1
|
Zhang Y, Zheng H, Zhao Y, Du C, Zhang J, Liu J, Jiang S, Wei Y, Feng CL. Deciphering the Distinct Roles of Molecular and Supramolecular Chirality in Osteogenic Differentiation of Mesenchymal Stem Cells in 3D Hydrogels. ACS NANO 2025. [PMID: 40425514 DOI: 10.1021/acsnano.5c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Chirality is a pivotal determinant in stem cell differentiation, yet discerning the individual effects of chirality across different scales within native three-dimensional (3D) environments remains challenging. Here, a strategy is employed using nanostructures with controlled chirality to precisely assess the impact of molecular and supramolecular chirality on mesenchymal stem cell (MSC) osteogenic differentiation. We synthesized two pairs of enantiomers, l/d-phenylalanine (l/D-Phe) and l/d-1-naphthylalanine (L/D-1-Nap) derivatives, which could form four distinct chiral fibrous hydrogels with different molecular and supramolecular chiralities: L-supP and D-supP (supP indicates supramolecular right-handed helix), and L-supM and D-supM (supM denotes supramolecular left-handed helix). Both experimental and computational analyses reveal that the supramolecular supM/supP helicity is governed by conformational changes in aromatic side chains, switching between outward and inward orientations. Intriguingly, MSCs encapsulated within these chiral fibers displayed osteogenic differentiation that was predominantly influenced by higher-order supramolecular chirality rather than molecular chirality. Specifically, supM-nanofibrils significantly promoted the MSC commitment to the osteoblast lineage, whereas supP-nanofibrils lacked this osteoinductive potential. Additionally, we observed subtle positive and negative modulations of MSC osteogenic differentiation by l- and d-enantiomeric molecular chiralities, respectively. Our study presents a strategy for chiral hydrogel design and delineates how supramolecular chirality surpasses molecular chirality in directing MSC osteogenesis within 3D hydrogels, highlighting the potential of chiral biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Yanyan Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Huimin Zheng
- NMPA Key Laboratory for Dental Materials National Engineering, Laboratory for Digital and Material Technology of Stomatology, Department of Geriatric Dentistry, Peking University School of Stomatology, Beijing 100081, China
| | - Yu Zhao
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Cong Du
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Jian Zhang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Jinying Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Nanoscience and Materials Engineering, Henan University, Kaifeng 475004, China
| | - Shengjie Jiang
- NMPA Key Laboratory for Dental Materials National Engineering, Laboratory for Digital and Material Technology of Stomatology, Department of Geriatric Dentistry, Peking University School of Stomatology, Beijing 100081, China
| | - Yan Wei
- NMPA Key Laboratory for Dental Materials National Engineering, Laboratory for Digital and Material Technology of Stomatology, Department of Geriatric Dentistry, Peking University School of Stomatology, Beijing 100081, China
| | - Chuan-Liang Feng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
2
|
Ma J, Ma N, Liu J, Zhu Q, Tang Y, Wang L, Yan Y, Yue T, Shao M, Zhang W. One-Step Synthesis for Orn-Val with High Molecular Weight and Low Polydispersity by Ugi Four-Component Condensation. ACS Biomater Sci Eng 2025; 11:249-258. [PMID: 39603821 DOI: 10.1021/acsbiomaterials.4c01379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Basic amino acid alternating copolymers exhibit exceptional antimicrobial properties and biosafety, yet their application is restricted by the complexity of the synthesis process and low molecular weight (Mn = 1000). In this study, we synthesized a basic amino acid alternating copolymer (Orn-Val) in only one step by the Ugi four-component condensation (Ugi'4CC), achieving high molecular weight (Mn = 20,000) and narrow polydispersity (PDI ≤ 1.10). Furthermore, we observed that factors such as the feed ratio, reaction solvent, and pH significantly influenced the molecular weight and polydispersity of MPE-Orn-Val-Cbz. Moreover, the structure of potassium isocyanate also significantly affected the molecular weight and polydispersity of the products. And it was also demonstrated that the obtained Orn-Val demonstrated excellent antimicrobial properties and biocompatibility. Therefore, this method effectively addresses the limitations associated with the complex synthesis process and low molecular weight of amino acid alternating copolymers.
