1
|
Elli S, Sisto T, Nizzolo S, Freato N, Bertocchi L, Bianchini G, Yates EA, Guerrini M. Modeling the Detailed Conformational Effects of the Lactosylation of Hyaluronic Acid. Biomacromolecules 2025; 26:541-555. [PMID: 39680036 DOI: 10.1021/acs.biomac.4c01318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Hyaluronic acid (HA) is a natural and biocompatible polysaccharide that is able to interact with CD44 receptors to regulate inflammation, fibrosis, and tissue reconstruction. It is a suitable chemical scaffold for drug delivery that can be functionalized with pharmacophores and/or vectorizable groups. The derivatization of HA is achieved to varying extents by reacting 1-amino-1-deoxy-lactitol via the carboxyl group to form amide linkages, giving rise to the grafted polymer, HYLACH. This retains the broad properties of HA, even though, as in most HA-grafted polymers, the detailed conformational effects of such substitutions, while crucial in the design or optimization of drug delivery systems, remain unknown. Here, the conformation, size, secondary structure, hydrogen bond network, and hydration features of lactosylated HA derivatives were evaluated by using multiple independent molecular dynamics simulations. This revealed subtle but nevertheless significant changes in the HA scaffold, establishing the density of grafting as the key parameter determining its properties.
Collapse
Affiliation(s)
- Stefano Elli
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| | - Tommaso Sisto
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| | - Sofia Nizzolo
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
- University of Milano-Bicocca, Piazza dell'Ateneo Nuovo, 1, Milano 20126, Italy
| | | | | | | | - Edwin A Yates
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7BE, U.K
- Molecular and Structural Biosciences, School of Life Sciences, Keele University, Newcastle-Under-Lyme,Staffordshire ST5 5BG, U.K
| | - Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche 'G. Ronzoni', via G. Colombo 81, Milano 20133, Italy
| |
Collapse
|
2
|
Garay PG, Machado MR, Verli H, Pantano S. SIRAH Late Harvest: Coarse-Grained Models for Protein Glycosylation. J Chem Theory Comput 2024; 20:963-976. [PMID: 38175797 DOI: 10.1021/acs.jctc.3c00783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Glycans constitute one of the most complex families of biological molecules. Despite their crucial role in a plethora of biological processes, they remain largely uncharacterized because of their high complexity. Their intrinsic flexibility and the vast variability associated with the many combination possibilities have hampered their experimental determination. Although theoretical methods have proven to be a valid alternative to the study of glycans, the large size associated with polysaccharides, proteoglycans, and glycolipids poses significant challenges to a fully atomistic description of biologically relevant glycoconjugates. On the other hand, the exquisite dependence on hydrogen bonds to determine glycans' structure makes the development of simplified or coarse-grained (CG) representations extremely challenging. This is particularly the case when glycan representations are expected to be compatible with CG force fields that include several molecular types. We introduce a CG representation able to simulate a wide variety of polysaccharides and common glycosylation motifs in proteins, which is fully compatible with the CG SIRAH force field. Examples of application to N-glycosylated proteins, including antibody recognition and calcium-mediated glycan-protein interactions, highlight the versatility of the enlarged set of CG molecules provided by SIRAH.
