1
|
Quan MC, Mai DJ. Biomolecular Actuators for Soft Robots. Chem Rev 2025. [PMID: 40331746 DOI: 10.1021/acs.chemrev.4c00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Biomolecules present promising stimuli-responsive mechanisms to revolutionize soft actuators. Proteins, peptides, and nucleic acids foster specific intermolecular interactions, and their boundless sequence design spaces encode precise actuation capabilities. Drawing inspiration from nature, biomolecular actuators harness existing stimuli-responsive properties to meet the needs of diverse applications. This review features biomolecular actuators that respond to a wide variety of stimuli to drive both user-directed and autonomous actuation. We discuss how advances in biomaterial fabrication accelerate prototyping of precise, custom actuators, and we identify biomolecules with untapped actuation potential. Finally, we highlight opportunities for multifunctional and reconfigurable biomolecules to improve the versatility and sustainability of next-generation soft actuators.
Collapse
Affiliation(s)
- Michelle C Quan
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Danielle J Mai
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Su R, Ma C, Han B, Zhang H, Liu K. Proteins for Hyperelastic Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406388. [PMID: 39910850 DOI: 10.1002/smll.202406388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Meticulous engineering and the yielded hyperelastic performance of structural proteins represent a new frontier in developing next-generation functional biomaterials. These materials exhibit outstanding and programmable mechanical properties, including elasticity, resilience, toughness, and active biological characteristics, such as degradability and tissue repairability, compared with their chemically synthetic counterparts. However, there are several critical issues regarding the preparation approaches of hyperelastic protein-based materials: limited natural sequence modules, non-hierarchical assembly, and imbalance between compressive and tensile elasticity, leading to unmet demands. Therefore, it is pivotal to develop an alternative strategy for biofabricating hyperelastic materials. Herein, the molecular design, engineering, and property regulation of hyperelastic structural proteins are overviewed. First, methodologies for deeper exploration of mechanical modules, including machine learning-aided de novo design, random mutations of natural sequences, and multiblock fusion techniques, are actively introduced. These methodologies facilitate the generation of elastomeric protein modules and demonstrate enhanced structural and functional versatility. Subsequently, assembly tactics of hyperelastic proteins (i.e., physical modulation, genetic adaptations, and chemical modifications) are reviewed, yielding hierarchically ordered structures. Finally, advances in biophysical techniques for more nuanced characterization of protein ensembles are discussed, unveiling the tuning mechanisms of protein elasticity across scales. Future developments in structural hyperelastic protein-based biomaterials are also envisioned.
Collapse
Affiliation(s)
- Rui Su
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| | - Bing Han
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, NHC Key Laboratory of Digital Stomatology, NMPA Key Laboratory for Dental Materials, 22 Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials, (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang, 314102, China
| |
Collapse
|
3
|
Jo S, Pearson E, Yoon D, Kim J, Park WM. Self-Assembly of Microstructured Protein Coatings with Programmable Functionality for Fluorescent Biosensors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63284-63294. [PMID: 39501757 PMCID: PMC11583973 DOI: 10.1021/acsami.4c14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
Proteins, as genetically programmable functional macromolecules, hold immense potential as biocompatible self-assembling building blocks, owing to their versatility in building coating materials and programming their functionality genetically. In this study, we demonstrate a modular self-assembly of protein coatings that are genetically programmable for a biosensor application. We designed and produced recombinant fusion protein building blocks to form microstructured coatings on diverse substrates, such as glass or polymers, through thermally triggered liquid-liquid phase separation and an orthogonal high-affinity coiled-coil interaction. We incorporated fluorescence proteins into coatings and controlled the protein density to enable fluorescence imaging and quantification in a low-resource setting. Then, we created a coating for a calcium biosensor using a genetically engineered calcium indicator protein. This protein coating served as the foundation for our smartphone-based fluorescent biosensor, which successfully measured free calcium concentrations in the millimolar range at which extracellular calcium homeostasis is maintained. Using this fluorescent biosensor, we were able to detect abnormal physiological conditions, such as mild or moderate hypercalcemia. We envision that this modular and genetically programmable functional protein coating platform could be extended to the development of highly accessible, low-cost fluorescent biosensors for a variety of targets.
Collapse
Affiliation(s)
- Suna Jo
- Tim
Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, United States
| | - Erin Pearson
- Tim
Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, United States
| | - Donghoon Yoon
- Division
of Hematology Oncology in the Department of Internal Medicine, College
of Medicine, University of Arkansas for
Medical Science, 4301 W Markham St., Little Rock, Arkansas 72205, United States
| | - Jungkwun Kim
- Department
of Electrical Engineering, University of
North Texas, 3940 N. Elm Street Ste. E255C, Denton, Texas 76207, United States
| | - Won Min Park
- Tim
Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, United States
| |
Collapse
|
4
|
Gray M, Rodriguez-Otero MR, Champion JA. Self-Assembled Recombinant Elastin and Globular Protein Vesicles with Tunable Properties for Diverse Applications. Acc Chem Res 2024; 57:1227-1237. [PMID: 38624000 PMCID: PMC11080046 DOI: 10.1021/acs.accounts.3c00694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 04/17/2024]
Abstract
Vesicles are self-assembled structures comprised of a membrane-like exterior surrounding a hollow lumen with applications in drug delivery, artificial cells, and micro-bioreactors. Lipid or polymer vesicles are the most common and are made of lipids or polymers, respectively. They are highly useful structures for many applications but it can be challenging to decorate them with proteins or encapsulate proteins in them, owing to the use of organic solvent in their formation and the large size of proteins relative to lipid or polymer molecules. By utilization of recombinant fusion proteins to make vesicles, specific protein domains can be directly incorporated while also imparting tunability and stability. Protein vesicle assembly relies on the design and use of self-assembling amphiphilic proteins. A specific protein vesicle platform made in purely aqueous conditions of a globular, functional protein fused to a glutamate-rich leucine zipper (ZE) and a thermoresponsive elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) is discussed here. The hydrophobic conformational change of the ELP above its transition temperature drives assembly, and strong ZE/ZR binding enables incorporation of the desired functional protein. Mixing the soluble proteins on ice induces zipper binding, and then warming above the ELP transition temperature (Tt) triggers the transition to and growth of protein-rich coacervates and, finally, reorganization of proteins into vesicles. Vesicle size is tunable based on salt concentration, rate of heating, protein concentration, size of the globular protein, molar ratio of the proteins, and the ELP sequence. Increasing the salt concentration decreases vesicle size by decreasing the Tt, resulting in a shorter coacervation transition stage. Likewise, directly changing the heating rate also changes this time and increasing protein concentration increases coalescence. Increasing globular protein size decreases the size of the vesicle due to steric hindrance. By changing the ELP sequence, which consists of (VPGXG)n, through the guest residue (X) or number of repeats (n), Tt is changed, affecting size. Additionally, the chemical nature of X variation has endowed vesicles with stimuli responsiveness and stability at physiological conditions.Protein vesicles have been used for biocatalysis, biomacromolecular drug delivery, and vaccine applications. Photo-cross-linkable vesicles were used to deliver small molecule cargo to cancer cells in vitro and antigen to immune cells in vivo. pH-responsive vesicles effectively delivered functional protein cargo, including cytochrome C, to the cytosol of cancer cells in vitro, using hydrophobic ion pairing to improve cargo distribution in the vesicles and release. The globular protein used to make the vesicles can be varied to achieve different functions. For example, enzyme vesicles exhibit biocatalysis, and antigen vesicles induce antibody and cellular immune responses after vaccination in mice. Collectively, the development and engineering of the protein vesicle platform has employed amphiphilic self-assembly strategies and rational protein engineering to control physical, chemical, and biological properties for biotechnology and nanomedicine applications.
Collapse
Affiliation(s)
- Mikaela
A. Gray
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| | - Mariela R. Rodriguez-Otero
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
- BioEngineering
Program, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| | - Julie A. Champion
- School
of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
- BioEngineering
Program, Georgia Institute of Technology, 950 Atlantic Dr NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Huang H, Hwang J, Anilkumar S, Kiick KL. Controlled Release of Drugs from Extracellular Matrix-Derived Peptide-Based Nanovesicles through Tailored Noncovalent Interactions. Biomacromolecules 2024; 25:2408-2422. [PMID: 38546162 PMCID: PMC11661555 DOI: 10.1021/acs.biomac.3c01361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Elastin-collagen nanovesicles (ECnV) have emerged as a promising platform for drug delivery due to their tunable physicochemical properties and biocompatibility. The potential of nine distinct ECnVs to serve as drug-delivery vehicles was investigated in this study, and it was demonstrated that various small-molecule cargo (e.g., dexamethasone, methotrexate, doxorubicin) can be encapsulated in and released from a set of ECnVs, with extents of loading and rates of release dictated by the composition of the elastin domain of the ECnV and the type of cargo. Elastin-like peptides (ELPs) and collagen-like peptides (CLPs) of various compositions were produced; the secondary structure of the corresponding peptides was determined using CD, and the morphology and average hydrodynamic diameter (∼100 nm) of the ECnVs were determined using TEM and DLS. It was observed that hydrophobic drugs exhibited slower release kinetics than hydrophilic drugs, but higher drug loading was achieved for the more hydrophilic Dox. The collagen-binding ability of the ECnVs was demonstrated through a 2D collagen-binding assay, suggesting the potential for longer retention times in collagen-enriched tissues or matrices. Sustained release of drugs for up to 7 days was observed and, taken together with the collagen-binding data, demonstrates the potential of this set of ECnVs as a versatile drug delivery vehicle for longer-term drug release of a variety of cargo. This study provides important insights into the drug delivery potential of ECnVs and offers useful information for future development of ECnV-based drug delivery systems for the treatment of various diseases.
