1
|
Zaushitsyna O, Dishisha T, Hatti-Kaul R, Mattiasson B. Crosslinked, cryostructured Lactobacillus reuteri monoliths for production of 3-hydroxypropionaldehyde, 3-hydroxypropionic acid and 1,3-propanediol from glycerol. J Biotechnol 2016; 241:22-32. [PMID: 27829124 DOI: 10.1016/j.jbiotec.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 10/13/2016] [Accepted: 11/04/2016] [Indexed: 11/28/2022]
Abstract
Crosslinked, cryostructured monoliths prepared from Lactobacillus reuteri cells were evaluated as potential immobilized whole-cell biocatalyst for conversion of glycerol, to potentially important chemicals for the biobased industry, i.e. 3-hydroxypropionaldehyde (3HPA), 3-hydroxypropionic acid (3HP) and 1,3-propanediol (1,3PDO). Glutaraldehyde, oxidized dextran and activated polyethyleneimine/modified polyvinyl alcohol (PEI/PVA) were evaluated as crosslinkers; the latter gave highly stable preparations with maintained viability and biocatalytic activity. Scanning electron microscopy of the PEI/PVA monoliths showed high density of crosslinked cells with wide channels allowing liquid flow through. Flux analysis of the propanediol-utilization pathway, incorporating glycerol/diol dehydratase, propionaldehyde dehydrogenase, 1,3PDO oxidoreductase, phosphotransacylase, and propionate kinase, for conversion of glycerol to the three chemicals showed that the maximum specific reaction rates were -562.6, 281.4, 62.4 and 50.5mg/gCDWh for glycerol consumption, and 3HPA (extracellular), 3HP and 1,3PDO production, respectively. Under optimal conditions using monolith operated as continuous plug flow reactor, 19.7g/L 3HPA was produced as complex with carbohydrazide at a rate of 9.1g/Lh and a yield of 77mol%. Using fed-batch operation, 1,3PDO and 3HP were co-produced in equimolar amounts with a yield of 91mol%. The monoliths embedded in plastic carriers showed high mechanical stability under different modes in a miniaturized plug flow reactor.
Collapse
Affiliation(s)
- Oksana Zaushitsyna
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Tarek Dishisha
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden; Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Rajni Hatti-Kaul
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden.
| | - Bo Mattiasson
- Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
2
|
Sharma M, Sharma R. Drugs and drug intermediates from fungi: Striving for greener processes. Crit Rev Microbiol 2014; 42:322-38. [PMID: 25159041 DOI: 10.3109/1040841x.2014.947240] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
There is an ever-increasing demand of newer and improved drugs from biological sources to cater to the bio-pharmaceutical sector. Among various other resources, fungal species have an immense contribution owing to their potential to carry out the bio-transformations and drug synthesis in diverse conditions and in an eco-friendly manner. Advancement in the biotechnological processes has accelerated the process. Genome sequence information of various fungal species has opened newer avenues for improved and faster drug targeting and designing. The review highlights the production of pharmaceutical drugs and drug intermediates like antibiotics, anti-cancer, anti-cholesterol, anti-diabetic, immunosuppressant, anti-anxiety, anti-virals and many other drugs from fungus. Many of these have been commercialized and there are many more which are either in research or in clinical trial phase. There is a need to exploit and explore the vast biota of fungi in the hope of discovering untapped therapeutic uses of the earth's countless species of fungus.