Collapse
Affiliation(s)
- Junhui Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Ma
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jun Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qiongqiong Zhu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yan Tang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Yan
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Ting Yue
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Meiyu Shao
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
3
|
Honfroy A, Bertouille J, Turea AM, Cauwenbergh T, Bridoux J, Lensen N, Mangialetto J, Van den Brande N, White JF, Gardiner J, Brigaud T, Ballet S, Hernot S, Chaume G, Martin C. Fluorinated Peptide Hydrogels Result in Longer In Vivo Residence Time after Subcutaneous Administration. Biomacromolecules 2024; 25:6666-6680. [PMID: 39230056 DOI: 10.1021/acs.biomac.4c00872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Peptide-based hydrogels are of interest to biomedical applications. Herein, we have explored the introduction of fluorinated amino acids in hydrogelator H-FQFQFK-NH2 (P1) to design a series of fluorinated peptide hydrogels and evaluate the in vitro and in vivo properties of the most promising analogues. The impact of fluorinated groups on peptide gelation, secondary structure, and self-assembly processes was assessed. We show that fluorine can significantly improve hydrogel stiffness, compared to the nonfluorinated reference P1. For P15 (H-FQFQF(o-CF3)K-NH2), P18 (H-FQFQF(F5)K-NH2), and P19 (H-FQFQM(CF3)K-NH2), microscopy studies scrutinized fiber morphologies and alignment in the network. In vitro release studies of hydrogels loaded with an opioid cargo suggested improved hydrogel stability for P15 and P18. This improved stability was further validated in vivo, notably for P15, giving the most significant increased gel residence time, with more than 20% of hydrogel still present 9 days post-injection, as monitored by nuclear SPECT-CT imaging.
Collapse
Affiliation(s)
- Aurélie Honfroy
- Research Group of Organic Chemistry (ORGC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
- VUB, Molecular Imaging and Therapy Research Group (MITH), Laarbeeklaan 103, Jette 1090, Belgium
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, Cergy-Pontoise 95000, France
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, Orsay 91400, France
| | - Jolien Bertouille
- Research Group of Organic Chemistry (ORGC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Ana-Maria Turea
- Research Group of Organic Chemistry (ORGC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Thibault Cauwenbergh
- Research Group of Organic Chemistry (ORGC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Jessica Bridoux
- VUB, Molecular Imaging and Therapy Research Group (MITH), Laarbeeklaan 103, Jette 1090, Belgium
| | - Nathalie Lensen
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, Cergy-Pontoise 95000, France
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, Orsay 91400, France
| | - Jessica Mangialetto
- Research Group Sustainable Materials Engineering (SUME), Lab of Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Niko Van den Brande
- Research Group Sustainable Materials Engineering (SUME), Lab of Physical Chemistry and Polymer Science (FYSC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Jacinta F White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia
| | - James Gardiner
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia
| | - Thierry Brigaud
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, Cergy-Pontoise 95000, France
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, Orsay 91400, France
| | - Steven Ballet
- Research Group of Organic Chemistry (ORGC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| | - Sophie Hernot
- VUB, Molecular Imaging and Therapy Research Group (MITH), Laarbeeklaan 103, Jette 1090, Belgium
| | - Grégory Chaume
- CY Cergy Paris Université, CNRS, BioCIS UMR 8076, Cergy-Pontoise 95000, France
- Université Paris-Saclay, CNRS, BioCIS UMR 8076, Orsay 91400, France
| | - Charlotte Martin
- Research Group of Organic Chemistry (ORGC), Vrije Universiteit Brussel, Pleinlaan 2, Brussels B-1050, Belgium
| |
Collapse
|
4
|
Wang X, Zhao J, Zhang J, Cao J, Yu Y, Ma B, Niu G, Lu S, Zhang L, Wang W. π-π Stacking Network-Based Supramolecular Peptide Nanoprobe for Visualization of the ICB-Enhanced Ferroptosis Process. Anal Chem 2024; 96:13317-13325. [PMID: 39080839 DOI: 10.1021/acs.analchem.4c03381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The construction of coassembled peptide nanoprobes based on structural adaptation provides an effective template for stable monitoring of the molecular events in physiological and pathological processes. This also greatly expands their applications in biomedicine, such as multimodal combined diagnosis and treatment. However, the insufficient understanding of the physicochemical properties and structural features of different molecules still makes it difficult to construct the coassembled probes with mutually reinforcing functions, leading to unpredictable effects. Here, we showed how to utilize the π-π stacking network on β-sheets formed by PD-L1-targeting peptides to capture small molecules with ferroptosis functions, thus, coassembling them into a visual probe with synergistic effects. Compared with individual components, the coassembled strategy could significantly improve the stability of the nanoprobe, inducing stronger ferroptosis effects and immune checkpoint blocking effects, and track and reflect the process. This study provides new insights into the design of multicomponent collaborative coassembly systems with biological effects.