Collapse
Affiliation(s)
- Haofu Huang
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Sudha Anilkumar
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
6
|
Li M, Li J, Liu K, Zhang H. Artificial structural proteins: Synthesis, assembly and material applications. Bioorg Chem 2024; 144:107162. [PMID: 38308999 DOI: 10.1016/j.bioorg.2024.107162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/14/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
Structural proteins have evolved over billions of years and offer outstanding mechanical properties, such as resilience, toughness and stiffness. Advances in modular protein engineering, polypeptide modification, and synthetic biology have led to the development of novel biomimetic structural proteins to perform in biomedical and military fields. However, the development of customized structural proteins and assemblies with superior performance remains a major challenge, due to the inherent limitations of biosynthesis, difficulty in mimicking the complexed macroscale assembly, etc. This review summarizes the approaches for the design and production of biomimetic structural proteins, and their chemical modifications for multiscale assembly. Furthermore, we discuss the function tailoring and current applications of biomimetic structural protein assemblies. A perspective of future research is to reveal how the mechanical properties are encoded in the sequences and conformations. This review, therefore, provides an important reference for the development of structural proteins-mimetics from replication of nature to even outperforming nature.
Collapse
Affiliation(s)
- Ming Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hongjie Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Engineering Research Center of Advanced Rare Earth Materials, Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Garg A, González-Foutel NS, Gielnik MB, Kjaergaard M. Design of functional intrinsically disordered proteins. Protein Eng Des Sel 2024; 37:gzae004. [PMID: 38431892 DOI: 10.1093/protein/gzae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/22/2023] [Indexed: 03/05/2024] Open
Abstract
Many proteins do not fold into a fixed three-dimensional structure, but rather function in a highly disordered state. These intrinsically disordered proteins pose a unique challenge to protein engineering and design: How can proteins be designed de novo if not by tailoring their structure? Here, we will review the nascent field of design of intrinsically disordered proteins with focus on applications in biotechnology and medicine. The design goals should not necessarily be the same as for de novo design of folded proteins as disordered proteins have unique functional strengths and limitations. We focus on functions where intrinsically disordered proteins are uniquely suited including disordered linkers, desiccation chaperones, sensors of the chemical environment, delivery of pharmaceuticals, and constituents of biomolecular condensates. Design of functional intrinsically disordered proteins relies on a combination of computational tools and heuristics gleaned from sequence-function studies. There are few cases where intrinsically disordered proteins have made it into industrial applications. However, we argue that disordered proteins can perform many roles currently performed by organic polymers, and that these proteins might be more designable due to their modularity.
Collapse
Affiliation(s)
- Ankush Garg
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | | | - Maciej B Gielnik
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Magnus Kjaergaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
8
|
Princen K, Marien N, Guedens W, Graulus GJ, Adriaensens P. Hydrogels with Reversible Crosslinks for Improved Localised Stem Cell Retention: A Review. Chembiochem 2023; 24:e202300149. [PMID: 37220343 DOI: 10.1002/cbic.202300149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/21/2023] [Accepted: 05/23/2023] [Indexed: 05/25/2023]
Abstract
Successful stem cell applications could have a significant impact on the medical field, where many lives are at stake. However, the translation of stem cells to the clinic could be improved by overcoming challenges in stem cell transplantation and in vivo retention at the site of tissue damage. This review aims to showcase the most recent insights into developing hydrogels that can deliver, retain, and accommodate stem cells for tissue repair. Hydrogels can be used for tissue engineering, as their flexibility and water content makes them excellent substitutes for the native extracellular matrix. Moreover, the mechanical properties of hydrogels are highly tuneable, and recognition moieties to control cell behaviour and fate can quickly be introduced. This review covers the parameters necessary for the physicochemical design of adaptable hydrogels, the variety of (bio)materials that can be used in such hydrogels, their application in stem cell delivery and some recently developed chemistries for reversible crosslinking. Implementing physical and dynamic covalent chemistry has resulted in adaptable hydrogels that can mimic the dynamic nature of the extracellular matrix.
Collapse
Affiliation(s)
- Ken Princen
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Neeve Marien
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Wanda Guedens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Geert-Jan Graulus
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| | - Peter Adriaensens
- Biomolecule Design Group, Institute for Materials Research (IMO-IMOMEC), Hasselt University, Agoralaan-Building D, 3590, Diepenbeek, Belgium
| |
Collapse
|
9
|
Li Y, Dautel DR, Gray MA, McKenna ME, Champion JA. Rational design of elastin-like polypeptide fusion proteins to tune self-assembly and properties of protein vesicles. J Mater Chem B 2023. [PMID: 37357544 DOI: 10.1039/d3tb00200d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Protein vesicles made from bioactive proteins have potential value in drug delivery, biocatalysis, and as artificial cells. As the proteins are produced recombinantly, the ability to precisely tune the protein sequence provides control not possible with polymeric vesicles. The tunability and biocompatibility motivated this work to develop protein vesicles using rationally designed protein building blocks to investigate how protein sequence influences vesicle self-assembly and properties. We have reported an elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) and functional, globular proteins fused to a glutamate-rich leucine zipper (ZE) that self-assemble into protein vesicles when warmed from 4 to 25 °C due to the hydrophobic transition of ELP. Previously, we demonstrated the ability to tune vesicle properties by changing protein and salt concentration, ZE : ZR ratio, and warming rate. However, there is a limit to the properties that can be achieved via assembly conditions. In order to access a wider range of vesicle diameter and stability profiles, this work investigated how modifiying the hydrophobicity and length of the ELP sequence influenced self-assembly and the final properties of protein vesicles using mCherry as a model globular protein. The results showed that both transition temperature and diameter of protein vesicles were inversely correlated to the ELP guest residue hydrophobicity and the number of ELP pentapeptide repeats. Additionally, sequence manipulation enabled assembly of vesicles with properties not accessible by changes to assembly conditions. For example, introduction of tyrosine at 5 guest residue positions in ELP enabled formation of nanoscale vesicles stable at physiological salt concentration. This work yields design guidelines for modifying the ELP sequence to manipulate protein vesicle transition temperature, size and stability to achieve desired properties for particular biofunctional applications.
Collapse
Affiliation(s)
- Yirui Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia, 30332, USA.
- BioEngineering Program, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia, 30332, USA
| | - Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia, 30332, USA.
| | - Mikaela A Gray
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia, 30332, USA.
| | - Michael E McKenna
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia, 30332, USA.
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia, 30332, USA.
- BioEngineering Program, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia, 30332, USA
| |
Collapse
|
10
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
11
|
Zhang T, Peruch F, Weber A, Bathany K, Fauquignon M, Mutschler A, Schatz C, Garbay B. Solution behavior and encapsulation properties of fatty acid-elastin-like polypeptide conjugates. RSC Adv 2023; 13:2190-2201. [PMID: 36712617 PMCID: PMC9835928 DOI: 10.1039/d2ra06603c] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/21/2022] [Indexed: 01/13/2023] Open
Abstract
Developing new biomaterials is an active research area owing to their applications in regenerative medicine, tissue engineering and drug delivery. Elastin-like polypeptides (ELPs) are good candidates for these applications because they are biosourced, biocompatible and biodegradable. With the aim of developing ELP-based micelles for drug delivery applications we have synthesized 15 acyl-ELP compounds by conjugating myristic, palmitic, stearic, oleic or linoleic acid to the N-terminus of three ELPs differing in molar mass. The ELP-fatty acid conjugates have interesting solution behavior. They form micelles at low temperatures and aggregate above the cloud point temperature (Tcp). The critical micelle concentration depends on the fatty acid nature while the micelle size is mainly determined by the ELP block length. We were able to show that ELPs were better hydrated in the micelles than in their individual state in solution. The micelles are stable in phosphate-buffered saline at temperatures below the Tcp, which can vary between 20 °C and 38 °C depending on the length or hydrophilicity of the ELP. Acyl-ELP micelles were loaded with the small hydrophobic molecule Nile red. The encapsulation efficiency and release kinetics showed that the best loading conditions were achieved with the largest ELP conjugated to stearic acid.
Collapse
Affiliation(s)
- Tingting Zhang
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Frédéric Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Amélie Weber
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Katell Bathany
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248F-33600 PessacFrance
| | - Martin Fauquignon
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Christophe Schatz
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO UMR 5629F-33600 PessacFrance
| |
Collapse
|
12
|
Elastin-like polypeptide-based micelles as a promising platform in nanomedicine. J Control Release 2023; 353:713-726. [PMID: 36526018 DOI: 10.1016/j.jconrel.2022.12.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
New and improved nanomaterials are constantly being developed for biomedical purposes. Nanomaterials based on elastin-like polypeptides (ELPs) have increasingly shown potential over the past two decades. These polymers are artificial proteins of which the design is based on human tropoelastin. Due to this similarity, ELP-based nanomaterials are biodegradable and therefore well suited to drug delivery. The assembly of ELP molecules into nanoparticles spontaneously occurs at temperatures above a transition temperature (Tt). The ELP sequence influences both the Tt and the physicochemical properties of the assembled nanomaterial. Nanoparticles with desired properties can hence be designed by choosing the appropriate sequence. A promising class of ELP nanoparticles are micelles assembled from amphiphilic ELP diblock copolymers. Such micelles are generally uniform and well defined. Furthermore, site-specific attachment of cargo to the hydrophobic block results in micelles with the cargo shielded inside their core, while conjugation to the hydrophilic block causes the cargo to reside in the corona where it is available for interactions. Such control over particle design is one of the main contributing factors for the potential of ELP-based micelles as a drug delivery system. Additionally, the micelles are easily loaded with protein or peptide-based cargo by expressing it as a fusion protein. Small molecule drugs and other cargo types can be either covalently conjugated to ELP domains or physically entrapped inside the micelle core. This review aims to give an overview of ELP-based micelles and their applications in nanomedicine.