Collapse
Affiliation(s)
- Monika Sharma
- a Department of Biotechnology , Panjab University , Chandigarh , India and
| | - Rohit Sharma
- b Centre for Microbial Biotechnology, Panjab University , Chandigarh , India
| |
Collapse
|
3
|
Bolivar JM, Schelch S, Mayr T, Nidetzky B. Dissecting Physical and Biochemical Factors of Catalytic Effectiveness in Immobilized D
-Amino Acid Oxidase by Real-Time Sensing of O2
Availability Inside Porous Carriers. ChemCatChem 2014. [DOI: 10.1002/cctc.201301026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
4
|
Production of recombinant proteins by yeast cells. Biotechnol Adv 2012; 30:1108-18. [DOI: 10.1016/j.biotechadv.2011.09.011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/12/2011] [Accepted: 09/17/2011] [Indexed: 01/14/2023]
|
5
|
Holic R, Yazawa H, Kumagai H, Uemura H. Engineered high content of ricinoleic acid in fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2012; 95:179-87. [PMID: 22370951 DOI: 10.1007/s00253-012-3959-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 02/06/2012] [Accepted: 02/06/2012] [Indexed: 11/24/2022]
Abstract
In an effort to produce ricinoleic acid (12-hydroxy-octadeca-cis-9-enoic acid: C18:1-OH) as a petrochemical replacement in a variety of industrial processes, we introduced Claviceps purpurea oleate ∆12-hydroxylase gene (CpFAH12) to Schizosaccharomyces pombe, putting it under the control of inducible nmt1 promoter. Since Fah12p is able to convert oleic acid to ricinoleic acid, we thought that S. pombe, in which around 75% of total fatty acid (FA) is oleic acid, would accordingly be an ideal microorganism for high production of ricinoleic acid. Unfortunately, at the normal growth temperature of 30 °C, S. pombe cells harboring CpFAH12 grew poorly when the CpFAH12 gene expression was induced, perhaps implicating ricinoleic acid as toxic in S. pombe. However, in line with a likely thermoinstability of Fah12p, there was almost no growth inhibition at 37 °C or, by contrast with 30 °C and lower temperatures, ricinoleic acid accumulation. Accordingly, various optimization steps led to a regime with preliminary growth at 37 °C followed by a 5-day incubation at 20 °C, and the level of ricinoleic acid reached 137.4 μg/ml of culture that corresponded to 52.6% of total FA.
Collapse
Affiliation(s)
- Roman Holic
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 6, Higashi 1-1-1, Tsukuba, Ibaraki 305-8566, Japan
| | | | | | | |
Collapse
|
6
|
Bolivar JM, Nidetzky B. Oriented and selective enzyme immobilization on functionalized silica carrier using the cationic binding module Zbasic2: Design of a heterogeneous D-amino acid oxidase catalyst on porous glass. Biotechnol Bioeng 2012; 109:1490-8. [DOI: 10.1002/bit.24423] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Revised: 12/10/2011] [Accepted: 12/19/2011] [Indexed: 11/08/2022]
|
7
|
Kopf J, Hormigo D, García JL, Acebal C, de la Mata I, Arroyo M. Inhibition of Recombinant D-Amino Acid Oxidase from Trigonopsis variabilisby Salts. Enzyme Res 2011; 2011:158541. [PMID: 21423676 PMCID: PMC3057018 DOI: 10.4061/2011/158541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 01/01/2011] [Indexed: 11/20/2022] Open
Abstract
Inhibition of recombinant D-amino acid oxidase fromTrigonopsis variabilis(TvDAAO) activity in the presence of different sodium salts and potassium chloride is reported. A competitive inhibition pattern by sodium chloride was observed, and an inhibition constant value ofKi=85 mM was calculated. Direct connection of NaCl inhibition with FAD cofactor dissociation was confirmed by measuring the fluorescence of tryptophanyl residues of the holoenzyme.