Collapse
Affiliation(s)
- Pablo G Garay
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Matias R Machado
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| | - Hugo Verli
- Programa de Pos-Graduacao em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Goncalves, 9500, Porto Alegre 91509-900, Brazil
| | - Sergio Pantano
- Biomolecular Simulations Group, Institut Pasteur de Montevideo, Mataojo 2020, CP 11400 Montevideo, Uruguay
| |
Collapse
|
3
|
Pizzolitto C, Esposito F, Sacco P, Marsich E, Gargiulo V, Bedini E, Donati I. Sulfated lactose-modified chitosan. A novel synthetic glycosaminoglycan-like polysaccharide inducing chondrocyte aggregation. Carbohydr Polym 2022; 288:119379. [DOI: 10.1016/j.carbpol.2022.119379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/01/2022] [Accepted: 03/17/2022] [Indexed: 11/02/2022]
|
4
|
Krapivin VB, Luzhkov VB. Molecular modeling of the conformational dynamics of nitroxide derivatives of chitosan in aqueous solution. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3247-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Pizzolitto C, Cok M, Asaro F, Scognamiglio F, Marsich E, Lopez F, Donati I, Sacco P. On the Mechanism of Genipin Binding to Primary Amines in Lactose-Modified Chitosan at Neutral pH. Int J Mol Sci 2020; 21:E6831. [PMID: 32957651 PMCID: PMC7554727 DOI: 10.3390/ijms21186831] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 01/22/2023] Open
Abstract
The present manuscript deals with the elucidation of the mechanism of genipin binding by primary amines at neutral pH. UV-VIS and CD measurements both in the presence of oxygen and in oxygen-depleted conditions, combined with computational analyses, led to propose a novel mechanism for the formation of genipin derivatives. The indications collected with chiral and achiral primary amines allowed interpreting the genipin binding to a lactose-modified chitosan (CTL or Chitlac), which is soluble at all pH values. Two types of reaction and their kinetics were found in the presence of oxygen: (i) an interchain reticulation, which involves two genipin molecules and two polysaccharide chains, and (ii) a binding of one genipin molecule to the polymer chain without chain-chain reticulation. The latter evolves in additional interchain cross-links, leading to the formation of the well-known blue iridoid-derivatives.
Collapse
Affiliation(s)
- Chiara Pizzolitto
- Department of Medical, Surgical, and Health Sciences, University of Trieste, piazza dell’Ospitale 1, 34127 Trieste, Italy; (C.P.); (F.S.); (E.M.)
| | - Michela Cok
- Department of Life Sciences, University of Trieste, via Licio Giorgieri 5, 34127 Trieste, Italy; (M.C.); (I.D.)
| | - Fioretta Asaro
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, via Licio Giorgieri 1, 34127 Trieste, Italy;
| | - Francesca Scognamiglio
- Department of Medical, Surgical, and Health Sciences, University of Trieste, piazza dell’Ospitale 1, 34127 Trieste, Italy; (C.P.); (F.S.); (E.M.)
| | - Eleonora Marsich
- Department of Medical, Surgical, and Health Sciences, University of Trieste, piazza dell’Ospitale 1, 34127 Trieste, Italy; (C.P.); (F.S.); (E.M.)
| | - Francesco Lopez
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Via De Sanctis, I-86100 Campobasso, Italy;
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, via Licio Giorgieri 5, 34127 Trieste, Italy; (M.C.); (I.D.)
| | - Pasquale Sacco
- Department of Life Sciences, University of Trieste, via Licio Giorgieri 5, 34127 Trieste, Italy; (M.C.); (I.D.)
| |
Collapse
|
6
|
Sacco P, Cok M, Scognamiglio F, Pizzolitto C, Vecchies F, Marfoglia A, Marsich E, Donati I. Glycosylated-Chitosan Derivatives: A Systematic Review. Molecules 2020; 25:E1534. [PMID: 32230971 PMCID: PMC7180478 DOI: 10.3390/molecules25071534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/31/2022] Open
Abstract
Chitosan derivatives, and more specifically, glycosylated derivatives, are nowadays attracting much attention within the scientific community due to the fact that this set of engineered polysaccharides finds application in different sectors, spanning from food to the biomedical field. Overcoming chitosan (physical) limitations or grafting biological relevant molecules, to mention a few, represent two cardinal strategies to modify parent biopolymer; thereby, synthetizing high added value polysaccharides. The present review is focused on the introduction of oligosaccharide side chains on the backbone of chitosan. The synthetic aspects and the effect on physical-chemical properties of such modifications are discussed. Finally, examples of potential applications in biomaterials design and drug delivery of these novel modified chitosans are disclosed.