Collapse
|
13
|
Development of truncated elastin-like peptide analogues with improved temperature-response and self-assembling properties. Sci Rep 2022; 12:19414. [PMID: 36371418 PMCID: PMC9653453 DOI: 10.1038/s41598-022-23940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Functional peptides, which are composed of proteinogenic natural amino acids, are expected to be used as biomaterials with minimal environmental impact. Synthesizing a functional peptide with a shorter amino acid sequence while retaining its function is a easy and economical strategy. Furthermore, shortening functional peptides helps to elucidate the mechanism of their functional core region. Truncated elastin-like peptides (ELPs) are peptides consisting of repetitive sequences, derived from the elastic protein tropoelastin, that show the thermosensitive formation of coacervates. In this study, to obtain shortened ELP analogues, we synthesized several (Phe-Pro-Gly-Val-Gly)n (FPGVG)n analogues with one or two amino acid residues deleted from each repeat sequence, such as the peptide analogues consisting of FPGV and/or FPG sequences. Among the novel truncated ELP analogues, the 16-mer (FPGV)4 exhibited a stronger coacervation ability than the 25-mer (FPGVG)5. These results indicated that the coacervation ability of truncated ELPs was affected by the amino acid sequence and not by the peptide chain length. Based on this finding, we prepared Cd2+-binding sequence-conjugated ELP analogue, AADAAC-(FPGV)4, and found that it could capture Cd2+. These results indicated that the 16-mer (FPGV)4 only composed of proteinogenic amino acids could be a new biomaterial with low environmental impact.
Collapse
|
14
|
Elastin-like Polypeptide Hydrogels for Tunable, Sustained Local Chemotherapy in Malignant Glioma. Pharmaceutics 2022; 14:pharmaceutics14102072. [PMID: 36297507 PMCID: PMC9608313 DOI: 10.3390/pharmaceutics14102072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma (GBM) is a primary brain tumor that carries a dismal prognosis, which is primarily attributed to tumor recurrence after surgery and resistance to chemotherapy. Since the tumor recurrence appears near the site of surgical resection, a concept of immediate and local application of chemotherapeutic after initial tumor removal could lead to improved treatment outcome. With the ultimate goal of developing a locally-applied, injectable drug delivery vehicle for GBM treatment, we created elastin-like polypeptide (ELP) hydrogels. The ELP hydrogels can be engineered to release anti-cancer drugs over an extended period. The purpose of this study was to evaluate the biomechanical properties of ELP hydrogels, to characterize their ability to release doxorubicin over time, and to investigate, in vitro, the anti-proliferative effect of Dox-laden ELP hydrogels on GBM. Here, we present microstructural differences, swelling ratio measurements, drug release characteristics, and in vitro effects of different ELP hydrogel compositions. We found that manipulation of the ELP–collagen ratio allows for tunable drug release, that the released drug is taken up by cells, and that incubation with a small volume of ELP-Dox hydrogel drastically reduced survival and proliferation of GBM cells in vitro. These results underscore the potential of ELP hydrogels as a local delivery strategy to improve prognosis for GBM patients after tumor resection.
Collapse
|
15
|
Dautel DR, Champion JA. Self-Assembly of Functional Protein Nanosheets from Thermoresponsive Bolaamphiphiles. Biomacromolecules 2022; 23:3612-3620. [PMID: 36018255 DOI: 10.1021/acs.biomac.2c00525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanosheets are two-dimensional materials, less than 100 nm thick, that can be used for separations, biosensing, and biocatalysis. Nanosheets can be made from inorganic and organic materials such as graphene, polymers, and proteins. Here, we report the self-assembly of nanosheets under aqueous conditions from functional proteins. The nanosheets are synthesized from two fusion proteins held together by high-affinity interactions of two leucine zippers to form bolaamphiphiles. The hydrophobic domain, ZR-ELP-ZR, contains the thermoresponsive elastin-like peptide (ELP) flanked by arginine-rich leucine zippers (ZR), each of which binds the hydrophilic fusion protein, globule-ZE, via the glutamate-rich leucine zipper (ZE) fused to a functional, globular protein. Nanosheets form when the proteins are mixed at 4 °C in aqueous solutions and then heated to 25 °C as the container is rotated end-over-end causing expansion and contraction of the air-water interface. The nanosheets are robust with respect to the choice of globular protein and can incorporate small fluorescent proteins that are less than 30 kDa as well as large enzymes, such as 80 kDa malate synthase G. Upon incorporation into nanosheets, enzymes retain more than 70% of their original activity, demonstrating the potential of protein nanosheets to be used for biosensing or biocatalytic applications.
Collapse
Affiliation(s)
- Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Sist P, Bandiera A, Urbani R, Passamonti S. Macromolecular and Solution Properties of the Recombinant Fusion Protein HUG. Biomacromolecules 2022; 23:3336-3348. [PMID: 35876275 PMCID: PMC9364316 DOI: 10.1021/acs.biomac.2c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The recombinant fusion protein HELP-UnaG (HUG) is a bifunctional
product that exhibits human elastin-like polypeptide (HELP)-specific
thermal behavior, defined as a reverse phase transition, and UnaG-specific
bilirubin-dependent fluorescence emission. HUG provides an interesting
model to understand how its two domains influence each other’s
properties. Turbidimetric, calorimetric, and light scattering measurements
were used to determine different parameters for the reverse temperature
transition and coacervation behavior. This shows that the UnaG domain
has a measurable but limited effect on the thermal properties of HELP.
Although the HELP domain decreased the affinity of UnaG for bilirubin,
HUG retained the property of displacing bilirubin from bovine serum
albumin and thus remains one of the strongest bilirubin-binding proteins
known to date. These data demonstrate that HELP can be used to create
new bifunctional fusion products that pave the way for expanded technological
applications.
Collapse
Affiliation(s)
- Paola Sist
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Antonella Bandiera
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Ranieri Urbani
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| | - Sabina Passamonti
- Department of Life Sciences, University of Trieste, Via Giorgieri 1, Trieste I-34127, Italy
| |
Collapse
|
17
|
Liu T, Li L, Cheng C, He B, Jiang T. Emerging prospects of protein/peptide-based nanoassemblies for drug delivery and vaccine development. NANO RESEARCH 2022; 15:7267-7285. [PMID: 35692441 PMCID: PMC9166156 DOI: 10.1007/s12274-022-4385-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 05/09/2023]
Abstract
Proteins have been widely used in the biomedical field because of their well-defined architecture, accurate molecular weight, excellent biocompatibility and biodegradability, and easy-to-functionalization. Inspired by the wisdom of nature, increasing proteins/peptides that possess self-assembling capabilities have been explored and designed to generate nanoassemblies with unique structure and function, including spatially organized conformation, passive and active targeting, stimuli-responsiveness, and high stability. These characteristics make protein/peptide-based nanoassembly an ideal platform for drug delivery and vaccine development. In this review, we focus on recent advances in subsistent protein/peptide-based nanoassemblies, including protein nanocages, virus-like particles, self-assemblable natural proteins, and self-assemblable artificial peptides. The origin and characteristics of various protein/peptide-based assemblies and their applications in drug delivery and vaccine development are summarized. In the end, the prospects and challenges are discussed for the further development of protein/peptide-based nanoassemblies.
Collapse
Affiliation(s)
- Taiyu Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Lu Li
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Cheng Cheng
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| | - Tianyue Jiang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816 China
| |
Collapse
|
18
|
Sumiyoshi S, Suyama K, Tatsubo D, Tanaka N, Tomohara K, Taniguchi S, Maeda I, Nose T. Metal ion scavenging activity of elastin-like peptide analogues containing a cadmium ion binding sequence. Sci Rep 2022; 12:1861. [PMID: 35115613 PMCID: PMC8814041 DOI: 10.1038/s41598-022-05695-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/17/2022] [Indexed: 12/13/2022] Open
Abstract
The development of simple and safe methods for recovering environmental pollutants, such as heavy metals, is needed for sustainable environmental management. Short elastin-like peptide (ELP) analogues conjugated with metal chelating agents are considered to be useful as metal sequestering agents as they are readily produced, environment friendly, and the metal binding domain can be selected based on any target metal of interest. Due to the temperature dependent self-assembly of ELP, the peptide-based sequestering agents can be transformed from the solution state into the particles that chelate metal ions, which can then be collected as precipitates. In this study, we developed a peptide-based sequestering agent, AADAAC-(FPGVG)4, by introducing the metal-binding sequence AADAAC on the N-terminus of a short ELP, (FPGVG)4. In turbidity measurements, AADAAC-(FPGVG)4 revealed strong self-assembling ability in the presence of metal ions such as Cd2+ and Zn2+. The results from colorimetric analysis indicated that AADAAC-(FPGVG)4 could capture Cd2+ and Zn2+. Furthermore, AADAAC-(FPGVG)4 that bound to metal ions could be readily recycled by treatment with acidic solution without compromising its metal binding affinity. The present study indicates that the fusion of the metal-binding sequence and ELP is a useful and powerful strategy to develop cost-effective heavy metal scavenging agents with low environmental impacts.
Collapse
Affiliation(s)
- Shogo Sumiyoshi
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keitaro Suyama
- Laboratory of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Daiki Tatsubo
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Naoki Tanaka
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Keisuke Tomohara
- Laboratory of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan
| | - Suguru Taniguchi
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Iori Maeda
- Department of Physics and Information Technology, Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
| | - Takeru Nose
- Laboratory of Biomolecular Chemistry, Department of Chemistry, Faculty and Graduate School of Science, Kyushu University, Fukuoka, 819-0395, Japan.
