to graft a 40 kDa dextran scaffold modified with glycidyl-propargyl moieties to perform a copper catalyzed alkyne-azide coupling reaction (CuAAC). Quantitative NMR measurements allowed the characterization of the peptide loading (19.5 %) on the multivalent dextran conjugate. This novel polymeric structure displayed optimal capturing properties of both IgG and, more interestingly, IgM antibodies in MS sera. Specific antibodies from a representative MS serum, were successfully depleted using a Sepharose resin bearing the new glucosylated multivalent conjugate, as confirmed by ELISA. These results may offer a promising proof-of-concept for the selective purification of high affinity autoantibodies from sera of autoimmune patients, in general, and of specific high affinity antibodies against a minimally glcosylated epitope Asn(Glc) from sera of multiple sclerosis (MS) patients, in particular.
Collapse
Affiliation(s)
- Antonio Mazzoleni
- Laboratoire des BiomoléculesDépartement de ChimieÉcole Normale SupérieurePSL UniversitySorbonne UniversitéCNRS24 rue Lhomond75005ParisFrance
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| | - Feliciana Real‐Fernandez
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| | - Francesca Nuti
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| | - Roberta Lanzillo
- Multiple Sclerosis Clinical Care and Research CentreDepartment of NeurosciencesReproductive Sciences and OdontostomatologyFederico II UniversityVia Pancini 580131NaplesItaly
| | - Vincenzo Brescia Morra
- Multiple Sclerosis Clinical Care and Research CentreDepartment of NeurosciencesReproductive Sciences and OdontostomatologyFederico II UniversityVia Pancini 580131NaplesItaly
| | - Paolo Dambruoso
- ISOF – Istituto per la Sintesi Organica e la FotoreattivitàConsiglio Nazionale delle RicercheVia Gobetti 10140129BolognaItaly
| | - Monica Bertoldo
- Dipartimento di Scienze chimiche, farmaceutiche ed agrarieUniversità di FerraraVia Fossato di Mortara 1744121FerraraItaly
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Neurosciences, Psychology, Drug Research and Child HealthSection of Pharmaceutical Sciences and NutraceuticsUniversity of FlorenceVia Ugo Schiff 650019Sesto FiorentinoItaly
| | - Jean‐Maurice Mallet
- Laboratoire des BiomoléculesDépartement de ChimieÉcole Normale SupérieurePSL UniversitySorbonne UniversitéCNRS24 rue Lhomond75005ParisFrance
| | - Anna Maria Papini
- Interdepartmental Research Unit of Peptide and Protein Chemistry and BiologyDepartment of Chemistry “Ugo Schiff”University of FlorenceVia della Lastruccia 1350019Sesto FiorentinoItaly
| |
Collapse
|
8
|
ELISA based on peptide antigens reproducing cross-reactive viral epitopes to detect antibodies in latent autoimmune diabetes in adults vs. type 1 diabetes. MethodsX 2021; 8:101452. [PMID: 34434861 PMCID: PMC8374702 DOI: 10.1016/j.mex.2021.101452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/10/2021] [Indexed: 11/02/2022] Open
Abstract
Diagnosis of Latent Autoimmune Diabetes in Adults (LADA) is based on the adult-age, anti-islet autoantibodies, and temporary insulin-independence. As in Type-1-Diabetes (T1DM), autoimmunity may trigger LADA and enteroviruses-infections can play a role. Anti-human Glutamic-Acid-Decarboxylase (hGAD) autoantibodies are accepted clinical biomarkers, but do not discriminate LADA vs. T1DM. The hypothesis is that protein antigens detecting anti-hGAD antibodies do not expose epitopes specific for different disease forms. We investigated the diagnostic value of autoantibodies in LADA vs. T1DM to peptides of hGAD65/67 isoforms, and Enterovirus-Coxsackie-B4 (CVB4), as antigens sharing the epitope PEVKXK (X: E/T) included in CD8 T-cell CVB4 epitope restricted by diabetes-associated HLA-A2.1. Statistically significant differences of IgM and/or IgG in LADA and T1DM vs. controls were identified. In LADA IgMs to GAD65/67 peptides are diagnostics, IgGs to GAD65/67 peptides correlate with anti-CVB4 peptide antibodies. IgM and/or IgG to all tested peptides can predict LADA, monitoring CVB4 infected patients, improving LADA vs. T1DM stratification.•A customized SP-ELISA based on synthetic peptides Ac-hGAD65(250-273)-NH2 (1), Ac-hGAD67(258-281)-NH2 (2), and Ac-CVB4P2C(28-50)-NH2 (3) is described.•The method was designed to detect specific IgM and/or IgG in LADA, T1DM, vs. controls•Final aim is improvement of LADA vs. T1DM patient stratification.