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jian Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jingtian Cao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yao Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bokai Ma
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100094, China
| | - Guangle Niu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shixiang Lu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
5
|
Kashyap S, Pal VK, Mohanty S, Roy S. Exploring a Solvent Dependent Strategy to Control Self-Assembling Behavior and Cellular Interaction in Laminin-Mimetic Short Peptide based Supramolecular Hydrogels. Chembiochem 2024; 25:e202300835. [PMID: 38390634 DOI: 10.1002/cbic.202300835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Self-assembled hydrogels, fabricated through diverse non-covalent interactions, have been extensively studied in regenerative medicines. Inspired from bioactive functional motifs of ECM protein, short peptide sequences have shown remarkable abilities to replicate the intrinsic features of the natural extracellular milieu. In this direction, we have fabricated two short hydrophobic bioactive sequences derived from the laminin protein i. e., IKVAV and YIGSR. Based on the substantial hydrophobicity of these peptides, we selected a co-solvent approach as a suitable gelation technique that included different concentrations of DMSO as an organic phase along with an aqueous solution containing 0.1 % TFA. These hydrophobic laminin-based bioactive peptides with limited solubility in aqueous physiological environment showed significantly enhanced solubility with higher DMSO content in water. The enhanced solubility resulted in extensive intermolecular interactions that led to the formation of hydrogels with a higher-order entangled network along with improved mechanical properties. Interestingly, by simply modulating DMSO content, highly tunable gels were accessed in the same gelator domain that displayed differential physicochemical properties. Further, the cellular studies substantiated the potential of these laminin-derived hydrogels in enhancing cell-matrix interactions, thereby reinforcing their applications in tissue engineering.
Collapse
Affiliation(s)
- Shambhavi Kashyap
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Vijay Kumar Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sweta Mohanty
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sangita Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| |
Collapse
|
6
|
Kaygisiz K, Rauch-Wirth L, Dutta A, Yu X, Nagata Y, Bereau T, Münch J, Synatschke CV, Weil T. Data-mining unveils structure-property-activity correlation of viral infectivity enhancing self-assembling peptides. Nat Commun 2023; 14:5121. [PMID: 37612273 PMCID: PMC10447463 DOI: 10.1038/s41467-023-40663-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
Gene therapy via retroviral vectors holds great promise for treating a variety of serious diseases. It requires the use of additives to boost infectivity. Amyloid-like peptide nanofibers (PNFs) were shown to efficiently enhance retroviral gene transfer. However, the underlying mode of action of these peptides remains largely unknown. Data-mining is an efficient method to systematically study structure-function relationship and unveil patterns in a database. This data-mining study elucidates the multi-scale structure-property-activity relationship of transduction enhancing peptides for retroviral gene transfer. In contrast to previous reports, we find that not the amyloid fibrils themselves, but rather µm-sized β-sheet rich aggregates enhance infectivity. Specifically, microscopic aggregation of β-sheet rich amyloid structures with a hydrophobic surface pattern and positive surface charge are identified as key material properties. We validate the reliability of the amphiphilic sequence pattern and the general applicability of the key properties by rationally creating new active sequences and identifying short amyloidal peptides from various pathogenic and functional origin. Data-mining-even for small datasets-enables the development of new efficient retroviral transduction enhancers and provides important insights into the diverse bioactivity of the functional material class of amyloids.