Collapse
Affiliation(s)
- Jessica Kopf
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain
| | - Daniel Hormigo
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain
| | - José Luis García
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Acebal
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain
| | - Isabel de la Mata
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain
| | - Miguel Arroyo
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain
| |
Collapse
|
8
|
Redo VA, Novikova EK, Eldarov MA. Expression of modified oxidase of D-aminoacids of Trigonopsis variabilis in methylotrophic yeasts Pichia pastoris. APPL BIOCHEM MICRO+ 2011. [DOI: 10.1134/s0003683811010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Iida N, Nakamoto Y, Baba T, Nakagawa H, Mizukoshi E, Naito M, Mukaida N, Kaneko S. Antitumor effect after radiofrequency ablation of murine hepatoma is augmented by an active variant of CC Chemokine ligand 3/macrophage inflammatory protein-1alpha. Cancer Res 2010; 70:6556-6565. [PMID: 20663902 DOI: 10.1158/0008-5472.can-10-0096] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several chemokines are used for immunotherapy against cancers because they can attract immune cells such as dendritic and cytotoxic T cells to augment immune responses. Radiofrequency ablation (RFA) is used to locally eliminate cancers such as hepatocellular carcinoma (HCC), renal cell carcinoma, and lung cancer. Because HCC often recurs even after an eradicative treatment with RFA, additional immunotherapy is necessary. We treated tumor-bearing mice by administering ECI301, an active variant of CC chemokine ligand 3, after RFA. Mice were injected s.c. with BNL 1ME A.7R.1, a murine hepatoma cell line, in the bilateral flank. After the tumor became palpable, RFA was done on the tumor of one flank with or without ECI301. RFA alone eliminated the treated ipsilateral tumors and retarded the growth of contralateral non-RFA-treated tumors accompanied by massive T-cell infiltration. Injection of ECI301 augmented RFA-induced antitumor effect against non-RFA-treated tumors when administered to wild-type or CCR5-deficient but not CCR1-deficient mice. ECI301 also increased CCR1-expressing CD11c(+) cells in peripheral blood and RFA-treated tumors after RFA. Deficiency of CCR1 impairs accumulation of CD11c(+), CD4(+), and CD8(+) cells in RFA-treated tumors. Furthermore, in IFN-gamma-enzyme-linked immunospot assay, ECI301 augmented tumor-specific responses after RFA whereas deficiency of CCR1 abolished this augmentation. Thus, we proved that ECI301 further augments RFA-induced antitumor immune responses in a CCR1-dependent manner.
Collapse
MESH Headings
- Animals
- Catheter Ablation
- Cell Line, Tumor
- Chemokine CCL3/biosynthesis
- Chemokine CCL3/immunology
- Chemokine CCL3/pharmacology
- Female
- Liver Neoplasms, Experimental/drug therapy
- Liver Neoplasms, Experimental/surgery
- Liver Neoplasms, Experimental/therapy
- Lymphocytes, Tumor-Infiltrating/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Receptors, CCR1/biosynthesis
- Receptors, CCR1/deficiency
- Receptors, CCR1/immunology
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- Noriho Iida
- Disease Control and Homeostasis, Graduate School of Medical Science, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abad S, Nahalka J, Bergler G, Arnold SA, Speight R, Fotheringham I, Nidetzky B, Glieder A. Stepwise engineering of a Pichia pastoris D-amino acid oxidase whole cell catalyst. Microb Cell Fact 2010; 9:24. [PMID: 20420682 PMCID: PMC2873405 DOI: 10.1186/1475-2859-9-24] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 04/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trigonopsis variabilis D-amino acid oxidase (TvDAO) is a well characterized enzyme used for cephalosporin C conversion on industrial scale. However, the demands on the enzyme with respect to activity, operational stability and costs also vary with the field of application. Processes that use the soluble enzyme suffer from fast inactivation of TvDAO while immobilized oxidase preparations raise issues related to expensive carriers and catalyst efficiency. Therefore, oxidase preparations that are more robust and active than those currently available would enable a much broader range of economically viable applications of this enzyme in fine chemical syntheses. A multi-step engineering approach was chosen here to develop a robust and highly active Pichia pastoris TvDAO whole-cell biocatalyst. RESULTS As compared to the native T. variabilis host, a more than seven-fold enhancement of the intracellular level of oxidase activity was achieved in P. pastoris through expression optimization by codon redesign as well as efficient subcellular targeting of the enzyme to peroxisomes. Multi copy integration further doubled expression and the specific activity of the whole cell catalyst. From a multicopy production strain, about 1.3 x 103 U/g wet cell weight (wcw) were derived by standard induction conditions feeding pure methanol. A fed-batch cultivation protocol using a mixture of methanol and glycerol in the induction phase attenuated the apparent toxicity of the recombinant oxidase to yield final biomass concentrations in the bioreactor of >or= 200 g/L compared to only 117 g/L using the standard methanol feed. Permeabilization of P. pastoris using 10% isopropanol yielded a whole-cell enzyme preparation that showed 49% of the total available intracellular oxidase activity and was notably stabilized (by three times compared to a widely used TvDAO expressing Escherichia coli strain) under conditions of D-methionine conversion using vigorous aeration. CONCLUSIONS Stepwise optimization using a multi-level engineering approach has delivered a new P. pastoris whole cell TvDAO biocatalyst showing substantially enhanced specific activity and stability under operational conditions as compared to previously reported preparations of the enzyme. The production of the oxidase through fed-batch bioreactor culture and subsequent cell permeabilization is high-yielding and efficient. Therefore this P. pastoris catalyst has been evaluated for industrial purposes.