Collapse
|
9
|
Harvey DJ. ANALYSIS OF CARBOHYDRATES AND GLYCOCONJUGATES BY MATRIX-ASSISTED LASER DESORPTION/IONIZATION MASS SPECTROMETRY: AN UPDATE FOR 2015-2016. MASS SPECTROMETRY REVIEWS 2021; 40:408-565. [PMID: 33725404 DOI: 10.1002/mas.21651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/24/2020] [Indexed: 06/12/2023]
Abstract
This review is the ninth update of the original article published in 1999 on the application of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2016. Also included are papers that describe methods appropriate to analysis by MALDI, such as sample preparation techniques, even though the ionization method is not MALDI. Topics covered in the first part of the review include general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation and arrays. The second part of the review is devoted to applications to various structural types such as oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Much of this material is presented in tabular form. The third part of the review covers medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis. The reported work shows increasing use of combined new techniques such as ion mobility and the enormous impact that MALDI imaging is having. MALDI, although invented over 30 years ago is still an ideal technique for carbohydrate analysis and advancements in the technique and range of applications show no sign of deminishing. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David J Harvey
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Roosevelt Drive, Oxford, OX3 7FZ, United Kingdom
| |
Collapse
|
10
|
Mazzoleni A, Real-Fernandez F, Larregola M, Nuti F, Lequin O, Papini AM, Mallet JM, Rovero P. Hyperglucosylated adhesin-derived peptides as antigenic probes in multiple sclerosis: Structure optimization and immunological evaluation. J Pept Sci 2020; 26:e3281. [PMID: 32790009 DOI: 10.1002/psc.3281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/01/2023]
Abstract
Peptides mimicking antigenic epitopes targeted by antibodies can be powerful tools to be used as antigen surrogates for the specific diagnosis and treatment of autoimmune diseases. Obtaining structural insights about the nature of peptide-antibody interaction in complex mixtures such as sera is a critical goal. In multiple sclerosis (MS), we previously demonstrated that the N-linked β-d-glucopyranosyl moieties (N-Glc) containing epitopes in nontypeable Haemophilus influenzae adhesin C-terminal portion HMW1(1205-1526) were essential for high-affinity antibody binding in a subpopulation of MS patients. With the aim of developing peptide probes and assessing their binding properties to antibodies from sera of representative patients, we performed the systematic analysis of synthetic peptides based on HMW1(1347-1354) fragment bearing one or two N-Glc respectively on Asn-1349 and/or Asn-1352. The N-glucosylated nonapeptides efficiently bind to IgG antibodies, displaying IC50 in the range 10-8 -10-10 M by competitive indirect enzyme-linked immunosorbent assay (ELISA) in three representative MS patient sera. We selected the di-N-glucosylated adhesin peptide Ac-KAN (Glc)VTLN (Glc)TT-NH2 as the shortest sequence able to inhibit high-avidity interaction with N-Glc targeting IgM antibodies. Nuclear magnetic resonance (NMR)- and circular dichroism (CD)-based characterization showed that the binding properties of these antigens could not be ascribed to structural differences induced by the presence of up to two N-glucosyl moieties. Therefore, the antibody binding is not easily correlated to the position of the sugar or to a determined conformation in water.