Collapse
Affiliation(s)
- Kübra Kaygisiz
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Lena Rauch-Wirth
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Arghya Dutta
- Department Polymer Theory, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Biochemistry II, Faculty of Medicine, Goethe University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Xiaoqing Yu
- Department Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yuki Nagata
- Department Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Tristan Bereau
- Department Polymer Theory, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstraße 1, 89081, Ulm, Germany
| | - Christopher V Synatschke
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Tanja Weil
- Department Synthesis of Macromolecules, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| |
Collapse
|
7
|
Morales CG, Jimenez NR, Herbst-Kralovetz MM, Lee NR. Novel Vaccine Strategies and Factors to Consider in Addressing Health Disparities of HPV Infection and Cervical Cancer Development among Native American Women. Med Sci (Basel) 2022; 10:52. [PMID: 36135837 PMCID: PMC9503187 DOI: 10.3390/medsci10030052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
Cervical cancer is the 4th most common type of cancer in women world-wide. Many factors play a role in cervical cancer development/progression that include genetics, social behaviors, social determinants of health, and even the microbiome. The prevalence of HPV infections and cervical cancer is high and often understudied among Native American communities. While effective HPV vaccines exist, less than 60% of 13- to 17-year-olds in the general population are up to date on their HPV vaccination as of 2020. Vaccination rates are higher among Native American adolescents, approximately 85% for females and 60% for males in the same age group. Unfortunately, the burden of cervical cancer remains high in many Native American populations. In this paper, we will discuss HPV infection, vaccination and the cervicovaginal microbiome with a Native American perspective. We will also provide insight into new strategies for developing novel methods and therapeutics to prevent HPV infections and limit HPV persistence and progression to cervical cancer in all populations.
Collapse
Affiliation(s)
- Crystal G. Morales
- Department of Biology, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Nicole R. Jimenez
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Melissa M. Herbst-Kralovetz
- Department of Obstetrics and Gynecology, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
- Department of Basic Medical Sciences, College of Medicine, University of Arizona, Phoenix, AZ 85004, USA
| | - Naomi R. Lee
- Department of Chemistry and Biochemistry, Northern Arizona University, Flagstaff, AZ 86011, USA
| |
Collapse
|
8
|
Heremans J, Chevillard L, Mannes M, Mangialetto J, Leroy K, White JF, Lamouroux A, Vinken M, Gardiner J, Van Mele B, Van den Brande N, Hoogenboom R, Madder A, Caveliers V, Mégarbane B, Hernot S, Ballet S, Martin C. Impact of doubling peptide length on in vivo hydrogel stability and sustained drug release. J Control Release 2022; 350:514-524. [PMID: 35998769 DOI: 10.1016/j.jconrel.2022.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 10/14/2022]
Abstract
Peptide-based hydrogels represent promising systems for the sustained release of different types of drugs, ranging from small molecules to biologicals. Aiming at subcutaneous injection, which is a desirable parenteral administration route, especially for biologicals, we herein focus on physically crosslinked systems possessing thixotropic behaviour. The purpose of this study was to evaluate the in vitro and in vivo properties of hydrogels based on the amphipathic hexapeptide H-FQFQFK-NH2, which served as the lead sequence. Upon doubling the length of this peptide, the dodecapeptide H-FQFQFKFQFQFK-NH2 gave a significant improvement in terms of in vivo stability of the hydrogel post-injection, as monitored by nuclear SPECT/CT imaging. This increased hydrogel stability also led to a more prolonged in vivo release of encapsulated peptide cargoes. Even though no direct link with the mechanical properties of the hydrogels before injection could be made, an important effect of the subcutaneous medium was noticed on the rheological properties of the hydrogels in post in vivo injection measurements. The results were validated in vivo for a therapeutically relevant analgesic peptide using the hot-plate test as an acute pain model. It was confirmed that elongation of the hydrogelator sequence induced more extended antinociceptive effects. Altogether, this simple structural modification of the hydrogelating peptide could provide a basis for reaching longer durations of action upon use of these soft biomaterials.
Collapse
Affiliation(s)
- Julie Heremans
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | | | - Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Jessica Mangialetto
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan B-103, 1090 Brussels, Belgium
| | - Jacinta F White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia
| | - Arthur Lamouroux
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan B-103, 1090 Brussels, Belgium
| | - James Gardiner
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3169, Australia
| | - Bruno Van Mele
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Niko Van den Brande
- Physical Chemistry and Polymer Science, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Ghent University, Krijgslaan 281, 9000 Ghent, Belgium
| | - Vicky Caveliers
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Bruno Mégarbane
- INSERM, UMR-S 1144, Université de Paris, F-75006 Paris, France
| | - Sophie Hernot
- In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium.
| |
Collapse
|
9
|
Boruah A, Roy A. Advances in hybrid peptide-based self-assembly systems and their applications. Biomater Sci 2022; 10:4694-4723. [PMID: 35899853 DOI: 10.1039/d2bm00775d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of peptides demonstrates a great potential for designing highly ordered, finely tailored supramolecular arrangements enriched with high specificity, improved efficacy and biological activity. Along with natural peptides, hybrid peptide systems composed of natural and chemically diverse unnatural amino acids have been used in various fields, including drug delivery, wound healing, potent inhibition of diseases, and prevention of biomaterial related diseases to name a few. In this review, we provide a brief outline of various methods that have been utilized for obtaining fascinating structures that create an avenue to reproduce a range of functions resulting from these folds. An overview of different self-assembled structures as well as their applications will also be provided. We believe that this review is very relevant to the current scenario and will cover conformations of hybrid peptides and resulting self-assemblies from the late 20th century through 2022. This review aims to be a comprehensive and reliable account of the hybrid peptide-based self-assembly owing to its enormous influence in understanding and mimicking biological processes.