- Laboratory of Biomolecular Chemistry, Faculty of Arts and Science, Kyushu University, Fukuoka, 819-0395, Japan.
| |
Collapse
|
19
|
Lüdeke S, Lohner P, Stühn LG, Betschart MU, Huber MC, Schreiber A, Schiller SM. Dynamische Strukturänderung und Thermodynamik von Phasentrennprozessen eines Proteinmodells mit intrinsisch ungeordneter/geordneter Struktur. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Steffen Lüdeke
- Institut für Pharmazeutische und Biomedizinische Wissenschaften (IPBW) Johannes Gutenberg-Universität Mainz Staudinger Weg 5 55128 Mainz Deutschland
- Institut für Pharmazeutische Wissenschaften Albert-Ludwigs-Universität Freiburg Albertstraße 25 79104 Freiburg Deutschland
| | - Philipp Lohner
- Institut für Pharmazeutische Wissenschaften Albert-Ludwigs-Universität Freiburg Albertstraße 25 79104 Freiburg Deutschland
| | - Lara G. Stühn
- Zentrum für Biosystemanalyse (ZBSA) Albert-Ludwigs-Universität Freiburg Habsburgerstraße 49 79104 Freiburg Deutschland
| | - Martin U. Betschart
- Institut für Pharmazeutische Wissenschaften Albert-Ludwigs-Universität Freiburg Albertstraße 25 79104 Freiburg Deutschland
| | - Matthias C. Huber
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 105 79104 Freiburg Deutschland
| | - Andreas Schreiber
- Zentrum für Biosystemanalyse (ZBSA) Albert-Ludwigs-Universität Freiburg Habsburgerstraße 49 79104 Freiburg Deutschland
| | - Stefan M. Schiller
- Zentrum für Biosystemanalyse (ZBSA) Albert-Ludwigs-Universität Freiburg Habsburgerstraße 49 79104 Freiburg Deutschland
- Cluster of Excellence livMatS @ FIT – Freiburg Center for Interactive Materials and Bioinspired Technologies Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 105 79104 Freiburg Deutschland
- IMTEK – Institut für Mikrosystemtechnik Albert-Ludwigs-Universität Freiburg Georges-Köhler-Allee 103 79104 Freiburg Deutschland
| |
Collapse
|
20
|
Lüdeke S, Lohner P, Stühn LG, Betschart MU, Huber MC, Schreiber A, Schiller SM. Dynamic Structural Changes and Thermodynamics in Phase Separation Processes of an Intrinsically Disordered-Ordered Protein Model. Angew Chem Int Ed Engl 2022; 61:e202112738. [PMID: 34806270 PMCID: PMC9299898 DOI: 10.1002/anie.202112738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Elastin-like proteins (ELPs) are biologically important proteins and models for intrinsically disordered proteins (IDPs) and dynamic structural transitions associated with coacervates and liquid-liquid phase transitions. However, the conformational status below and above coacervation temperature and its role in the phase separation process is still elusive. Employing matrix least-squares global Boltzmann fitting of the circular dichroism spectra of the ELPs (VPGVG)20 , (VPGVG)40 , and (VPGVG)60 , we found that coacervation occurs sharply when a certain number of repeat units has acquired β-turn conformation (in our sequence setting a threshold of approx. 20 repeat units). The character of the differential scattering of the coacervate suspensions indicated that this fraction of β-turn structure is still retained after polypeptide assembly. Such conformational thresholds may also have a role in other protein assembly processes with implications for the design of protein-based smart materials.
Collapse
Affiliation(s)
- Steffen Lüdeke
- Institut für Pharmazeutische und Biomedizinische Wissenschaften (IPBW)Johannes Gutenberg-Universität MainzStaudinger Weg 555128MainzGermany
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Philipp Lohner
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Lara G. Stühn
- Zentrum für Biosystemanalyse (ZBSA)Albert-Ludwigs-Universität FreiburgHabsburgerstrasse 4979104FreiburgGermany
| | - Martin U. Betschart
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität FreiburgAlbertstrasse 2579104FreiburgGermany
| | - Matthias C. Huber
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesAlbert-Ludwigs-Universität FreiburgGeorges-Köhler-Allee 10579104FreiburgGermany
| | - Andreas Schreiber
- Zentrum für Biosystemanalyse (ZBSA)Albert-Ludwigs-Universität FreiburgHabsburgerstrasse 4979104FreiburgGermany
| | - Stefan M. Schiller
- Zentrum für Biosystemanalyse (ZBSA)Albert-Ludwigs-Universität FreiburgHabsburgerstrasse 4979104FreiburgGermany
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired TechnologiesAlbert-Ludwigs-Universität FreiburgGeorges-Köhler-Allee 10579104FreiburgGermany
- IMTEK—Institut für MikrosystemtechnikAlbert-Ludwigs-Universität FreiburgGeorges-Köhler-Allee 10379104FreiburgGermany
| |
Collapse
|
21
|
Sharma B, Ma Y, Hiraki HL, Baker BM, Ferguson AL, Liu AP. Facile formation of giant elastin-like polypeptide vesicles as synthetic cells. Chem Commun (Camb) 2021; 57:13202-13205. [PMID: 34816831 DOI: 10.1039/d1cc05579h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We demonstrate the facile and robust generation of giant peptide vesicles by using an emulsion transfer method. These robust vesicles can sustain chemical and physical stresses. The peptide vesicles can host cell-free expression reactions by encapsulating essential ingredients. We show the incorporation of another cell-free expressed elastin-like polypeptide into the existing membrane of the peptide vesicles.
Collapse
Affiliation(s)
- Bineet Sharma
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Yutao Ma
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.,Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA. .,Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan 48105, USA.,Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48105, USA
| |
Collapse
|
22
|
Chang MP, Huang W, Mai DJ. Monomer‐scale design of functional protein polymers using consensus repeat sequences. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina P. Chang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Winnie Huang
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Danielle J. Mai
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|
23
|
Wang B, Patkar SS, Kiick KL. Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials. Macromol Biosci 2021; 21:e2100129. [PMID: 34145967 PMCID: PMC8449816 DOI: 10.1002/mabi.202100129] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Indexed: 01/15/2023]
Abstract
Modulation of inter- and intramolecular interactions between bioinspired designer molecules can be harnessed for developing functional structures that mimic the complex hierarchical organization of multicomponent assemblies observed in nature. Furthermore, such multistimuli-responsive molecules offer orthogonal tunability for generating versatile multifunctional platforms via independent biochemical and biophysical cues. In this review, the remarkable physicochemical and mechanical properties of genetically engineered protein polymers derived from intrinsically disordered proteins, specifically elastin and resilin, are discussed. This review highlights emerging technologies which use them as building blocks in the fabrication of highly programmable structured biomaterials for applications in delivery of biotherapeutic cargo and regenerative medicine.
Collapse
Affiliation(s)
- Bin Wang
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Sai S Patkar
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Laboratory, Newark, DE, 19716, USA
- Delaware Biotechnology Institute, Ammon Pinizzotto Biopharmaceutical Innovation Center, 590 Avenue 1743, Newark, DE, 19713, USA
| |
Collapse
|
24
|
Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg Top Life Sci 2021; 4:307-329. [PMID: 33078839 DOI: 10.1042/etls20190164] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Intrinsically disordered protein regions (IDRs) - regions that do not fold into a fixed three-dimensional structure but instead exist in a heterogeneous ensemble of conformations - have recently entered mainstream cell biology in the context of liquid-liquid phase separation (LLPS). IDRs are frequently found to be enriched in phase-separated compartments. Due to this observation, the presence of an IDR in a protein is frequently assumed to be diagnostic of its ability to phase separate. In this review, we clarify the role of IDRs in biological assembly and explore the physical principles through which amino acids can confer the attractive molecular interactions that underlie phase separation. While some disordered regions will robustly drive phase separation, many others will not. We emphasize that rather than 'disorder' driving phase separation, multivalency drives phase separation. As such, whether or not a disordered region is capable of driving phase separation will depend on the physical chemistry encoded within its amino acid sequence. Consequently, an in-depth understanding of that physical chemistry is a prerequisite to make informed inferences on how and why an IDR may be involved in phase separation or, more generally, in protein-mediated intermolecular interactions.
Collapse
|
25
|
Rodriguez-Cabello JC, Gonzalez De Torre I, González-Pérez M, González-Pérez F, Montequi I. Fibrous Scaffolds From Elastin-Based Materials. Front Bioeng Biotechnol 2021; 9:652384. [PMID: 34336798 PMCID: PMC8323661 DOI: 10.3389/fbioe.2021.652384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/25/2021] [Indexed: 11/28/2022] Open
Abstract
Current cutting-edge strategies in biomaterials science are focused on mimicking the design of natural systems which, over millions of years, have evolved to exhibit extraordinary properties. Based on this premise, one of the most challenging tasks is to imitate the natural extracellular matrix (ECM), due to its ubiquitous character and its crucial role in tissue integrity. The anisotropic fibrillar architecture of the ECM has been reported to have a significant influence on cell behaviour and function. A new paradigm that pivots around the idea of incorporating biomechanical and biomolecular cues into the design of biomaterials and systems for biomedical applications has emerged in recent years. Indeed, current trends in materials science address the development of innovative biomaterials that include the dynamics, biochemistry and structural features of the native ECM. In this context, one of the most actively studied biomaterials for tissue engineering and regenerative medicine applications are nanofiber-based scaffolds. Herein we provide a broad overview of the current status, challenges, manufacturing methods and applications of nanofibers based on elastin-based materials. Starting from an introduction to elastin as an inspiring fibrous protein, as well as to the natural and synthetic elastin-based biomaterials employed to meet the challenge of developing ECM-mimicking nanofibrous-based scaffolds, this review will follow with a description of the leading strategies currently employed in nanofibrous systems production, which in the case of elastin-based materials are mainly focused on supramolecular self-assembly mechanisms and the use of advanced manufacturing technologies. Thus, we will explore the tendency of elastin-based materials to form intrinsic fibers, and the self-assembly mechanisms involved. We will describe the function and self-assembly mechanisms of silk-like motifs, antimicrobial peptides and leucine zippers when incorporated into the backbone of the elastin-based biomaterial. Advanced polymer-processing technologies, such as electrospinning and additive manufacturing, as well as their specific features, will be presented and reviewed for the specific case of elastin-based nanofiber manufacture. Finally, we will present our perspectives and outlook on the current challenges facing the development of nanofibrous ECM-mimicking scaffolds based on elastin and elastin-like biomaterials, as well as future trends in nanofabrication and applications.