Collapse
Affiliation(s)
- Sandra Abad
- Austrian Centre of Industrial Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mukaiyama H, Tohda H, Takegawa K. Overexpression of protein disulfide isomerases enhances secretion of recombinant human transferrin in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2009; 86:1135-43. [DOI: 10.1007/s00253-009-2393-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2009] [Revised: 11/26/2009] [Accepted: 11/28/2009] [Indexed: 01/20/2023]
|
12
|
Dextran sodium sulfate enhances secretion of recombinant human transferrin in Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2009; 85:155-64. [DOI: 10.1007/s00253-009-2130-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/04/2009] [Accepted: 07/06/2009] [Indexed: 11/26/2022]
|
13
|
Production of heterologous proteins using the fission-yeast (Schizosaccharomyces pombe) expression system. Biotechnol Appl Biochem 2009; 53:227-35. [PMID: 19531030 DOI: 10.1042/ba20090048] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The fission yeast Schizosaccharomyces pombe is a particularly useful model for studying the function and regulation of genes from higher eukaryotes. The genome of Sc. pombe has been sequenced, and DNA microarray, proteome and transcriptome analyses have been carried out. Among the well-characterized yeast species, Sc. pombe is considered an attractive host for the production of heterologous proteins. Expression vectors for high-level expression in Sc. pombe have been developed and many foreign proteins have been successfully expressed. However, further improvements in the protein-expressing host systems are still required for the production of heterologous proteins involved in post-translational modification, metabolism and intracellular trafficking. This minireview focuses on recent advances in heterologous protein production by use of engineered fission-yeast strains.
Collapse
|
14
|
High Soluble Expression of d-Amino Acid Oxidase in Escherichia coli Regulated by a Native Promoter. Appl Biochem Biotechnol 2008; 158:313-22. [DOI: 10.1007/s12010-008-8325-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Accepted: 07/16/2008] [Indexed: 10/21/2022]
|
15
|
Pscheidt B, Glieder A. Yeast cell factories for fine chemical and API production. Microb Cell Fact 2008; 7:25. [PMID: 18684335 PMCID: PMC2628649 DOI: 10.1186/1475-2859-7-25] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2008] [Accepted: 08/07/2008] [Indexed: 12/25/2022] Open
Abstract
This review gives an overview of different yeast strains and enzyme classes involved in yeast whole-cell biotransformations. A focus was put on the synthesis of compounds for fine chemical and API (= active pharmaceutical ingredient) production employing single or only few-step enzymatic reactions. Accounting for recent success stories in metabolic engineering, the construction and use of synthetic pathways was also highlighted. Examples from academia and industry and advances in the field of designed yeast strain construction demonstrate the broad significance of yeast whole-cell applications. In addition to Saccharomyces cerevisiae, alternative yeast whole-cell biocatalysts are discussed such as Candida sp., Cryptococcus sp., Geotrichum sp., Issatchenkia sp., Kloeckera sp., Kluyveromyces sp., Pichia sp. (including Hansenula polymorpha = P. angusta), Rhodotorula sp., Rhodosporidium sp., alternative Saccharomyces sp., Schizosaccharomyces pombe, Torulopsis sp., Trichosporon sp., Trigonopsis variabilis, Yarrowia lipolytica and Zygosaccharomyces rouxii.