Collapse
Affiliation(s)
- Alpana Boruah
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Arup Roy
- Applied Organic Chemistry Group, Chemical Sciences and Technology Division, Council of Scientific and Industrial Research-North East Institute of Science and Technology (CSIR-NEIST), Pulibor, Jorhat-785006, Assam, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
10
|
Jalali S, Yang Y, Mahmoudinobar F, Singh SM, Nilsson BL, Dias C. Using all-atom simulations in explicit solvent to study aggregation of amphipathic peptides into amyloid-like fibrils. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Jones CW, Morales CG, Eltiste SL, Yanchik‐Slade FE, Lee NR, Nilsson BL. Capacity for increased surface area in the hydrophobic core of β-sheet peptide bilayer nanoribbons. J Pept Sci 2021; 27:e3334. [PMID: 34151480 PMCID: PMC8349901 DOI: 10.1002/psc.3334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 04/19/2021] [Indexed: 12/12/2022]
Abstract
Amphipathic peptides with amino acids arranged in alternating patterns of hydrophobic and hydrophilic residues efficiently self-assemble into β-sheet bilayer nanoribbons. Hydrophobic side chain functionality is effectively buried in the interior of the putative bilayer of these nanoribbons. This study investigates consequences on self-assembly of increasing the surface area of aromatic side chain groups that reside in the hydrophobic core of nanoribbons derived from Ac-(XKXE)2 -NH2 peptides (X = hydrophobic residue). A series of Ac-(XKXE)2 -NH2 peptides incorporating aromatic amino acids of increasing molecular volume and steric profile (X = phenylalanine [Phe], homophenylalanine [Hph], tryptophan [Trp], 1-naphthylalanine [1-Nal], 2-naphthylalanine [2-Nal], or biphenylalanine [Bip]) were assessed to determine substitution effects on self-assembly propensity and on morphology of the resulting nanoribbon structures. Additional studies were conducted to determine the effects of incorporating amino acids of differing steric profile in the hydrophobic core (Ac-X1 KFEFKFE-NH2 and Ac-(X1,5 KFE)-NH2 peptides, X = Trp or Bip). Spectroscopic analysis by circular dichroism (CD) and Fourier transform infrared (FT-IR) spectroscopy indicated β-sheet formation for all variants. Self-assembly rate increased with peptide hydrophobicity; increased molecular volume of the hydrophobic side chain groups did not appear to induce kinetic penalties on self-assembly rates. Transmission electron microscopy (TEM) imaging indicated variation in fibril morphology as a function of amino acid in the X positions. This study confirms that hydrophobicity of amphipathic Ac-(XKXE)2 -NH2 peptides correlates to self-assembly propensity and that the hydrophobic core of the resulting nanoribbon bilayers has a significant capacity to accommodate sterically demanding functional groups. These findings provide insight that may be used to guide the exploitation of self-assembled amphipathic peptides as functional biomaterials.
Collapse
Affiliation(s)
| | - Crystal G. Morales
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Sharon L. Eltiste
- Department of Chemistry and Biochemistry, Center for Materials Interfaces in Research and Applications (¡MIRA!)Northern Arizona UniversityFlagstaffArizonaUSA
| | | | - Naomi R. Lee
- Department of Chemistry and Biochemistry, Center for Materials Interfaces in Research and Applications (¡MIRA!)Northern Arizona UniversityFlagstaffArizonaUSA
| | | |
Collapse
|
12
|
Sloand JN, Miller MA, Medina SH. Fluorinated peptide biomaterials. Pept Sci (Hoboken) 2021; 113:e24184. [PMID: 34541446 PMCID: PMC8448251 DOI: 10.1002/pep2.24184] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/30/2020] [Indexed: 12/20/2022]
Abstract
Fluorinated compounds, while rarely used by nature, are emerging as fundamental ingredients in biomedical research, with applications in drug discovery, metabolomics, biospectroscopy, and, as the focus of this review, peptide/protein engineering. Leveraging the fluorous effect to direct peptide assembly has evolved an entirely new class of organofluorine building blocks from which unique and bioactive materials can be constructed. Here, we discuss three distinct peptide fluorination strategies used to design and induce peptide assembly into nano-, micro-, and macrosupramolecular states that potentiate high-ordered organization into material scaffolds. These fluorine-tailored peptide assemblies employ the unique fluorous environment to boost biofunctionality for a broad range of applications, from drug delivery to antibacterial coatings. This review provides foundational tactics for peptide fluorination and discusses the utility of these fluorous-directed hierarchical structures as material platforms in diverse biomedical applications.