Collapse
Affiliation(s)
- Jose Carlos Rodriguez-Cabello
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Israel Gonzalez De Torre
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Miguel González-Pérez
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Fernando González-Pérez
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Irene Montequi
- BIOFORGE, University of Valladolid, Valladolid, Spain
- Center for Biomedical Research in the Network in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| |
Collapse
|
26
|
Investigation of characteristics as endodontic sealer of novel experimental elastin-like polypeptide-based mineral trioxide aggregate. Sci Rep 2021; 11:10537. [PMID: 34006881 PMCID: PMC8131355 DOI: 10.1038/s41598-021-90033-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/29/2021] [Indexed: 01/11/2023] Open
Abstract
Although mineral trioxide aggregates (MTA) have been adopted as an endodontic sealer because of excellent sealing effect and bioactive property and been modified with improvement of its characteristics, the developed MTA sealers have not yet satisfied all the ideal requirements of endodontic sealers. The aim of this study was to assess the characteristics of elastin-like polypeptide (ELP)-incorporated MTA for use as an endodontic sealer and compare them with those of commercial MTA sealers. Two commercial MTA sealers and three experimental ELP-incorporated MTA sealers with 0.3, 0.4, and 0.5 liquid/powder (L/P) ratio for 10 wt% ELP liquid were evaluated. The push-out bond strength, flow rate, sealer penetrability and wash-out resistance were tested and the sealer-dentin interface was observed using a scanning electron microscope (SEM). Our study revealed the ELP-incorporated MTA sealer, especially in 0.4 L/P ratio, exhibited the higher push-out bond strength and flow rate (P < 0.05), and equal or superior sealer penetration and remarkable wash-out resistance compared to commercial MTA sealers. The groups of ELP-based experimental sealers also exhibited more intimate contact with dentin compared to the commercial MTA sealers. Our research will suggest the possible adoption of the ELP-incorporated MTA as endodontic sealer for clinical use.
Collapse
|
27
|
Liu X, Gao W. Precision Conjugation: An Emerging Tool for Generating Protein–Polymer Conjugates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202003708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xinyu Liu
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| |
Collapse
|
28
|
Lindeboom T, Zhao B, Jackson G, Hall CK, Galindo A. On the liquid demixing of water + elastin-like polypeptide mixtures: bimodal re-entrant phase behaviour. Phys Chem Chem Phys 2021; 23:5936-5944. [PMID: 33666204 DOI: 10.1039/d0cp05013j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Water + elastin-like polypeptides (ELPs) exhibit a transition temperature below which the chains transform from collapsed to expanded states, reminiscent of the cold denaturation of proteins. This conformational change coincides with liquid-liquid phase separation. A statistical-thermodynamics theory is used to model the fluid-phase behavior of ELPs in aqueous solution and to extrapolate the behavior at ambient conditions over a range of pressures. At low pressures, closed-loop liquid-liquid equilibrium phase behavior is found, which is consistent with that of other hydrogen-bonding solvent + polymer mixtures. At pressures evocative of deep-sea conditions, liquid-liquid immiscibility bounded by two lower critical solution temperatures (LCSTs) is predicted. As pressure is increased further, the system exhibits two separate regions of closed-loop of liquid-liquid equilibrium (LLE). The observation of bimodal LCSTs and two re-entrant LLE regions herald a new type of binary global phase diagram: Type XII. At high-ELP concentrations the predicted phase diagram resembles a protein pressure denaturation diagram; possible "molten-globule"-like states are observed at low concentration.
Collapse
Affiliation(s)
- Tom Lindeboom
- Department of Chemical Engineering, Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Binwu Zhao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA.
| | - George Jackson
- Department of Chemical Engineering, Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA.
| | - Amparo Galindo
- Department of Chemical Engineering, Centre for Process Systems Engineering and Institute for Molecular Science and Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|
29
|
Liu X, Gao W. Precision Conjugation: An Emerging Tool for Generating Protein–Polymer Conjugates. Angew Chem Int Ed Engl 2021; 60:11024-11035. [PMID: 32437042 DOI: 10.1002/anie.202003708] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/20/2020] [Indexed: 01/16/2023]
Affiliation(s)
- Xinyu Liu
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials Peking University School and Hospital of Stomatology Beijing 100081 P. R. China
- Biomedical Engineering Department Peking University Beijing 100191 P. R. China
| |
Collapse
|
30
|
Laaß K, Quiroz FG, Hunold J, Roberts S, Chilkoti A, Hinderberger D. Nanoscopic Dynamics Dictate the Phase Separation Behavior of Intrinsically Disordered Proteins. Biomacromolecules 2021; 22:1015-1025. [PMID: 33403854 DOI: 10.1021/acs.biomac.0c01768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many intrinsically disordered proteins (IDPs) in nature may undergo liquid-liquid phase separation to assemble membraneless organelles with varied liquid-like properties and stability/dynamics. While solubility changes underlie these properties, little is known about hydration dynamics in phase-separating IDPs. Here, by studying IDP polymers of similar composition but distinct liquid-like dynamics and stability upon separation, namely, thermal hysteresis, we probe at a nanoscopic level hydration/dehydration dynamics in IDPs as they reversibly switch between phase separation states. Using continuous-wave electron paramagnetic resonance (CW EPR) spectroscopy, we observe distinct backbone and amino acid side-chain hydration dynamics in these IDPs. This nanoscopic view reveals that side-chain rehydration creates a dynamic water shield around the main-chain backbone that effectively and counterintuitively prevents water penetration and governs IDP solubility. We find that the strength of this superficial water shell is a sequence feature of IDPs that encodes for the stability of their phase-separated assemblies. Our findings expose and offer an initial understanding of how the complexity of nanoscopic water-IDP interactions dictate their rich phase separation behavior.
Collapse
Affiliation(s)
- Katharina Laaß
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Felipe García Quiroz
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, United States
| | - Johannes Hunold
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Stefan Roberts
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, United States
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708-0281, United States
| | - Dariush Hinderberger
- Institut für Chemie, Martin-Luther-Universität Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
31
|
Zhang T, Peruch F, Wirotius AL, Ibarboure E, Rosu F, Schatz C, Garbay B. Unprecedented coupling of natural rubber and ELP: synthesis, characterization and self-assembly properties. Polym Chem 2021. [DOI: 10.1039/d1py00969a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Developing new biomaterials is an active research area owing to their applications in regenerative medicine, tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Tingting Zhang
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Frédéric Peruch
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | | | - Emmanuel Ibarboure
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Frédéric Rosu
- Univ. Bordeaux, CNRS & Inserm, IECB, UMS3033, US001, 33607 Pessac, France
| | - Christophe Schatz
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| | - Bertrand Garbay
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600, Pessac, France
| |
Collapse
|
32
|
Chambre L, Martín-Moldes Z, Parker RN, Kaplan DL. Bioengineered elastin- and silk-biomaterials for drug and gene delivery. Adv Drug Deliv Rev 2020; 160:186-198. [PMID: 33080258 PMCID: PMC7736173 DOI: 10.1016/j.addr.2020.10.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022]
Abstract
Advances in medical science have led to diverse new therapeutic modalities, as well as enhanced understanding of the progression of various disease states. These findings facilitate the design and development of more customized and exquisite drug delivery systems that aim to improve therapeutic indices of drugs to treat a variety of conditions. Synthetic polymer-based drug carriers have often been the focus of such research. However, these structures suffer from challenges with heterogeneity of the starting material, limited chemical features, complex functionalization methods, and in some cases a lack of biocompatibility. Consequently, protein-based polymers have garnered much attention in recent years due to their monodisperse features, ease of production and functionalization, and biocompatibility. Genetic engineering techniques enable the advancement of protein-based drug delivery systems with finely tuned physicochemical properties, and thus an expanded level of customization unavailable with synthetic polymers. Of these genetically engineered proteins, elastin-like proteins (ELP), silk-like proteins (SLP), and silk-elastin-like proteins (SELP) provide a unique set of alternatives for designing drug delivery systems due to their inherent chemical and physical properties and ease of engineering afforded by recombinant DNA technologies. In this review we examine the advantages of genetically engineered drug delivery systems with emphasis on ELP and SLP constructions. Methods for fabrication and relevant biomedical applications will also be discussed.
Collapse
Affiliation(s)
- Laura Chambre
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Zaira Martín-Moldes
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - Rachael N Parker
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby St, Medford, MA 02155, USA.
| |
Collapse
|
33
|
Acosta S, Poocza L, Quintanilla-Sierra L, Rodríguez-Cabello JC. Charge Density as a Molecular Modulator of Nanostructuration in Intrinsically Disordered Protein Polymers. Biomacromolecules 2020; 22:158-170. [PMID: 32840359 DOI: 10.1021/acs.biomac.0c00934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Intrinsically disordered protein polymers (IDPPs) have attracted a lot of attention in the development of bioengineered devices and for use as study models in molecular biology because of their biomechanical properties and stimuli-responsiveness. The present study aims to understand the effect of charge density on the self-assembly of IDPPs. To that end, a library of recombinant IDPPs based on an amphiphilic diblock design with different charge densities was bioproduced, and their supramolecular assembly was characterized on the nano-, meso-, and microscale. Although the phase transition was driven by the collapse of hydrophobic moieties, the hydrophilic block composition strongly affected hierarchical assembly and, therefore, enabled the production of new molecular architectures, thus leading to new dynamics that govern the liquid-gel transition. These results highlight the importance of electrostatic repulsion for the hierarchical assembly of IDPPs and provide insights into the manufacture of supramolecular protein-based materials.