Collapse
Affiliation(s)
- Beate Pscheidt
- Research Centre Applied Biocatalysis GmbH, Petersgasse 14/3, 8010 Graz, Austria.
| | | |
Collapse
|
16
|
Shiraishi K, Ishiwata Y, Nakagawa K, Yokochi S, Taruki C, Akuta T, Ohtomo K, Matsushima K, Tamatani T, Kanegasaki S. Enhancement of antitumor radiation efficacy and consistent induction of the abscopal effect in mice by ECI301, an active variant of macrophage inflammatory protein-1alpha. Clin Cancer Res 2008; 14:1159-66. [PMID: 18281550 DOI: 10.1158/1078-0432.ccr-07-4485] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE We studied whether i.v. administration of a chemokine after local tumor site irradiation could prevent remaining, as well as distant, nonirradiated tumor cell growth by leukocyte recruitment. EXPERIMENTAL DESIGN Tumors were implanted s.c. in the right or both flanks. After local irradiation at the right flank, ECI301, a human macrophage inflammatory protein-1alpha variant was injected i.v. Tumor volumes were measured every 3 days after treatment. RESULTS In Colon26 adenocarcinoma-bearing BALB/c mice, repeated daily administration (over 3-5 consecutive days) of 2 mug per mouse ECI301 after local irradiation of 6 Gy prolonged survival without significant toxicity, and in about half of the treated mice, the tumor was completely eradicated. Three weekly administrations of ECI301 after local irradiation also led to significant, although less effective, antitumor radiation efficacy. ECI301 also inhibited growth of other syngenic tumor grafts, including MethA fibrosarcoma (BALB/c) and Lewis lung carcinoma (C57BL/6). Importantly, tumor growth at the nonirradiated site was inhibited, indicating that ECI301 potentiated the abscopal effect of radiation. This abscopal effect observed in BALB/c and C57BL/6 mice was tumor-type independent. Leukocyte depletion studies suggest that CD8+ and CD4+ lymphocytes and NK1.1 cells were involved. CONCLUSIONS Marked inhibition of tumor growth at the irradiated site, with complete tumor eradication and consistent induction of the abscopal effect, was potentiated by i.v. administration of ECI301. The results of this study may offer a new concept for cancer therapy, namely chemokine administration after local irradiation, leading to development of novel therapeutics for the treatment of advanced metastatic cancer.
Collapse
|
17
|
Properties and applications of microbial D-amino acid oxidases: current state and perspectives. Appl Microbiol Biotechnol 2008; 78:1-16. [DOI: 10.1007/s00253-007-1282-4] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 11/09/2007] [Accepted: 11/09/2007] [Indexed: 10/22/2022]
|
18
|
Arroyo M, Menéndez M, García JL, Campillo N, Hormigo D, de la Mata I, Castillón MP, Acebal C. The role of cofactor binding in tryptophan accessibility and conformational stability of His-tagged d-amino acid oxidase from Trigonopsis variabilis. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2007; 1774:556-65. [PMID: 17466607 DOI: 10.1016/j.bbapap.2007.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 03/07/2007] [Accepted: 03/07/2007] [Indexed: 11/30/2022]
Abstract
d-amino acid oxidase from Trigonopsis variabilis (TvDAAO) is a flavoenzyme with high biotechnological and industrial interest. The overexpression and purification of the apoprotein form of a recombinant His-tagged TvDAAO allowed us to go deep into the structural differences between apoenzyme and holoenzyme, and on the cofactor binding and its contribution to enzyme stability. A significant decrease in intrinsic fluorescence emission took place upon FAD binding, associated to cofactor induced conformational transitions or subunit dimerization that could affect the local environment of protein tryptophan residues. Furthermore, acrylamide-quenching experiments indicated that one of the five tryptophan residues of TvDAAO became less accessible upon FAD binding. A K(d)=1.5+/-0.1x10(-7) M for the dissociation of FAD from TvDAAO was calculated from binding experiments based on both quenching of FAD fluorescence and activity titration curves. Secondary structure prediction indicated that TvDAAO is a mixed alpha/beta protein with 8 alpha-helices and 14 beta-sheets connected by loops. Prediction results were in good agreement with the estimates obtained by circular dichroism which indicated that both the apoenzyme and the holoenzyme had the same structural component ratios: 34% alpha-helix content, 20% beta-structure content (14% antiparallel and 6% parallel beta-sheet), 15% beta-turns and 31% of random structure. Circular dichroism thermal-transition curves suggested single-step denaturation processes with apparent midpoint transition temperatures (T(m)) of 37.9 degrees C and 41.4 degrees C for the apoenzyme and the holoenzyme, respectively. A three-dimensional model of TvDAAO built by homology modelling and consistent with the spectroscopic studies is shown. Comparing our results with those reported for pig kidney (pkDAAO) and Rhodotorula gracilis (RgDAAO) d-amino acid oxidases, a "head-to-head" interaction between subunits in the TvDAAO dimer might be expected.
