1
|
Santos A, Macedo de Souza Brandão AP, Hryniewicz BM, Abreu H, Bach-Toledo L, Schuster da Silva S, Deller AE, Rogerio VZ, Baêta Rodrigues DS, Hiraiwa PM, Guimarães BG, Marchesi LF, Carvalho de Oliveira J, Gradia DF, Soares FLF, Zanchin NIT, Camargo de Oliveira C, Vidotti M. COVID-19 impedimetric biosensor based on polypyrrole nanotubes, nickel hydroxide and VHH antibody fragment: specific, sensitive, and rapid viral detection in saliva samples. MATERIALS TODAY. CHEMISTRY 2023; 30:101597. [PMID: 37284350 PMCID: PMC10236006 DOI: 10.1016/j.mtchem.2023.101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/30/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
SARS-CoV-2 rapid spread required urgent, accurate, and prompt diagnosis to control the virus dissemination and pandemic management. Several sensors were developed using different biorecognition elements to obtain high specificity and sensitivity. However, the task to achieve these parameters in combination with fast detection, simplicity, and portability to identify the biorecognition element even in low concentration remains a challenge. Therefore, we developed an electrochemical biosensor based on polypyrrole nanotubes coupled via Ni(OH)2 ligation to an engineered antigen-binding fragment of heavy chain-only antibodies (VHH) termed Sb#15. Herein we report Sb#15-His6 expression, purification, and characterization of its interaction with the receptor-binding domain (RBD) of SARS-CoV-2 in addition to the construction and validation of a biosensor. The recombinant Sb#15 is correctly folded and interacts with the RBD with a dissociation constant (KD) of 27.1 ± 6.4 nmol/L. The biosensing platform was developed using polypyrrole nanotubes and Ni(OH)2, which can properly orientate the immobilization of Sb#15-His6 at the electrode surface through His-tag interaction for the sensitive SARS-CoV-2 antigen detection. The quantification limit was determined as 0.01 pg/mL using recombinant RBD, which was expressively lower than commercial monoclonal antibodies. In pre-characterized saliva, both Omicron and Delta SARS-CoV-2 were accurately detected only in positive samples, meeting all the requirements recommended by the World Health Organization for in vitro diagnostics. A low sample volume of saliva is needed to perform the detection, providing results within 15 min without further sample preparations. In summary, a new perspective allying recombinant VHHs with biosensor development and real sample detection was explored, addressing the need for accurate, rapid, and sensitive biosensors.
Collapse
Affiliation(s)
- A Santos
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - A P Macedo de Souza Brandão
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - B M Hryniewicz
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - H Abreu
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, Brazil
| | - L Bach-Toledo
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
- Centro de Tecnologia da Informação Renato Archer (CTI), Rod. D. Pedro I, KM143.6, 13069-901, Campinas, SP, Brazil
| | - S Schuster da Silva
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - A E Deller
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - V Z Rogerio
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - D S Baêta Rodrigues
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - P M Hiraiwa
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - B G Guimarães
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - L F Marchesi
- Grupo de Estudos em Espectroscopia de Impedância Eletroquímica (GEIS), Universidade Tecnológica Federal Do Paraná, Rua Dr. Washington Subtil Chueire, 330 - Jd. Carvalho, CEP 84017-220, Ponta Grossa, PR, Brazil
| | - J Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, Brazil
| | - D F Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Postgraduate Program in Genetics, Department of Genetics, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, Brazil
| | - F L F Soares
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - N I T Zanchin
- Laboratory of Structural Biology and Protein Engineering, Carlos Chagas Institute, FIOCRUZ Paraná, 81350-010, Curitiba, PR, Brazil
| | - C Camargo de Oliveira
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - M Vidotti
- Grupo de Pesquisa em Macromoléculas e Interfaces, Universidade Federal do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
2
|
Hryniewicz BM, Volpe J, Bach-Toledo L, Kurpel KC, Deller AE, Soares AL, Nardin JM, Marchesi LF, Simas FF, Oliveira CC, Huergo L, Souto DEP, Vidotti M. Development of polypyrrole (nano)structures decorated with gold nanoparticles toward immunosensing for COVID-19 serological diagnosis. MATERIALS TODAY. CHEMISTRY 2022; 24:100817. [PMID: 35155879 PMCID: PMC8818392 DOI: 10.1016/j.mtchem.2022.100817] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 01/10/2022] [Accepted: 01/27/2022] [Indexed: 05/20/2023]
Abstract