Collapse
Affiliation(s)
- Sergio Acosta
- Bioforge Lab, CIBER-BBN, University of Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
| | - Leander Poocza
- Bioforge Lab, CIBER-BBN, University of Valladolid, Paseo Belén 19, 47011, Valladolid, Spain
| | | | | |
Collapse
|
34
|
Wang Z, Guo J, Liu X, Sun J, Gao W. Temperature-triggered micellization of interferon alpha-diblock copolypeptide conjugate with enhanced stability and pharmacology. J Control Release 2020; 328:444-453. [PMID: 32898593 DOI: 10.1016/j.jconrel.2020.08.065] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Polypeptides are useful in designing protein-polypeptide conjugates for therapeutic applications; however, they are not satisfactory in improving the stability of therapeutic proteins and extending their in vivo half-life. Here we show that thermally-induced self-assembly (TISA) of elastin-like polypeptide diblock copolymer fused interferon alpha (IFNα-ELPdiblock) into a spherical micelle can dramatically enhance the proteolytic stability of IFNα. Notably, the circulation half-life of IFNα-ELPdiblock micelle (54.7 h) is 124.3-, 5.7-, and 1.4-time longer than those of free IFNα (0.44 h), freely soluble IFNα-ELP (9.6 h), and PEGylated IFNα (39.0 h), respectively. Importantly, in a mouse model of ovarian tumor, IFNα-ELPdiblock micelle exhibited significantly enhanced tumor retention and antitumor efficacy over free IFNα, freely soluble IFNα-ELP, and even PEGylated IFNα. These findings provide a thermoresponsive supramolecular strategy of TISA to design protein-diblock copolypeptide conjugate micelles with enhanced stability and pharmacology.
Collapse
Affiliation(s)
- Zhuoran Wang
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; Biomedical Engineering Department, Peking University, Beijing 100191, PR China; CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Jianwen Guo
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Xinyu Liu
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; Biomedical Engineering Department, Peking University, Beijing 100191, PR China
| | - Jiawei Sun
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, PR China
| | - Weiping Gao
- Department of Geriatric Dentistry, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing 100081, PR China; Biomedical Engineering Department, Peking University, Beijing 100191, PR China.
| |
Collapse
|
35
|
Dautel DR, Champion JA. Protein Vesicles Self-Assembled from Functional Globular Proteins with Different Charge and Size. Biomacromolecules 2020; 22:116-125. [PMID: 32886493 DOI: 10.1021/acs.biomac.0c00671] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein vesicles can be synthesized by mixing two fusion proteins: an elastin-like polypeptide (ELP) fused to an arginine-rich leucine zipper (ZR) with a globular, soluble protein fused to a glutamate-rich leucine zipper (ZE). Currently, only fluorescent proteins have been incorporated into vesicles; however, for protein vesicles to be useful for biocatalysis, drug delivery, or biosensing, vesicles must assemble from functional proteins that span an array of properties and functionalities. In this work, the globular protein was systematically changed to determine the effects of the surface charge and size on the self-assembly of protein vesicles. The formation of microphases, which included vesicles, coacervates, and hybrid structures, was monitored at different assembly conditions to determine the phase space for each globular protein. The results show that the protein surface charge has a small effect on vesicle self-assembly. However, increasing the size of the globular protein decreases the vesicle size and increases the stability at lower ZE/ZR molar ratios. The phase diagrams created can be used as guidelines to incorporate new functional proteins into vesicles. Furthermore, this work reports catalytically active enzyme vesicles, demonstrating the potential for the application of vesicles as biocatalysts or biosensors.
Collapse
Affiliation(s)
- Dylan R Dautel
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
36
|
Peddi S, MacKay JA. Berunda Polypeptides Carrying Rapalogues Inhibit Tumor mTORC1 Better than Oral Everolimus. Biomacromolecules 2020; 21:3038-3046. [PMID: 32484665 PMCID: PMC8386583 DOI: 10.1021/acs.biomac.0c00375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rapalogues are a unique class of drugs with both cytostatic and immunosuppressive properties. Two founding members, rapamycin (Rapa) and its chemical derivative everolimus (Eve), are extremely potent, but their clinical use presents multiple challenges. Being water-insoluble, administration is restricted to the oral route, which results in a low bioavailability of <10%. Human studies of rapalogues are reported to yield a high blood to plasma ratio and poor correlation between blood concentration and dose. Moreover, treatment results in dose-limiting toxicities such as stomatitis and pneumonitis, which often leads to discontinuation of therapy. We previously reported an elastin-like polypeptide decorated with two-headed FKBP rapalogue-binding domains. Called "FAF", this biomacromolecular drug-carrier solubilizes, retargets, and releases rapalogues within disease sites. FAF-rapalogue formulations are free of cosolvents or surfactants, which promotes their parenteral administration. In this study, subcutaneously given FAF-Rapa significantly suppressed tumor growth in a mouse model of hormone receptor positive (HR+) breast cancer, compared to an oral formulation of Eve (Affinitor). Additionally, mTOR, the pharmacological target of rapalogues, was inhibited to a greater extent in tumors of FAF-Rapa and FAF-Eve groups compared to mice that received oral Eve. No signaling suppression was detected in the liver and spleen, which were evaluated to represent off-target organs exposed to the circulating formulation.
Collapse
Affiliation(s)
- Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy at the University of Southern California, Los Angeles, California 90089, United States
| | - John Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy at the University of Southern California, Los Angeles, California 90089, United States
- Department of Biomedical Engineering, Viterbi School of Engineering at the University of Southern California, Los Angeles, California 90089, United States
- Department of Ophthalmology, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, United States
| |
Collapse
|
37
|
Taylor PA, Huang H, Kiick KL, Jayaraman A. Placement of Tyrosine Residues as a Design Element for Tuning the Phase Transition of Elastin-peptide-containing Conjugates: Experiments and Simulations. MOLECULAR SYSTEMS DESIGN & ENGINEERING 2020; 5:1239-1254. [PMID: 33796336 PMCID: PMC8009313 DOI: 10.1039/d0me00051e] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Elastin-like polypeptides (ELP) have been widely used in the biomaterials community due to their controllable, thermoresponsive properties and biocompatibility. Motivated by our previous work on the effect of tryptophan (W) substitutions on the LCST-like transitions of short ELPs, we studied a series of short ELPs containing tyrosine (Y) and/or phenylalanine (F) guest residues with only 5 or 6 pentapeptide repeat units. A combination of experiments and molecular dynamics (MD) simulations illustrated that the substitution of F with Y guest residues impacted the transition temperature (Tt) of short ELPs when conjugated to collagen-like-peptides (CLP), with a reduction in the transition temperature observed only after substitution of at least two residues. Placement of the Y residues near the N-terminal end of the ELP, away from the tethering point to the CLP, resulted in a lower Tt than that observed for peptides with the Y residues near the tethering point. Atomistic and coarse-grained MD simulations indicated an increase in intra- and inter- peptide hydrogen bonds in systems containing Y guest residues that are suggested to enhance the ability of the peptides to coacervate, with a concomitantly lower Tt. Simulations also revealed that the placement of Y-containing pentads near the N-terminus (i.e., away from CLP tethering point) versus C-terminus of the ELP led to more π-π stacking interactions at low temperatures, in agreement with our experimental observations of a lower Tt. Overall, this study provides mechanistic insights into the driving forces for the LCST-like transitions of ELPs and offers additional means for tuning the Tt of short ELPs for biomedical applications such as on-demand drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Phillip A. Taylor
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| | - Haofu Huang
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 USA
| | - Kristi L. Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716 USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716 USA
| |
Collapse
|
38
|
Baul U, Bley M, Dzubiella J. Thermal Compaction of Disordered and Elastin-like Polypeptides: A Temperature-Dependent, Sequence-Specific Coarse-Grained Simulation Model. Biomacromolecules 2020; 21:3523-3538. [DOI: 10.1021/acs.biomac.0c00546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Upayan Baul
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| | - Michael Bley
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
| | - Joachim Dzubiella
- Applied Theoretical Physics—Computational Physics, Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder Strasse 3, D-79104 Freiburg, Germany
- Cluster of Excellence livMatS@FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, Albert-Ludwigs-Universität Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| |
Collapse
|
39
|
Park S, Barnes R, Lin Y, Jeon BJ, Najafi S, Delaney KT, Fredrickson GH, Shea JE, Hwang DS, Han S. Dehydration entropy drives liquid-liquid phase separation by molecular crowding. Commun Chem 2020; 3:83. [PMID: 36703474 PMCID: PMC9814391 DOI: 10.1038/s42004-020-0328-8] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/15/2020] [Indexed: 01/29/2023] Open
Abstract
Complex coacervation driven liquid-liquid phase separation (LLPS) of biopolymers has been attracting attention as a novel phase in living cells. Studies of LLPS in this context are typically of proteins harboring chemical and structural complexity, leaving unclear which properties are fundamental to complex coacervation versus protein-specific. This study focuses on the role of polyethylene glycol (PEG)-a widely used molecular crowder-in LLPS. Significantly, entropy-driven LLPS is recapitulated with charged polymers lacking hydrophobicity and sequence complexity, and its propensity dramatically enhanced by PEG. Experimental and field-theoretic simulation results are consistent with PEG driving LLPS by dehydration of polymers, and show that PEG exerts its effect without partitioning into the dense coacervate phase. It is then up to biology to impose additional variations of functional significance to the LLPS of biological systems.