Collapse
Affiliation(s)
- Janna N Sloand
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Michael A Miller
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| | - Scott H Medina
- Department of Biomedical Engineering, Penn State University, University Park, Pennsylvania, USA
| |
Collapse
|
13
|
Chibh S, Mishra J, Kour A, Chauhan VS, Panda JJ. Recent advances in the fabrication and bio-medical applications of self-assembled dipeptide nanostructures. Nanomedicine (Lond) 2021; 16:139-163. [PMID: 33480272 DOI: 10.2217/nnm-2020-0314] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Molecular self-assembly is a widespread natural phenomenon and has inspired several researchers to synthesize a compendium of nano/microstructures with widespread applications. Biomolecules like proteins, peptides and lipids are used as building blocks to fabricate various nanomaterials. Supramolecular peptide self-assembly continue to play a significant role in forming diverse nanostructures with numerous biomedical applications; however, dipeptides offer distinctive supremacy in their ability to self-assemble and produce a variety of nanostructures. Though several reviews have articulated the progress in the field of longer peptides or polymers and their self-assembling behavior, there is a paucity of reviews or literature covering the emerging field of dipeptide-based nanostructures. In this review, our goal is to present the recent advancements in dipeptide-based nanostructures with their potential applications.
Collapse
Affiliation(s)
- Sonika Chibh
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| | - Jibanananda Mishra
- Cell and Molecular Biology Division, AAL Research & Solutions Pvt. Ltd., Panchkula, Haryana 134113, India
| | - Avneet Kour
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| | - Virander S Chauhan
- International Centre for Genetic Engineering & Biotechnology, New Delhi 110067, India
| | - Jiban J Panda
- Chemical Biology Unit, Institute of Nano Science & Technology, Mohali, Punjab 160062, India
| |
Collapse
|
14
|
Das AK, Gavel PK. Low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, wound healing, anticancer, drug delivery, bioimaging and 3D bioprinting applications. SOFT MATTER 2020; 16:10065-10095. [PMID: 33073836 DOI: 10.1039/d0sm01136c] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this review, we have focused on the design and development of low molecular weight self-assembling peptide-based materials for various applications including cell proliferation, tissue engineering, antibacterial, antifungal, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting. The first part of the review describes about stimuli and various noncovalent interactions, which are the key components of various self-assembly processes for the construction of organized structures. Subsequently, the chemical functionalization of the peptides has been discussed, which is required for the designing of self-assembling peptide-based soft materials. Various low molecular weight self-assembling peptides have been discussed to explain the important structural features for the construction of defined functional nanostructures. Finally, we have discussed various examples of low molecular weight self-assembling peptide-based materials for cell culture, antimicrobial, anti-inflammatory, anticancer, wound healing, drug delivery, bioimaging and 3D bioprinting applications.
Collapse
Affiliation(s)
- Apurba K Das
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India.