The rapid and reliable detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroconversion in humans is crucial for suitable infection control. In this sense, many studies have focused on increasing the sensibility, lowering the detection limits and minimizing false negative/positive results. Thus, biosensors based on nanoarchitectures of conducting polymers are promising alternatives to more traditional materials since they can hold improved surface area, higher electrical conductivity and electrochemical activity. In this work, we reported the analytical comparison of two different conducting polymers morphologies for the development of an impedimetric biosensor to monitor SARS-CoV-2 seroconversion in humans. Biosensors based on polypyrrole (PPy), synthesized in both globular and nanotubular (NT) morphology, and gold nanoparticles are reported, using a self-assembly monolayer of 3-mercaptopropionic acid and covalently linked SARS-CoV-2 Nucleocapsid protein. First, the novel hybrid materials were characterized by electron microscopy and electrochemical measurements, and the biosensor step-by-step construction was characterized by electrochemical and spectroscopic techniques. As a proof of concept, the biosensor was used for the impedimetric detection of anti-SARS-CoV-2 Nucleocapsid protein monoclonal antibodies. The results showed a linear response for different antibody concentrations, good sensibility and possibility to quantify 7.442 and 0.4 ng/mL of monoclonal antibody for PPy in the globular and NT morphology, respectively. The PPy-NTs biosensor was able to discriminate serum obtained from COVID-19 positive versus negative clinical samples and is a promising tool for COVID-19 immunodiagnostic, which can contribute to further studies concerning rapid, efficient, and reliable detections.
Collapse
Affiliation(s)
- B M Hryniewicz
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - J Volpe
- Laboratório de Espectrometria, Sensores e Biossensores, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - L Bach-Toledo
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - K C Kurpel
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - A E Deller
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - A L Soares
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - J M Nardin
- Hospital Erasto Gaertner, 81520-290, Curitiba, PR, Brazil
| | - L F Marchesi
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
- Universidade Tecnológica Federal Do Paraná, Av. Monteiro Lobato S/n Km 04, CEP, 84016-210, Ponta Grossa, PR, Brazil
| | - F F Simas
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - C C Oliveira
- Laboratory of Inflammatory and Neoplastic Cells, Cell Biology Department, Section of Biological Sciences - Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - L Huergo
- Setor Litoral, Universidade Federal Do Paraná (UFPR), 83260-000, Matinhos, PR, Brazil
| | - D E P Souto
- Laboratório de Espectrometria, Sensores e Biossensores, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| | - M Vidotti
- Grupo de Pesquisa Em Macromoléculas e Interfaces, Departamento de Química, Universidade Federal Do Paraná (UFPR), 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
3
|
Yang X, Maleki A, Lipey NA, Zheng X, Santiago M, Connor M, Sreenivasan VKA, Dawes JM, Lu Y, Zvyagin AV. Lifetime-Engineered Ruby Nanoparticles (Tau-Rubies) for Multiplexed Imaging of μ-Opioid Receptors. ACS Sens 2021; 6:1375-1383. [PMID: 33660984 DOI: 10.1021/acssensors.1c00008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
To address the growing demand for simultaneous imaging of multiple biomarkers in highly scattering media such as organotypic cell cultures, we introduce a new type of photoluminescent nanomaterial termed "tau-ruby" composed of ruby nanocrystals (Al2O3:Cr3+) with tunable emission lifetime. The lifetime tuning range from 2.4 to 3.2 ms was achieved by varying the Cr3+ dopant concentration from 0.8% to 0.2%, affording facile implementation of background-free detection. We developed inexpensive scalable production of tau-ruby characterized by bright emission, narrow spectrum (693 ± 2 nm), and virtually unlimited photostability upon excitation with affordable excitation/detection sources, noncytotoxic and insensitive to microenvironmental fluctuations. By functionalizing the surface of tau-rubies with targeting antibodies, we obtained different biomarkers suitable for multiplexed lifetime imaging. As a proof of principle, three tau-ruby bioprobes, characterized by three mean lifetimes, were deployed to label three μ-opioid receptor species expressed on transfected cancer cells, each fused to a unique epitope, so that three types of cells were lifetime-encoded. Robust decoding of photoluminescent signals that report on each cell type was achieved by using a home-built lifetime imaging system and resulted in high-contrast multiplexed lifetime imaging of the cells.