Collapse
Affiliation(s)
- Sohee Park
- grid.49100.3c0000 0001 0742 4007Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673 Republic of Korea
| | - Ryan Barnes
- grid.133342.40000 0004 1936 9676Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA
| | - Yanxian Lin
- grid.133342.40000 0004 1936 9676Department of Biomolecular Science and Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Byoung-jin Jeon
- grid.133342.40000 0004 1936 9676Materials Department, University of California, Santa Barbara, CA 93106 USA
| | - Saeed Najafi
- grid.133342.40000 0004 1936 9676Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Materials Research Laboratory, University of California, Santa Barbara, CA 93106 USA
| | - Kris T. Delaney
- grid.133342.40000 0004 1936 9676Materials Research Laboratory, University of California, Santa Barbara, CA 93106 USA
| | - Glenn H. Fredrickson
- grid.133342.40000 0004 1936 9676Materials Department, University of California, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Materials Research Laboratory, University of California, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA
| | - Joan-Emma Shea
- grid.133342.40000 0004 1936 9676Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Department of Physics, University of California, Santa Barbara, CA 93106 USA
| | - Dong Soo Hwang
- grid.49100.3c0000 0001 0742 4007Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673 Republic of Korea ,grid.49100.3c0000 0001 0742 4007Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673 Republic of Korea
| | - Songi Han
- grid.133342.40000 0004 1936 9676Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106 USA ,grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA 93106 USA
| |
Collapse
|
40
|
Choi H, Han SJ, Won JI. Thermal characteristics and cadmium binding behavior of EC-ELP fusion polypeptides. Enzyme Microb Technol 2020; 140:109628. [PMID: 32912688 DOI: 10.1016/j.enzmictec.2020.109628] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 01/07/2023]
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive protein-based biopolymers that exhibit phase transition behavior. By joining them to synthetic phytochelatin (EC), EC-ELP fusion proteins with temperature sensitivity and metal-binding functionality were generated to remove heavy metal ions biologically. Three different EC domains (EC10, EC20, EC30) were incorporated into the ELP, and the EC-ELP fusion proteins were expressed in E. coli. Their thermal properties and metal binding abilities were then investigated according to the EC length. In addition, the feasibility of reusing EC-ELPs and the cadmium ion binding affinity of reused EC-ELPs were explored.
Collapse
Affiliation(s)
- Heelak Choi
- Department of Chemical Engineering, Hongik University, Seoul, South Korea
| | - Sung-Jin Han
- Department of Chemical Engineering, Hongik University, Seoul, South Korea
| | - Jong-In Won
- Department of Chemical Engineering, Hongik University, Seoul, South Korea.
| |
Collapse
|
41
|
Li Y, Lin Y, Xin G, Zhou X, Lu H, Zhang X, Xia X, Sun H. Comparative evaluation of ELPylated virus-like particle vaccine with two commercial PCV2 vaccines by experimental challenge. Vaccine 2020; 38:3952-3959. [PMID: 32284270 DOI: 10.1016/j.vaccine.2020.03.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 01/31/2023]
Abstract
Porcine circovirus type 2 (PCV2) is an economically important swine pathogen and vaccination is the primary tool for the disease control. Previously, we developed a more cost-effective PCV2 virus-like particle (VLP) vaccine by using ELPylation technology. In the present study, we compared the ELPylated VLP (ELP-VLP) PCV2 vaccine efficacy with commercial inactivated Yuanlijia vaccine and VLP-based Circoflex vaccine by experimental challenge. After one dose of vaccination with the three different vaccines, ELP-VLP vaccine group showed significantly (p < 0.05) stronger virus neutralizing antibody and interferon-γ responses than the two commercial vaccine groups. All vaccinated pigs showed significant (p < 0.05) improvement in average daily weight gain (ADWG) before challenge. After challenge with PCV2, however, only ELP-VLP-vaccinated pigs showed significant (p < 0.05) improvement in ADWG. All vaccinated pigs showed significant (p < 0.05) reductions in PCV2 loads in the blood, nasal secretion and lymph nodes, ELP-VLP-vaccinated pigs in particular. In addition, vaccination with ELP-VLP vaccine provided stronger protection against pulmonary and lymphoid pathologies than that with the two commercial vaccines. Therefore, ELP-VLP vaccine is more effective to control PCV2 infection than the two commercial vaccines based on clinical, immunological, virological and pathological evaluations.
Collapse
Affiliation(s)
- Yangyang Li
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Yan Lin
- TECH-BANK Biological Products Co., Ltd, Chengdu 610100, China
| | - Gang Xin
- TECH-BANK Biological Products Co., Ltd, Chengdu 610100, China
| | - Xiaohui Zhou
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Huipeng Lu
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xinyu Zhang
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiaoli Xia
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Huaichang Sun
- College of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory for High-Tech Research and Development of Veterinary Biopharmaceuticals, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China.
| |
Collapse
|
42
|
Camp CP, Peterson IL, Knoff DS, Melcher LG, Maxwell CJ, Cohen AT, Wertheimer AM, Kim M. Non-cytotoxic Dityrosine Photocrosslinked Polymeric Materials With Targeted Elastic Moduli. Front Chem 2020; 8:173. [PMID: 32232027 PMCID: PMC7082925 DOI: 10.3389/fchem.2020.00173] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/26/2020] [Indexed: 12/18/2022] Open
Abstract
Controlling mechanical properties of polymeric biomaterials, including the elastic modulus, is critical to direct cell behavior, such as proliferation and differentiation. Dityrosine photocrosslinking is an attractive and simple method to prepare materials that exhibit a wide range of elastic moduli by rapidly crosslinking tyrosyl-containing polymers. However, high concentrations of commonly used oxidative crosslinking reagents, such as ruthenium-based photoinitiators and persulfates, present cytotoxicity concerns. We found the elastic moduli of materials prepared by crosslinking an artificial protein with tightly controlled tyrosine molarity can be modulated up to 40 kPa by adjusting photoinitiator and persulfate concentrations. Formulations with various concentrations of the crosslinking reagents were able to target a similar material elastic modulus, but excess unreacted persulfate resulted in cytotoxic materials. Therefore, we identified a systematic method to prepare non-cytotoxic photocrosslinked polymeric materials with targeted elastic moduli for potential biomaterials applications in diverse fields, including tissue engineering and 3D bioprinting.
Collapse
Affiliation(s)
- Christopher P. Camp
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Ingrid L. Peterson
- Applied Biosciences GIDP, University of Arizona, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - David S. Knoff
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | | | - Connor J. Maxwell
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Audrey T. Cohen
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Anne M. Wertheimer
- Applied Biosciences GIDP, University of Arizona, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
| | - Minkyu Kim
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
- BIO5 Institute, University of Arizona, Tucson, AZ, United States
- Department of Materials Science & Engineering, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
43
|
Peddi S, Roberts SK, MacKay JA. Nanotoxicology of an Elastin-like Polypeptide Rapamycin Formulation for Breast Cancer. Biomacromolecules 2020; 21:1091-1102. [PMID: 31927993 PMCID: PMC7219203 DOI: 10.1021/acs.biomac.9b01431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The clinical utility of rapamycin (Rapa) is limited by solubility, bioavailability, and side effects. To overcome this, our team recently reported an elastin-like polypeptide (ELP) nanoparticle with high affinity, noncovalent drug binding, and integrin-mediated cellular uptake. Given the scarcity of pharmacology/toxicology studies of ELP-based drug carriers, this article explores safety and efficacy of ELP-Rapa. ELP-Rapa nanoparticles tested negative for hemolysis, did not interfere in plasma coagulation nor in platelet function, and did not activate the complement. Upon incubation with HepG2 cells, ELP-Rapa revealed significant cellular uptake and trafficking to acidic organelles, consistent with lysosomes. Internalized ELP-Rapa nanoparticles increased oxidative stress 4-fold compared to free drug or free ELP controls. However, mice bearing orthotopic hormone receptor positive BT-474 breast tumors, given a high dose (∼10-fold above therapeutic dose) of 1 month administration of ELP-Rapa, did not induce hepatotoxicity. On the other hand, tumor growth and mTOR signaling were suppressed without affecting body weight. Nanoparticles assembled using ELP technology appear to be a safe and efficient strategy for delivering Rapa.
Collapse
Affiliation(s)
- Santosh Peddi
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy at the University of Southern California, Los Angeles, California 90033-9121, United States
| | - S Kenny Roberts
- Eunoia Biotech LLC, Wynnewood, Pennsylvania 19096, United States
| | - John Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy at the University of Southern California, Los Angeles, California 90033-9121, United States
- Department of Biomedical Engineering, Viterbi School of Engineering at the University of Southern California, Los Angeles, California 90089, United States
- Department of Ophthalmology, Keck School of Medicine at the University of Southern California, Los Angeles, California 90089-9020, United States
| |
Collapse
|
44
|
Utilizing a Kidney-Targeting Peptide to Improve Renal Deposition of a Pro-Angiogenic Protein Biopolymer. Pharmaceutics 2019; 11:pharmaceutics11100542. [PMID: 31635263 PMCID: PMC6835230 DOI: 10.3390/pharmaceutics11100542] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/12/2019] [Accepted: 10/15/2019] [Indexed: 01/06/2023] Open
Abstract
Elastin-like polypeptides (ELP) are versatile protein biopolymers used in drug delivery due to their modular nature, allowing fusion of therapeutics and targeting agents. We previously developed an ELP fusion with vascular endothelial growth factor (VEGF) and demonstrated its therapeutic efficacy in translational swine models of renovascular disease and chronic kidney disease. The goal of the current work was to refine renal targeting and reduce off-target tissue deposition of ELP–VEGF. The ELP–VEGF fusion protein was modified by adding a kidney-targeting peptide (KTP) to the N-terminus. All control proteins (ELP, KTP–ELP, ELP–VEGF, and KTP–ELP–VEGF) were also produced to thoroughly assess the effects of each domain on in vitro cell binding and activity and in vivo pharmacokinetics and biodistribution. KTP–ELP–VEGF was equipotent to ELP–VEGF and free VEGF in vitro in the stimulation of primary glomerular microvascular endothelial cell proliferation, tube formation, and extracellular matrix invasion. The contribution of each region of the KTP–ELP–VEGF protein to the cell binding specificity was assayed in primary human renal endothelial cells, tubular epithelial cells, and podocytes, demonstrating that the VEGF domain induced binding to endothelial cells and the KTP domain increased binding to all renal cell types. The pharmacokinetics and biodistribution of KTP–ELP–VEGF and all control proteins were determined in SKH-1 Elite hairless mice. The addition of KTP to ELP slowed its in vivo clearance and increased its renal deposition. Furthermore, addition of KTP redirected ELP–VEGF, which was found at high levels in the liver, to the kidney. Intrarenal histology showed similar distribution of all proteins, with high levels in blood vessels and tubules. The VEGF-containing proteins also accumulated in punctate foci in the glomeruli. These studies provide a thorough characterization of the effects of a kidney-targeting peptide and an active cytokine on the biodistribution of these novel biologics. Furthermore, they demonstrate that renal specificity of a proven therapeutic can be improved using a targeting peptide.