Collapse
Affiliation(s)
- Antonio Mazzoleni
- Laboratoire des Biomolécules, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France.,Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernandez
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Maud Larregola
- UMR 8076 CNRS-BioCIS Team of Chemical Biology and PeptLab@UCP Platform of Peptide and Protein Chemistry and Biology, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Francesca Nuti
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy
| | - Olivier Lequin
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, Paris, France
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, Italy.,UMR 8076 CNRS-BioCIS Team of Chemical Biology and PeptLab@UCP Platform of Peptide and Protein Chemistry and Biology, Cergy Pontoise, France.,Université Paris-Saclay, CNRS, BioCIS, Châtenay-Malabry, France
| | - Jean-Maurice Mallet
- Laboratoire des Biomolécules, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health-Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
11
|
Petit B, Mitaine-Offer AC, Fernández FR, Papini AM, Delaude C, Miyamoto T, Tanaka C, Rovero P, Lacaille-Dubois MA. Triterpene glycosides from Blighia welwitschii and evaluation of their antibody recognition capacity in multiple sclerosis. PHYTOCHEMISTRY 2020; 176:112392. [PMID: 32512361 DOI: 10.1016/j.phytochem.2020.112392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/11/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Multiple sclerosis (MS) in a multifactorial autoimmune disease in which reliable biomarkers are needed for therapeutic monitoring and diagnosis. Autoantibodies (autoAbs) are known biomarker candidates although their detection in biological fluids requires a thorough characterization of their associated antigens. Over the past twenty years, a reverse chemical-based approach aiming to screen putative autoantigens has underlined the role of glycans, in particular glucose, in MS. Despite the progress achieved, a lack of consensus regarding the nature of innate antigens as well as difficulties proposing new synthetic glucose-based structures have proved to be obstacles. Here is proposed a strategy to extend the current methodology to the field of natural glycosides, in order to dramatically increase the diversity of glycans that could be tested. Triterpene saponins from the Sapindaceace family represent an optimal starting material as their abundant description in the literature has revealed a prevalence of glucose-based oligosaccharides. Blighia welwitschii (Sapindaceae) was thus selected as a case study and twelve triterpene saponins were isolated and characterized. Their structures were elucidated on the basis of 1D and 2D NMR as well as mass spectrometry, revealing seven undescribed compounds. A selection of natural glycosides exhibiting various oligosaccharide moieties were then tested as antigens in enzyme-linked immunosorbent assay (ELISA) to recognize IgM antibodies (Abs) in MS patients' sera. Immunoassay results indicated a correlation between the glycan structures and their antibody recognition capacity, allowing the determination of structure-activity relationships that were coherent with previous studies. This approach might help to identify sugar epitopes putatively involved in MS pathogenesis, which remains poorly understood.
Collapse
Affiliation(s)
- Bastien Petit
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France
| | - Anne-Claire Mitaine-Offer
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France.
| | - Feliciana Real Fernández
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, NeuroFarBa Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy; Laboratory of Chemical Biology, EA 4505 PeptLab@UCP, University of Cergy Pontoise, 95031, Cergy, Pontoise Cedex, France
| | - Clément Delaude
- Centre de Recherche Phytochimique, Université de Liège, Institut de Chimie-B6, Sart Tilman, B-4000, Liège I, Belgium
| | - Tomofumi Miyamoto
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Chiaki Tanaka
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Paolo Rovero