Collapse
Affiliation(s)
- Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy; (P.S.); (M.C.); (F.V.); (A.M.)
| | - Michela Cok
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy; (P.S.); (M.C.); (F.V.); (A.M.)
| | - Francesca Scognamiglio
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, I-34129 Trieste, Italy; (F.S.); (C.P.); (E.M.)
| | - Chiara Pizzolitto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, I-34129 Trieste, Italy; (F.S.); (C.P.); (E.M.)
| | - Federica Vecchies
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy; (P.S.); (M.C.); (F.V.); (A.M.)
| | - Andrea Marfoglia
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy; (P.S.); (M.C.); (F.V.); (A.M.)
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell’Ospitale 1, I-34129 Trieste, Italy; (F.S.); (C.P.); (E.M.)
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy; (P.S.); (M.C.); (F.V.); (A.M.)
| |
Collapse
|
7
|
Naumov VS, Ignatov SK. Dissolution of chitosan nanocrystals in aqueous media of different acidity. Molecular dynamic study. Carbohydr Polym 2019; 207:619-627. [PMID: 30600047 DOI: 10.1016/j.carbpol.2018.12.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/18/2018] [Accepted: 12/09/2018] [Indexed: 12/12/2022]
Abstract
The process of dissolution of chitosan nanocrystals with molecular mass of polymer up to 12.8 kDa in aqueous media of various pH was studied by molecular dynamic simulations with the use of the improved force field GROMOS 56ACARBO_CHT specially developed for the chitosan polymers description. The effect of the media acidity and polymer molecular weight on the dissolution process kinetics has been studied and the regression expressions for kinetic parameters were established. The calculated solution viscosity, Mark-Houwink-Sakurada equation parameters, and pH values of the dissolution beginning are in good agreement with the available experimental data. The uniform/non-uniform distribution of protonated amino groups and hydrogen bonds along the polymeric chains is found to be of key importance parameter for the dissolution process which can be considered as a criterion of dissolution ability.
Collapse
Affiliation(s)
- Vladimir S Naumov
- N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia.
| | - Stanislav K Ignatov
- N.I. Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, Nizhny Novgorod, 603950, Russia
| |
Collapse
|
8
|
Sacco P, Furlani F, De Marzo G, Marsich E, Paoletti S, Donati I. Concepts for Developing Physical Gels of Chitosan and of Chitosan Derivatives. Gels 2018; 4:E67. [PMID: 30674843 PMCID: PMC6209275 DOI: 10.3390/gels4030067] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/07/2018] [Indexed: 02/06/2023] Open
Abstract
Chitosan macro- and micro/nano-gels have gained increasing attention in recent years, especially in the biomedical field, given the well-documented low toxicity, degradability, and non-immunogenicity of this unique biopolymer. In this review we aim at recapitulating the recent gelling concepts for developing chitosan-based physical gels. Specifically, we describe how nowadays it is relatively simple to prepare networks endowed with different sizes and shapes simply by exploiting physical interactions, namely (i) hydrophobic effects and hydrogen bonds-mostly governed by chitosan chemical composition-and (ii) electrostatic interactions, mainly ensured by physical/chemical chitosan features, such as the degree of acetylation and molecular weight, and external parameters, such as pH and ionic strength. Particular emphasis is dedicated to potential applications of this set of materials, especially in tissue engineering and drug delivery sectors. Lastly, we report on chitosan derivatives and their ability to form gels. Additionally, we discuss the recent findings on a lactose-modified chitosan named Chitlac, which has proved to form attractive gels both at the macro- and at the nano-scale.
Collapse
Affiliation(s)
- Pasquale Sacco
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy.
| | - Franco Furlani
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy.
| | - Gaia De Marzo
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy.
| | - Eleonora Marsich
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, I-34125 Trieste, Italy.
| | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy.
| | - Ivan Donati
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, I-34127 Trieste, Italy.
| |
Collapse
|