Collapse
Affiliation(s)
- Miguel Arroyo
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Geueke B, Weckbecker A, Hummel W. Overproduction and characterization of a recombinant D-amino acid oxidase from Arthrobacter protophormiae. Appl Microbiol Biotechnol 2007; 74:1240-7. [PMID: 17279391 DOI: 10.1007/s00253-006-0776-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 11/17/2006] [Accepted: 11/17/2006] [Indexed: 11/26/2022]
Abstract
A screening of soil samples for D-amino acid oxidase (D-AAO) activity led to the isolation and identification of the gram-positive bacterium Arthrobacter protophormiae. After purification of the wild-type D-AAO, the gene sequence was determined and designated dao. An alignment of the deduced primary structure with eukaryotic D-AAOs and D-aspartate oxidases showed that the D-AAO from A. protophormiae contains five of six conserved regions; the C-terminal type 1 peroxisomal targeting signal that is typical for D-AAOs from eukaryotic origin is missing. The dao gene was cloned and expressed in Escherichia coli. The purified recombinant D-AAO had a specific activity of 180 U mg protein(-1) for D-methionine and was slightly inhibited in the presence of L-methionine. Mainly, basic and hydrophobic D-amino acids were oxidized by the strictly enantioselective enzyme. After a high cell density fermentation, 2.29 x 10(6) U of D-AAO were obtained from 15 l of fermentation broth.
Collapse
Affiliation(s)
- Birgit Geueke
- Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Research Centre Jülich, 52426 Jülich, Germany.
| | | | | |
Collapse
|
20
|
Zheng H, Zhu T, Chen J, Zhao Y, Jiang W, Zhao G, Yang S, Yang Y. Construction of recombinant Escherichia coli D11/pMSTO and its use in enzymatic preparation of 7-aminocephalosporanic acid in one pot. J Biotechnol 2007; 129:400-5. [PMID: 17349708 DOI: 10.1016/j.jbiotec.2007.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 01/14/2007] [Accepted: 01/26/2007] [Indexed: 10/23/2022]
Abstract
The main drawback in the industrial production of 7-aminocephalosporanic acid is the accumulation of intermediate (AKA-7-ACA) and destruction of substrate (cephalosporin C) catalyzed by catalase and beta-lactamase. To overcome the adverse effect of these enzymes on the conversion process, Escherichia coli D11 with mutation of katG, katE and ampC genes was constructed by P1 phage transduction, which enabled it not to produce catalase and beta-lactamase, respectively. At the same time, recA mutation in D11 increased the stability of foreign plasmid. With D11 used as host, both d-amino acid oxidase and GL-7-ACA acylase were cloned and expressed by the recombinant plasmids of pMSS or pMSTO, and the production of two enzymes could be increased by addition of 1.0% glucose. Cells of recombinant strain D11/pMSTO could directly convert cephalosporin C into 7-aminocephalosporanic acid at 25 degrees C, with the yield of more than 74%. The data suggested that the constructed D11/pMSTO could be an alternative catalyst for production of 7-aminocephalosporanic acid in one pot.