- Interdepartmental Laboratory of Peptide and Protein Chemistry and Biology, University of Florence, 50019, Sesto Fiorentino, Italy; Department of Neurosciences, Psychology, Drug Research and Child Health, NeuroFarBa Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, 50019, Sesto Fiorentino, Italy
| | - Marie-Aleth Lacaille-Dubois
- PEPITE EA 4267, Laboratoire de Pharmacognosie, UFR des Sciences de Santé, Université de Bourgogne Franche-Comté, BP 87900, 21079, Dijon, Cedex, France
| |
Collapse
|
12
|
A Multiple N-Glucosylated Peptide Epitope Efficiently Detecting Antibodies in Multiple Sclerosis. Brain Sci 2020; 10:brainsci10070453. [PMID: 32679694 PMCID: PMC7408607 DOI: 10.3390/brainsci10070453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 11/21/2022] Open
Abstract
Diagnostics of Multiple Sclerosis (MS) are essentially based on the gold standard magnetic resonance imaging. Few alternative simple assays are available to follow up disease activity. Considering that the disease can remain elusive for years, identification of antibodies fluctuating in biological fluids as relevant biomarkers of immune response is a challenge. In previous studies, we reported that anti-N-glucosylated (N-Glc) peptide antibodies that can be easily detected in Solid-Phase Enzyme-Linked ImmunoSorbent Assays (SP-ELISA) on MS patients’ sera preferentially recognize hyperglucosylated adhesin of non-typeable Haemophilus Influenzae. Since multivalency can be useful for diagnostic purposes to allow an efficient coating in ELISA, we report herein the development of a collection of Multiple N-glucosylated Peptide Epitopes (N-Glc MEPs) to detect anti-N-Glc antibodies in MS. To this aim, a series of N-Glc peptide antigens to be represented in the N-GlcMEPs were tested in competitive ELISA. We confirmed that the epitope recognized by antibodies shall contain at least 5-mer sequences including the fundamental N-Glc moiety. Using a 4-branched dendrimeric lysine scaffold, we selected the N-Glc MEP 24, carrying the minimal epitope Asn(Glc) anchored to a polyethylene glycol-based spacer (PEG) containing a 19-atoms chain, as an efficient multivalent probe to reveal specific and high affinity anti-N-Glc antibodies in MS.
Collapse
|
13
|
Guryanov I, Real-Fernández F, Sabatino G, Prisco N, Korzhikov-Vlakh V, Biondi B, Papini AM, Korzhikova-Vlakh E, Rovero P, Tennikova T. Modeling interaction between gp120 HIV protein and CCR5 receptor. J Pept Sci 2019; 25:e3142. [PMID: 30680875 DOI: 10.1002/psc.3142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 02/06/2023]
Abstract
The study of the process of HIV entry into the host cell and the creation of biomimetic nanosystems that are able to selectively bind viral particles and proteins is a high priority research area for the development of novel diagnostic tools and treatment of HIV infection. Recently, we described multilayer nanoparticles (nanotraps) with heparin surface and cationic peptides comprising the N-terminal tail (Nt) and the second extracellular loop (ECL2) of CCR5 receptor, which could bind with high affinity some inflammatory chemokines, in particular, Rantes. Because of the similarity of the binding determinants in CCR5 structure, both for chemokines and gp120 HIV protein, here we expand this approach to the study of the interactions of these biomimetic nanosystems and their components with the peptide representing the V3 loop of the activated form of gp120. According to surface plasmon resonance results, a conformational rearrangement is involved in the process of V3 and CCR5 fragments binding. As in the case of Rantes, ECL2 peptide showed much higher affinity to V3 peptide than Nt (KD = 3.72 × 10-8 and 1.10 × 10-6 M, respectively). Heparin-covered nanoparticles bearing CCR5 peptides effectively bound V3 as well. The presence of both heparin and the peptides in the structure of the nanotraps was shown to be crucial for the interaction with the V3 loop. Thus, short cationic peptides ECL2 and Nt proved to be excellent candidates for the design of CCR5 receptor mimetics.