Collapse
Affiliation(s)
- Xiaohong Yang
- Key Laboratory for Ecological Metallurgy of Multimetallic Minerals, Ministry of Education, School of Metallurgy, Northeastern University, Shenyang, 110819, China
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| | - Alireza Maleki
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| | - Nikolay A. Lipey
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University, Moscow, 115409, Russia
| | - Xianlin Zheng
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
| | - Marina Santiago
- Faculty of Medicine, Macquarie University, Sydney, 2109, Australia
| | - Mark Connor
- Faculty of Medicine, Macquarie University, Sydney, 2109, Australia
| | - Varun K. A. Sreenivasan
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, New South Wales 2052, Australia
- Institute of Human Genetics, University of Lübeck, 23568 Lübeck, Germany
| | - Judith M. Dawes
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
| | - Yiqing Lu
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
| | - Andrei V. Zvyagin
- MQ Photonics, Faculty of Science and Engineering, Macquarie University, Sydney, 2109, Australia
- Center of Biomedical Engineering, Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
4
|
Błauż A, Rychlik B, Plazuk D, Peccati F, Jiménez-Osés G, Steinke U, Sierant M, Trzeciak K, Skorupska E, Miksa B. Biotin-phenosafranin as a new photosensitive conjugate for targeted therapy and imaging. NEW J CHEM 2021. [DOI: 10.1039/d0nj06170k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A biotinylated phenazine compound as a phenosafranin conjugate (Biot-PSF) was synthesized and reported for the first time.
Collapse
Affiliation(s)
- Andrzej Błauż
- Cytometry Laboratory
- Department of Molecular Biophysics
- Faculty of Biology & Environmental Protection
- University of Lodz
- 90-236 Lodz
| | - Błażej Rychlik
- Cytometry Laboratory
- Department of Molecular Biophysics
- Faculty of Biology & Environmental Protection
- University of Lodz
- 90-236 Lodz
| | - Damian Plazuk
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Lodz
- 91-403 Lodz
- Poland
| | - Francesca Peccati
- CIC bioGUNE
- Center for Cooperative Research in Bioscience
- Bizkaia Science and Technology Park
- Computational Chemistry Lab
- 48160 Derio-Bizkaia
| | - Gonzalo Jiménez-Osés
- CIC bioGUNE
- Center for Cooperative Research in Bioscience
- Bizkaia Science and Technology Park
- Computational Chemistry Lab
- 48160 Derio-Bizkaia
| | - Urszula Steinke
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- 90-363 Lodz
- Poland
| | - Malgorzata Sierant
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- 90-363 Lodz
- Poland
| | - Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- 90-363 Lodz
- Poland
| | - Ewa Skorupska
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- 90-363 Lodz
- Poland
| | - Beata Miksa
- Centre of Molecular and Macromolecular Studies Polish Academy of Science
- 90-363 Lodz
- Poland
| |
Collapse
|
5
|
Fernandes CSM, Pina AS, Roque ACA. Affinity-triggered hydrogels: Developments and prospects in biomaterials science. Biomaterials 2020; 268:120563. [PMID: 33276200 DOI: 10.1016/j.biomaterials.2020.120563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Affiliation(s)
- Cláudia S M Fernandes
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516, Caparica, Portugal
| | - Ana Sofia Pina
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516, Caparica, Portugal
| | - Ana Cecília A Roque
- UCIBIO, Chemistry Department, School of Science and Technology, NOVA University of Lisbon, Campus Caparica, 2829-516, Caparica, Portugal.