| | | |
Collapse
|
15
|
Ohtomi T, Higashi SL, Mori D, Shibata A, Kitamura Y, Ikeda M. Effect of side chain phenyl group on the self‐assembled morphology of dipeptide hydrazides. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24200] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Taku Ohtomi
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Sayuri L. Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University Gifu Japan
| | - Daisuke Mori
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Aya Shibata
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Yoshiaki Kitamura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
| | - Masato Ikeda
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology Gifu University Gifu Japan
- United Graduate School of Drug Discovery and Medical Information Sciences Gifu University Gifu Japan
- Center for Highly Advanced Integration of Nano and Life Sciences Gifu University (G‐CHAIN) Gifu Japan
- Institute of Nano‐Life‐Systems, Institute of Innovation for Future Society Nagoya University Nagoya Japan
- Institute for Glyco‐core Research (iGCORE) Gifu University Nagoya Japan
| |
Collapse
|
16
|
Tuning the gelation behavior of short laminin derived peptides via solvent mediated self-assembly. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110483. [DOI: 10.1016/j.msec.2019.110483] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
|
17
|
Weber R, McCullagh M. The Role of Hydrophobicity in the Stability and pH-Switchability of (RXDX) 4 and Coumarin-(RXDX) 4 Conjugate β-Sheets. J Phys Chem B 2020; 124:1723-1732. [PMID: 32045245 DOI: 10.1021/acs.jpcb.0c00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
pH-Switchable, self-assembling materials are of interest in biological imaging and sensing applications. Here we propose that combining the pH-switchability of RXDX (X = Ala, Val, Leu, Ile, Phe) peptides and the optical properties of coumarin creates an ideal candidate for these materials. This suggestion is tested with a thorough set of all-atom molecular dynamics simulations. We first investigate the dependence of pH-switchabiliy on the identity of the hydrophobic residue, X, in the bare (RXDX)4 systems. Increasing the hydrophobicity stabilizes the fiber which, in turn, reduces the pH-switchabilty of the system. This behavior is found to be somewhat transferable to systems in which a single hydrophobic residue is replaced with a coumarin containing amino acid. In this case, conjugates with X = Ala are found to be unstable at both pHs, while conjugates with X = Val, Leu, Ile, and Phe are found to form stable β-sheets at least at neutral pH. The coumarin-(RFDF)4 conjugate is found to have the largest relative entropy value of 0.884 ± 0.001 between neutral and acidic coumarin ordering distributions. Thus, we posit that coumarin-(RFDF)4 containing peptide sequences are ideal candidates for pH-sensing bioelectronic materials.
Collapse
Affiliation(s)
- Ryan Weber
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Martin McCullagh
- Department of Chemistry, Oklahoma State University, Stillwater, Oklahoma 74074, United States
| |
Collapse
|
18
|
Effects of solvents and temperature on spherulites of self-assembled phloroglucinol tristearate. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-019-1911-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
19
|
Guo RC, Zhang XH, Ji L, Wei ZJ, Duan ZY, Qiao ZY, Wang H. Recent progress of therapeutic peptide based nanomaterials: from synthesis and self-assembly to cancer treatment. Biomater Sci 2020; 8:6175-6189. [DOI: 10.1039/d0bm01358g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review has described the synthesis, self-assembly and the anti-cancer application of therapeutic peptides and their conjugates, particularly polymer–peptide conjugates (PPCs).
Collapse
Affiliation(s)
- Ruo-Chen Guo
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
| | - Xue-Hao Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Lei Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Zi-Jin Wei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Zhong-Yu Duan
- School of Chemical Engineering and Technology
- Hebei University of Technology
- Tianjin
- China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| | - Hao Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- CAS Center for Excellence in Nanoscience
- National Center for Nanoscience and Technology (NCNST)
- Center of Materials Science and Optoelectronics Engineering
- University of Chinese Academy of Sciences
| |
Collapse
|
20
|
Jeon A, Gong J, Oh JK, Kwon S, Lee W, Kim SO, Cho SJ, Lee HS. Spontaneous Nanobelt Formation by Self-Assembly of β-Benzyl GABA. Chem Asian J 2019; 14:1945-1948. [PMID: 30957971 DOI: 10.1002/asia.201900363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/06/2019] [Indexed: 11/05/2022]
Abstract
We present the formation of a nanobelt by self-assembly of β-benzyl GABA (γ-aminobutyric acid). This simple γ-amino acid building block self-assembled to form a well-defined nanobelt in chloroform. The nanobelt showed distinct optical properties due to π-π interactions. This new-generation self-assembled single amino acid may serve as a template for functional nanomaterials.