Collapse
Affiliation(s)
- I Guryanov
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | - F Real-Fernández
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy
| | - G Sabatino
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy.,CNR Istituto di Biostrutture e Bioimmagini, 95126, Catania, Italy
| | - N Prisco
- Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, 50019, Sesto Fiorentino, Italy
| | - V Korzhikov-Vlakh
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | - B Biondi
- CNR-ICB, Padova Unit, Department of Chemistry, University of Padova, 35131, Padova, Italy
| | - A M Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Italy.,PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University Paris-Seine, 95031, Cergy-Pontoise CEDEX, France
| | - E Korzhikova-Vlakh
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| | - P Rovero
- CNR Istituto di Biostrutture e Bioimmagini, 95126, Catania, Italy.,Laboratory of Peptide and Protein Chemistry and Biology, Department of NeuroFarBa, University of Florence, 50019, Sesto Fiorentino, Italy
| | - T Tennikova
- Institute of Chemistry, St. Petersburg State University, St. Petersburg, 198504, Russia
| |
Collapse
|
14
|
Label-Free Quantification of Anti-TNF-α in Patients Treated with Adalimumab Using an Optical Biosensor. SENSORS 2018; 18:s18030691. [PMID: 29495408 PMCID: PMC5876701 DOI: 10.3390/s18030691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/14/2018] [Accepted: 02/15/2018] [Indexed: 02/06/2023]
Abstract
This study describes the development of an immunosensory label-free quantification methodology based on surface plasmon resonance (SPR) and its applicability in measuring/evaluating therapeutic drug monitoring (TDM) of anti-TNF-α monoclonal antibody (adalimumab) in rheumatoid arthritis (RA) patients. The experimental parameters evaluated in this study were immobilising ligands by pre-concentration assays, sensor surface regeneration, ascertaining the method’s sensitivity and correlating the results from quantifying plasma samples by ELISA immunoassay. The results showed that TNF-α quantification values (in RU) were significantly different when comparing patients (~50–250 RU) to controls (~10–20 RU). Likewise, there was 0.97 correlation for patients and 0.91 for healthy volunteers using SPR and ELISA comparison methodologies. SPR immunosensory detection provided a precise, sensitive strategy, along with real-time determination, for quantifying adalimumab, having great potential for clinical routine regarding TDM.
Collapse
|
15
|
Ieronymaki M, Nuti F, Brancaccio D, Rossi G, Real-Fernández F, Cao Y, Monasson O, Larregola M, Peroni E, Uziel J, Sabatino G, Novellino E, Carotenuto A, Papini AM, Rovero P. Structure-Activity Relationship Studies, SPR Affinity Characterization, and Conformational Analysis of Peptides That Mimic the HNK-1 Carbohydrate Epitope. ChemMedChem 2017; 12:751-759. [PMID: 28403522 DOI: 10.1002/cmdc.201700042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/23/2017] [Indexed: 01/08/2023]
Abstract
The design of molecules that mimic biologically relevant glycans is a significant goal for understanding important biological processes and may lead to new therapeutic and diagnostic agents. In this study we focused our attention on the trisaccharide human natural killer cell-1 (HNK-1), considered the antigenic determinant of myelin-associated glycoprotein and the target of clinically relevant auto-antibodies in autoimmune neurological disorders such as IgM monoclonal gammopathy and demyelinating polyneuropathy. We describe a structure-activity relationship study based on surface plasmon resonance binding affinities aimed at the optimization of a peptide that mimics the HNK-1 minimal epitope. We developed a cyclic heptapeptide that shows an affinity of 1.09×10-7 m for a commercial anti-HNK1 mouse monoclonal antibody. Detailed conformational analysis gave possible explanations for the good affinity displayed by this novel analogue, which was subsequently used as an immunological probe. However, preliminary screening indicates that patients' sera do not specifically recognize this peptide, showing that murine monoclonal antibodies cannot be used as a guide to select immunological probes for the detection of clinically relevant human auto-antibodies.