| |
Collapse
|
6
|
Fernandes CSM, Rodrigues AL, Alves VD, Fernandes TG, Pina AS, Roque ACA. Natural Multimerization Rules the Performance of Affinity-Based Physical Hydrogels for Stem Cell Encapsulation and Differentiation. Biomacromolecules 2020; 21:3081-3091. [DOI: 10.1021/acs.biomac.0c00473] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Cláudia S. M. Fernandes
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - André L. Rodrigues
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 049-001 Lisboa, Portugal
| | - Vitor D. Alves
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 049-001 Lisboa, Portugal
| | - Ana Sofia Pina
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| | - Ana Cecília A. Roque
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal
| |
Collapse
|
7
|
Bhunia D, Chowdhury R, Bhattacharyya K, Ghosh S. Fluorescence fluctuation of an antigen-antibody complex: circular dichroism, FCS and smFRET of enhanced GFP and its antibody. Phys Chem Chem Phys 2016; 17:25250-9. [PMID: 26353083 DOI: 10.1039/c5cp04908c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The structure and dynamics of an antigen-antibody complex are monitored by circular dichroism (CD) spectroscopy, fluorescence correlation spectroscopy (FCS) and single molecule FRET (smFRET). In this work, the antigen is enhanced GFP (EGFP) and the antibody is anti-EGFP VHH-His6. From FCS measurements, the hydrodynamic radius (rH) of EGFP and its antibody (VHH-His6) is found to be 24 ± 2 Å and 18 ± 2 Å, respectively. For the antigen-antibody complex (EGFP:anti-EGFP VHH-His6), rH is 41 ± 3 Å. CD spectra indicate that the addition of guanidium hydrochloride (GdnHCl) causes unfolding of the antigen, its antibody and their complex, and a consequent increase in size is observed from FCS data. smFRET between EGFP (donor, D) and Alexa 594 (acceptor, A) bound to anti-EGFP VHH-His6 reveals a time dependent fluctuation in donor-acceptor distances. This suggests that the structure of the antigen-antibody complex is dynamic in nature and is not rigid.
Collapse
Affiliation(s)
- Debmalya Bhunia
- Organic & Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| | | | | | | |
Collapse
|
8
|
Galarreta BC, Norton PR, Lagugné-Labarthet F. SERS detection of streptavidin/biotin monolayer assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:1494-8. [PMID: 21244074 DOI: 10.1021/la1047497] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A two-dimensional array of gold nanotriangles inscribed onto glass coverslips were optimized for the surface-enhanced Raman detection of streptavidin/biotin monolayer assemblies. The nanostructures were fabricated by electron beam lithography, and its optical parameters were optimized to be probed under a Raman microscope with a linearly polarized He-Ne laser with an excitation wavelength of λ = 632.8 nm. The platforms were first tested against a monolayer of biotinylated alkanethiols (BAT) functionalized over the gold nanostructure, showing that good-quality spectra could be acquired with a short acquisition time. The supramolecular interaction of streptavidin (strep) with BAT showed subsequent modification of the Raman spectrum that implies a change in the secondary structure of the host biomolecule (streptavidin). Compared to gold surfaces without nanoscale structures, the local enhancement that results from our nanostructured surfaces allows one to detect the vibrational signal of monolayers within a time on the order of seconds and under modest laser intensity, further demonstrating the utility of using plasmonic metallic nanostructures for molecular recognition.