Collapse
|
45
|
Lee S, Kim JE, Seo HJ, Jang JH. Design of fibronectin type III domains fused to an elastin-like polypeptide for the osteogenic differentiation of human mesenchymal stem cells. Acta Biochim Biophys Sin (Shanghai) 2019; 51:856-863. [PMID: 31267123 DOI: 10.1093/abbs/gmz063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular matrix (ECM) including fibronectin (FN) and elastin plays a pivotal role in providing a microenvironment to support tissue regeneration in stem cell therapy. To develop a novel biomimetic ECM for stem cell differentiation, we engineered FN type III 9 and 10 domains fused to elastin-like polypeptides (FN-ELPs). The recombinant FN-ELP fusion protein was expressed in Escherichia coli and purified by inverse transition cycling. Human mesenchymal stem cells (hMSCs) cultured on plates coated with FN-ELP had significantly greater adhesion activity and proliferation than cells grown on non-coated plates. FN-ELP induced the osteogenic differentiation by elevating alkaline phosphatase (ALP) and mineralization activity of hMSCs. Furthermore, the osteogenic marker gene expressions of ALP, collagen type I (Col I), osteopontin (OPN), and transcriptional coactivator with a PDZ-binding motif (TAZ) were increased in hMSCs cultured on plates coated with FN-ELP. We reported a novel biomimetic ECM with potential for bone regeneration that promotes the osteogenic differentiation of hMSCs.
Collapse
Affiliation(s)
- Sujin Lee
- Department of Biochemistry & IRIMS, Inha University School of Medicine, Incheon 22212, Korea
| | - Ji-Eun Kim
- Department of Biochemistry & IRIMS, Inha University School of Medicine, Incheon 22212, Korea
| | - Hye-Jin Seo
- Department of Biochemistry & IRIMS, Inha University School of Medicine, Incheon 22212, Korea
| | - Jun-Hyeog Jang
- Department of Biochemistry & IRIMS, Inha University School of Medicine, Incheon 22212, Korea
| |
Collapse
|
46
|
Ge Z, Xiong Z, Zhang D, Li X, Zhang G. Unique Phase Transition of Exogenous Fusion Elastin-like Polypeptides in the Solution Containing Polyethylene Glycol. Int J Mol Sci 2019; 20:E3560. [PMID: 31330842 PMCID: PMC6678693 DOI: 10.3390/ijms20143560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 11/16/2022] Open
Abstract
Elastin-Like polypeptides (ELPs), as well-known temperature-controlled bio-macromolecules, are widely used. However, little is known about the interactions between ELPs and macromolecules, which is an important yet neglected problem. Here, the phase transition characteristics of an ELPs-SpyCatcher fusion protein (E-C) in the presence of polyethylene glycol (PEG) in single salts (Na2CO3, Na2SO4, NaCl) solutions were investigated using a UV spectrophotometer, DLC, and fluorescence spectroscopy, and we got some interesting results. The phases transition of E-C occurred at a concentration lower than 0.5 mol/L Na2CO3/PEG2000, while in single Na2CO3 (<0.5 mol/L), the phase transition of E-C did not occur. In the Na2CO3/PEG solution, we observed a unique two-step phase transition of E-C when the Na2CO3 concentration was 0.5 mol/L and PEG2000 concentration was less than 0.15 g/mL, respectively. In the Na2CO3/PEG2000 solution, the phase-transition temperature of E-C decreased with the increase of PEG concentration, but increased in the Na2SO4/PEG2000 solution, while it remained unchanged in the NaCl/PEG2000 solution. However, the phase-transition temperature of the linear ELPs40 decreased under the same salts/PEG2000 solutions. We also addressed the possible molecular mechanism of the interesting results. In contrast to the current well-understood salts-ELPs interactions, this work provides some new insights into the interaction between the PEG-salts-ELPs in solution.
Collapse
Affiliation(s)
- Zhongqi Ge
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian 361021, China
| | - Ziyang Xiong
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian 361021, China
| | - Dandan Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian 361021, China
| | - Xialan Li
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian 361021, China.
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, Fujian 361021, China.
| |
Collapse
|
47
|
Paiva dos Santos B, Garbay B, Pasqua M, Chevron E, Chinoy ZS, Cullin C, Bathany K, Lecommandoux S, Amédée J, Oliveira H, Garanger E. Production, purification and characterization of an elastin-like polypeptide containing the Ile-Lys-Val-Ala-Val (IKVAV) peptide for tissue engineering applications. J Biotechnol 2019; 298:35-44. [DOI: 10.1016/j.jbiotec.2019.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 01/13/2023]
|
48
|
Tarakanova A, Ozsvar J, Weiss A, Buehler M. Coarse-grained model of tropoelastin self-assembly into nascent fibrils. Mater Today Bio 2019; 3:100016. [PMID: 32159149 PMCID: PMC7061556 DOI: 10.1016/j.mtbio.2019.100016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/30/2022] Open
Abstract
Elastin is the dominant building block of elastic fibers that impart structural integrity and elasticity to a range of important tissues, including the lungs, blood vessels, and skin. The elastic fiber assembly process begins with a coacervation stage where tropoelastin monomers reversibly self-assemble into coacervate aggregates that consist of multiple molecules. In this paper, an atomistically based coarse-grained model of tropoelastin assembly is developed. Using the previously determined atomistic structure of tropoelastin, the precursor molecule to elastic fibers, as the basis for coarse-graining, the atomistic model is mapped to a MARTINI-based coarse-grained framework to account for chemical details of protein-protein interactions, coupled to an elastic network model to stabilize the structure. We find that self-assembly of monomers generates up to ∼70 nm of dense aggregates that are distinct at different temperatures, displaying high temperature sensitivity. Resulting assembled structures exhibit a combination of fibrillar and globular substructures within the bulk aggregates. The results suggest that the coalescence of tropoelastin assemblies into higher order structures may be reinforced in the initial stages of coacervation by directed assembly, supporting the experimentally observed presence of heterogeneous cross-linking. Self-assembly of tropoelastin is driven by interactions of specific hydrophobic domains and the reordering of water molecules in the system. Domain pair orientation analysis throughout the self-assembly process at different temperatures suggests coacervation is a driving force to orient domains for heterogeneous downstream cross-linking. The model provides a framework to characterize macromolecular self-assembly for elastin, and the formulation could easily be adapted to similar assembly systems.
Collapse
Affiliation(s)
- A. Tarakanova
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Mechanical Engineering and Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - J. Ozsvar
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
| | - A.S. Weiss
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, Australia
- Bosch Institute, The University of Sydney, Sydney, NSW, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW, Australia
| | - M.J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
49
|
Meco E, Lampe KJ. Impact of Elastin-like Protein Temperature Transition on PEG-ELP Hybrid Hydrogel Properties. Biomacromolecules 2019; 20:1914-1925. [DOI: 10.1021/acs.biomac.9b00113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Edi Meco
- Department of Chemical Engineering, Chemical Eng., Office 117, University of Virginia, 102 Engineer’s Way, Charlottesville, Virginia 22904, United States
| | - Kyle J. Lampe
- Department of Chemical Engineering, Chemical Eng., Office 117, University of Virginia, 102 Engineer’s Way, Charlottesville, Virginia 22904, United States
| |
Collapse
|
50
|
Prhashanna A, Taylor PA, Qin J, Kiick KL, Jayaraman A. Effect of Peptide Sequence on the LCST-Like Transition of Elastin-Like Peptides and Elastin-Like Peptide-Collagen-Like Peptide Conjugates: Simulations and Experiments. Biomacromolecules 2019; 20:1178-1189. [PMID: 30715857 DOI: 10.1021/acs.biomac.8b01503] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Elastin-like polypeptides (ELPs) are thermoresponsive biopolymers that undergo an LCST-like phase transition in aqueous solutions. The temperature of this LCST-like transition, Tt , can be tuned by varying the number of repeat units in the ELP, sequence and composition of the repeat units, the solution conditions, and via conjugation to other biomacromolecules. In this study, we show how and why the choice of guest (X) residue in the VPGXG pentad repeat tunes the Tt of short ELPs, (VPGXG)4, in the free state and when conjugated to collagen-like peptides (CLPs). In experiments, the (VPGWG)4 chain (in short, WWWW) has a Tt < 278 K, while (VPGFG)4 or FFFF has a Tt > 353 K in both free ELP and ELP-CLP systems. The Tt for the FWWF ELP sequence decreases from being >353 K for free ELP to <278 K for the corresponding ELP-CLP system. The decrease in Tt upon conjugation to CLP has been shown to be due to the crowding of ELP chains that decreases the entropic loss upon ELP aggregation. Even though the net hydrophobicity of ELP has been reasoned to drive the Tt , the origins of lower Tt of WWWW compared to FFFF are unclear, as there is disagreement in hydrophobicity scales in how phenylalanine (F) compares to tryptophan (W). Motivated by these experimental observations, we use a combination of atomistic and coarse-grained (CG) molecular dynamics simulations. Atomistic simulations of free and tethered ELPs show that WWWW are more prone to acquire β-turn structures than FFFF at lower temperatures. Also, the atomistically informed CG simulations show that the increased local stiffness in W than F due to the bulkier side chain in W compared to F, alone does not cause the shift in the transition of WWWW versus FFFF. The experimentally observed lower Tt of WWWW than FFFF is achieved in CG simulations only when the CG model incorporates both the atomistically informed local stiffness and stronger effective attractions localized at the W position versus the F position. The effective interactions localized at the guest residue in the CG model is guided by our atomistically observed increased propensity for β-turn structure in WWWW versus FFFF and by past experimental work of Urry et al. quantifying hydrophobic differences through enthalpy of association for W versus F.
Collapse
|