Collapse
Affiliation(s)
- Matthaia Ieronymaki
- Laboratory of Peptide and Protein Chemistry and Biology, PeptLab, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Francesca Nuti
- Laboratory of Peptide and Protein Chemistry and Biology, PeptLab, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Diego Brancaccio
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - Giada Rossi
- Laboratory of Peptide and Protein Chemistry and Biology, PeptLab, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Feliciana Real-Fernández
- Laboratory of Peptide and Protein Chemistry and Biology, PeptLab, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| | - Yihong Cao
- PeptLab, UCP Platform and Laboratory of Chemical Biology EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise Cedex, France
| | - Olivier Monasson
- PeptLab, UCP Platform and Laboratory of Chemical Biology EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise Cedex, France
| | - Maud Larregola
- PeptLab, UCP Platform and Laboratory of Chemical Biology EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise Cedex, France
| | - Elisa Peroni
- PeptLab, UCP Platform and Laboratory of Chemical Biology EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise Cedex, France
| | - Jacques Uziel
- PeptLab, UCP Platform and Laboratory of Chemical Biology EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise Cedex, France
| | - Giuseppina Sabatino
- Laboratory of Peptide and Protein Chemistry and Biology, PeptLab, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - Alfonso Carotenuto
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131, Napoli, Italy
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, PeptLab, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy.,Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy.,PeptLab, UCP Platform and Laboratory of Chemical Biology EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise Cedex, France
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, PeptLab, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy.,Department of Neurosciences, Psychology, Drug Research and Child Health, Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Giangrande C, Auberger N, Rentier C, Papini AM, Mallet JM, Lavielle S, Vinh J. Multi-Stage Mass Spectrometry Analysis of Sugar-Conjugated β-Turn Structures to be Used as Probes in Autoimmune Diseases. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:735-747. [PMID: 26729456 DOI: 10.1007/s13361-015-1321-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
Synthetic sugar-modified peptides were identified as antigenic probes in the context of autoimmune diseases. The aim of this work is to provide a mechanistic study on the fragmentation of different glycosylated analogs of a synthetic antigenic probe able to detect antibodies in a subpopulation of multiple sclerosis patients. In particular the N-glucosylated type I' β-turn peptide structure called CSF114(Glc) was used as a model to find signature fragmentations exploring the potential of multi-stage mass spectrometry by MALDI-LTQ Orbitrap. Here we compare the fragmentation of the glucosylated form of the synthetic peptide CSF114(Glc), bearing a glucose moiety on an asparagine residue, with less or non- immunoreactive forms, bearing different sugar-modifications, such as CSF114(GlcNAc), modified with a residue of N-acetylglucosamine, and CSF114[Lys(7)(1-deoxyfructopyranosyl)], this last one modified with a 1-deoxyfructopyranosyl moiety on a lysine at position 7. The analysis was set up using a synthetic compound specifically deuterated on the C-1 to compare its fragmentation with the fragmentation of the undeuterated form, and thus ascertain with confidence the presence on an Asn(Glc) within a peptide sequence. At the end of the study, our analysis led to the identification of signature neutral losses inside the sugar moieties to characterize the different types of glycosylation/glycation. The interest of this study lies in the possibility of applyimg this approach to the discovery of biomarkers and in the diagnosis of autoimmune diseases. Graphical Abstract <!-- [INSERT GRAPHICAL ABSTRACT TEXT HERE] -->.
Collapse
Affiliation(s)
- Chiara Giangrande
- Laboratory of Biological Mass Spectrometry and Proteomics, ESPCI ParisTech, PSL Research University, Paris, France.
- CNRS USR 3149 SMBP, Paris, France.
| | - Nicolas Auberger
- Département de Chimie, École Normale Supérieure-PSL Research University, 24 rue Lhomond, 75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005, Paris, France
- CNRS, UMR 7203 LBM, F-75005, Paris, France
| | - Cédric Rentier
- Laboratory of Peptide and Protein Chemistry and Biology - PeptLab, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
- PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise CEDEX, France
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology - PeptLab, Sesto Fiorentino, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 13, 50019, Sesto Fiorentino, Italy
- PeptLab@UCP Platform and Laboratory of Chemical Biology EA4505, University of Cergy-Pontoise, 5 mail Gay-Lussac, 95031, Cergy-Pontoise CEDEX, France
| | - Jean-Maurice Mallet
- Département de Chimie, École Normale Supérieure-PSL Research University, 24 rue Lhomond, 75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005, Paris, France
- CNRS, UMR 7203 LBM, F-75005, Paris, France
| | - Solange Lavielle
- Département de Chimie, École Normale Supérieure-PSL Research University, 24 rue Lhomond, 75005, Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, LBM, 4 place Jussieu, F-75005, Paris, France
- CNRS, UMR 7203 LBM, F-75005, Paris, France
| | - Joëlle Vinh
- Laboratory of Biological Mass Spectrometry and Proteomics, ESPCI ParisTech, PSL Research University, Paris, France
- CNRS USR 3149 SMBP, Paris, France
| |
Collapse
|