Collapse
Affiliation(s)
- Betty C Galarreta
- Department of Chemistry, University of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
9
|
Martini S, D’Addario C, Bonechi C, Leone G, Tognazzi A, Consumi M, Magnani A, Rossi C. Increasing photostability and water-solubility of carotenoids: Synthesis and characterization of β-carotene–humic acid complexes. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2010; 101:355-61. [DOI: 10.1016/j.jphotobiol.2010.08.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 08/04/2010] [Accepted: 08/17/2010] [Indexed: 11/29/2022]
|
10
|
Young AG, McQuillan AJ, Green DP. In situ IR spectroscopic studies of the avidin-biotin bioconjugation reaction on CdS particle films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:7416-7423. [PMID: 19354218 DOI: 10.1021/la900350s] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Avidin-biotin bioconjugation reactions have been carried out on CdS nanoparticle films in H2O and D2O and investigated using in situ ATR-IR spectroscopic techniques. The experimental procedure involved the sequential adsorption of mercaptoacetic acid, the protein avidin, and the subsequent binding of the ligand biotin. The IR spectra of the solution-phase species mercaptoacetic acid, avidin, and biotin, at pH=7.2 were generally found to be similar in both H2O and D2O, with some minor peak shifts due to solvation changes. The IR spectra of the adsorbed species suggested that avidin may have undergone a conformational change upon adsorption to the CdS surface. In general, adsorption-induced conformational changes for avidin are likely, but to our knowledge have not been previously reported. The conformation of adsorbed avidin appeared to change again upon the binding of biotin, with the spectral data suggesting partial reversion to its native solution conformation.
Collapse
Affiliation(s)
- Aidan G Young
- Department of Chemistry, University of Otago, Dunedin, New Zealand.
| | | | | |
Collapse
|
11
|
Fiddes LK, Chan HKC, Wyss K, Simmons CA, Kumacheva E, Wheeler AR. Augmenting microgel flow via receptor-ligand binding in the constrained geometries of microchannels. LAB ON A CHIP 2009; 9:286-290. [PMID: 19107286 DOI: 10.1039/b807106c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
We investigated the flow dynamics of biotin-conjugated microgel capsules in avidin-conjugated microchannel constrictions. Microgels were prepared using a microfluidic assembly approach. Biotinylated microgels passing through avidin-modified constrictions slowed relative to several control systems. This effect was observed below a critical velocity of the microgels in the channel-at-large. The reduction in microgel velocity in the constriction occurred for several different sizes of microgels and orifices. Soft compliant microgels showed a lower velocity in the constriction relative to rigid microgels with the same concentration of biotin on the surface, due to the ability of the softer microgels to deform in the orifice and maximize their surface area when in contact with the orifice wall.
Collapse
Affiliation(s)
- Lindsey K Fiddes
- Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada M5S 3H6
| | | | | | | | | | | |
Collapse
|
12
|
Schopfer LM, Champion MM, Tamblyn N, Thompson CM, Lockridge O. Characteristic mass spectral fragments of the organophosphorus agent FP-biotin and FP-biotinylated peptides from trypsin and bovine albumin (Tyr410). Anal Biochem 2005; 345:122-32. [PMID: 16125664 DOI: 10.1016/j.ab.2005.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Revised: 06/21/2005] [Accepted: 07/06/2005] [Indexed: 11/16/2022]
Abstract
A mass spectrometry-based method was developed for selective detection of FP-biotinylated peptides in complex mixtures. Mixtures of peptides, at the low-picomole level, were analyzed by liquid chromatography and positive ion, nanospray, triple quadrupole, linear ion trap mass spectrometry. Peptides were fragmented by collision-activated dissociation in the mass spectrometer. The free FP-biotin and peptides containing FP-biotinylated serine or FP-biotinylated tyrosine yielded characteristic fragment ions at 227, 312, and 329 m/z. FP-biotinylated serine yielded an additional characteristic fragment ion at 591 m/z. Chromatographic peaks containing FP-biotinylated peptides were indicated by these diagnostic ions. Data illustrating the selectivity of the approach are presented for tryptic digests of FP-biotinylated trypsin and FP-biotinylated serum albumin. A 16-residue peptide from bovine trypsin was biotinylated on the active site serine. A 3-residue peptide from bovine albumin, YTR, was biotinylated on Tyr410. This latter result confirms that the organophosphorus binding site of albumin is a tyrosine. This method can be used to search for new biomarkers of organophosphorus agent exposure.