Collapse
Affiliation(s)
- Aram Jeon
- Department of Chemistry, Center for Multiscale Chiral Architectures(CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Current address: Organic Materials Lab., Materials Center, SAIT, SEC, 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16678, Republic of Korea
| | - Jintaek Gong
- Department of Chemistry, Center for Multiscale Chiral Architectures(CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| | - Sunbum Kwon
- Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Wonchul Lee
- Department of Chemistry, Center for Multiscale Chiral Architectures(CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sang Ouk Kim
- Department of Materials Science and Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sung June Cho
- Department of Applied Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Hee-Seung Lee
- Department of Chemistry, Center for Multiscale Chiral Architectures(CMCA), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
21
|
Jain R, Khandelwal G, Roy S. Unraveling the Design Rules in Ultrashort Amyloid-Based Peptide Assemblies toward Shape-Controlled Synthesis of Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5878-5889. [PMID: 30916565 DOI: 10.1021/acs.langmuir.8b04020] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The fundamental understanding of the detailed relationship between molecular structure and material function remains a challenging task, until now. In order to understand the relative contribution of aromatic moieties and hydrophobicity of amino acid chains, we designed a library of ultrashort amyloid-like peptides based on Ar-Phe-X (where "Ar" represents different aromatic moieties and "X" represents amino acids having varied side-chain functionalities). Our research clearly indicated that the alteration in the size and hydrophobicity of the aromatic capping play a crucial role compared to the subtle change in the amino acid sequence of the dipeptide in dictating the final self-assembled structure and properties of these short peptide amphiphiles. Further, we explored our detailed understanding toward the controlled synthesis of bioinspired organic-inorganic hybrids. For the first time, we established the differential role of aliphatic and aromatic hydroxyl moieties toward the in situ shape-controlled synthesis of gold nanoparticles in three-dimensional nanostructures of hydrogels. To the best of our knowledge, it is the first report which demonstrated the formation of rectangular platonic gold nanoparticles using simple dipeptide hydrogels, exhibiting pH-dependent size control. Our study shows promising implications in bottom-up nanofabrication of next-generation nanomaterials with emergent properties.
Collapse
Affiliation(s)
- Rashmi Jain
- Institute of Nano Science and Technology , Phase-X, Sector-64 , Mohali , Punjab , India 160062
| | - Gaurav Khandelwal
- Institute of Nano Science and Technology , Phase-X, Sector-64 , Mohali , Punjab , India 160062
| | - Sangita Roy
- Institute of Nano Science and Technology , Phase-X, Sector-64 , Mohali , Punjab , India 160062
| |
Collapse
|
22
|
Carlini AS, Gaetani R, Braden RL, Luo C, Christman KL, Gianneschi NC. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nat Commun 2019; 10:1735. [PMID: 30988291 PMCID: PMC6465301 DOI: 10.1038/s41467-019-09587-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/11/2019] [Indexed: 01/08/2023] Open
Abstract
Injectable biopolymer hydrogels have gained attention for use as scaffolds to promote cardiac function and prevent negative left ventricular (LV) remodeling post-myocardial infarction (MI). However, most hydrogels tested in preclinical studies are not candidates for minimally invasive catheter delivery due to excess material viscosity, rapid gelation times, and/or concerns regarding hemocompatibility and potential for embolism. We describe a platform technology for progelator materials formulated as sterically constrained cyclic peptides which flow freely for low resistance injection, and rapidly assemble into hydrogels when linearized by disease-associated enzymes. Their utility in vivo is demonstrated by their ability to flow through a syringe and gel at the site of MI in rat models. Additionally, synthetic functionalization enables these materials to flow through a cardiac injection catheter without clogging, without compromising hemocompatibility or cytotoxicity. These studies set the stage for the development of structurally dynamic biomaterials for therapeutic hydrogel delivery to the MI.
Collapse
Affiliation(s)
- Andrea S Carlini
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Simpson Querrey Institute for BioNanotechnology, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Roberto Gaetani
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rebecca L Braden
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Colin Luo
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Karen L Christman
- Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science & Engineering, Department of Biomedical Engineering, Simpson Querrey Institute for BioNanotechnology, International Institute for Nanotechnology, and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
23
|
Abstract
Self-assembled peptide nanostructures have been increasingly exploited as functional materials for applications in biomedicine and energy. The emergent properties of these nanomaterials determine the applications for which they can be exploited. It has recently been appreciated that nanomaterials composed of multicomponent coassembled peptides often display unique emergent properties that have the potential to dramatically expand the functional utility of peptide-based materials. This review presents recent efforts in the development of multicomponent peptide assemblies. The discussion includes multicomponent assemblies derived from short low molecular weight peptides, peptide amphiphiles, coiled coil peptides, collagen, and β-sheet peptides. The design, structure, emergent properties, and applications for these multicomponent assemblies are presented in order to illustrate the potential of these formulations as sophisticated next-generation bio-inspired materials.
Collapse
Affiliation(s)
- Danielle M Raymond
- Department of Chemistry, University of Rochester, Rochester, NY 14627-0216, USA.
| | | |
Collapse
|