Collapse
Affiliation(s)
- Lawrence M Schopfer
- University of Nebraska Medical Center, Eppley Institute, Omaha, NE 68198, USA.
| | | | | | | | | |
Collapse
|
13
|
Stepanyugin AV, Samijlenko SP, Martynenko OI, Hovorun DM. ATR-IR spectroscopy as applied to nucleic acid films. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2005; 61:2267-9. [PMID: 15911421 DOI: 10.1016/j.saa.2004.09.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 09/20/2004] [Accepted: 09/21/2004] [Indexed: 05/02/2023]
Abstract
For the first time the ATR technique was applied to obtain IR absorption spectra of DNA and RNA dry films. There was worked out procedure of the nucleic acid removal from germanium plate, which obviously was a main obstacle to application of ATR-IR spectroscopy to nucleic acids. This technique of IR spectroscopy was applied to confirmation of RNA tropism of aurin tricarboxylic acid observed by molecular biological methods.
Collapse
Affiliation(s)
- Andriy V Stepanyugin
- Institute of Molecular Biology and Genetics, Ukrainian National Academy of Sciences, 150 vul. Zabolotnoho, 03143 Kyiv, Ukraine
| | | | | | | |
Collapse
|
14
|
Clarkson J, Batchelder DN, Smith DA. UV resonance Raman study of streptavidin binding of biotin and 2-iminobiotin: comparison with avidin. Biopolymers 2002; 62:307-14. [PMID: 11857269 DOI: 10.1002/bip.10003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
UV resonance Raman (UVRR) spectroscopy is used to study the binding of biotin and 2-iminobiotin by streptavidin, and the results are compared to those previously obtained from the avidin-biotin complex and new data from the avidin-2-iminobiotin complex. UVRR difference spectroscopy using 244-nm excitation reveals changes to the tyrosine (Tyr) and tryptophan (Trp) residues of both proteins upon complex formation. Avidin has four Trp and only one Tyr residue, while streptavidin has eight Trp and six Tyr residues. The spectral changes observed in streptavidin upon the addition of biotin are similar to those observed for avidin. However, the intensity enhancements observed for the streptavidin Trp Raman bands are less than those observed with avidin. The changes observed in the streptavidin Tyr bands are similar to those observed for avidin and are assigned exclusively to the binding site Tyr 43 residue. The Trp and Tyr band changes are due to the exclusion of water and addition of biotin, resulting in a more hydrophobic environment for the binding site residues. The addition of 2-iminobiotin results in spectral changes to both the streptavidin and avidin Trp bands that are very similar to those observed upon the addition of biotin in each protein. The changes to the Tyr bands are very different than those observed with the addition of biotin, and similar spectral changes are observed in both streptavidin and avidin. This is attributable to hydrogen bond changes to the binding site Tyr residue in each protein, and the similar Tyr difference features in both proteins supports the exclusive assignment of the streptavidin Tyr difference features to the binding site Tyr 43.
Collapse
Affiliation(s)
- J Clarkson
- Department of Physics and Astronomy, Leeds University, Leeds LS2 9JT, England, United Kingdom.
| | | | | |
Collapse
|
15
|
Wang F, Polavarapu PL. Temperature Influence on the Secondary Structure of Avidin and Avidin−Biotin Complex: A Vibrational Circular Dichroism Study. J Phys Chem B 2001. [DOI: 10.1021/jp0104177] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Feng Wang
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee 37235
| | | |
Collapse
|