Collapse
Affiliation(s)
- Huabao Zheng
- College of Life Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chen RR. Permeability issues in whole-cell bioprocesses and cellular membrane engineering. Appl Microbiol Biotechnol 2007; 74:730-8. [PMID: 17221194 DOI: 10.1007/s00253-006-0811-x] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 12/14/2006] [Accepted: 12/17/2006] [Indexed: 10/23/2022]
Abstract
Nutrient uptake and waste excretion are among the many important functions of the cellular membrane. While permitting nutrients into the cell, the cellular membrane system evolves to guide against noxious agents present in the environment from entering the intracellular milieu. The semipermeable nature of the membrane is at odds with biomolecular engineers in their endeavor of using microbes as cell factory. The cellular membrane often retards the entry of substrate into the cellular systems and prevents the product from being released from the cellular system for an easy recovery. Consequently, productivities of whole-cell bioprocesses such as biocatalysis, fermentation, and bioremediations are severely compromised. For example, the rate of whole-cell biocatalysis is usually 1-2 orders of magnitude slower than that of the isolated enzymes. When product export cannot keep pace with the production rate, intracellular product accumulation quickly leads to a halt of production due to product inhibition. While permeabilization via chemical or physical treatment of cell membrane is effective in small-scale process, large-scale implementation is problematic. Molecular engineering approach recently emerged as a much better alternative. Armed with increasingly sophisticated tools, biomolecular engineers are following nature's ingenuity to derive satisfactory solutions to the permeability problem. This review highlights these exciting molecular engineering achievements.
Collapse
Affiliation(s)
- Rachel Ruizhen Chen
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0100, USA.
| |
Collapse
|
22
|
Idiris A, Tohda H, Bi KW, Isoai A, Kumagai H, Giga-Hama Y. Enhanced productivity of protease-sensitive heterologous proteins by disruption of multiple protease genes in the fission yeast Schizosaccharomyces pombe. Appl Microbiol Biotechnol 2006; 73:404-20. [PMID: 16802154 DOI: 10.1007/s00253-006-0489-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 04/25/2006] [Accepted: 05/02/2006] [Indexed: 10/24/2022]
Abstract
The creation of protease-deficient mutants to avoid product degradation is one of the current strategies employed to improve productivity and secretion efficiency of heterologous protein expression. We previously constructed a set of single protease-deficient mutants of the fission yeast Schizosaccharomyces pombe by respective disruption of 52 protease genes, and we succeeded in confirming useful disruptants (Idiris et al., Yeast 23:83-99, 2006). In the present study, we attempted multiple deletions of 13 protease genes, single deletions of which were previously confirmed as being beneficial for reducing extracellular product degradation. Using PCR-based gene replacement, a series of multiple deletion strains was constructed by multiple disruption of a maximum of seven protease genes. Effects of the resultant multiple deletion strains on heterologous expression were then measured by practical expression of a proteolytically sensitive model protein, the human growth hormone (hGH). Time profiles of hGH secretion from each resultant mutant demonstrated significantly enhanced hGH productivity with processing of the multiple protease deletions. The data clearly indicated that disruption of multiple protease genes in the fission yeast is an effective method for controlling proteolytic degradation of heterologous proteins particularly susceptible to proteases.
Collapse
Affiliation(s)
- Alimjan Idiris
- ASPEX Division, Research Center, Asahi Glass Co., Ltd., Yokohama 221-8755, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Idiris A, Bi K, Tohda H, Kumagai H, Giga-Hama Y. Construction of a protease-deficient strain set for the fission yeast Schizosaccharomyces pombe, useful for effective production of protease-sensitive heterologous proteins. Yeast 2006; 23:83-99. [PMID: 16491466 DOI: 10.1002/yea.1342] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
One of the major problems hindering effective production and purification of heterologous proteins from the fission yeast Schizosaccharomyces pombe is proteolytic degradation of the recombinant gene products by host-specific proteases. As an initial solution to this problem, we constructed a protease-deficient disruptant set by respective disruption of 52 Sz. pombe protease genes. Functional screening of the resultant set was performed by observing secretory production of a proteolytically sensitive model protein, human growth hormone (hGH). The results indicated that some of the resultant disruptants were effective in reducing hGH degradation, as observed during the hGH expression procedure and mainly as a result of unknown serine- and/or cysteine-type proteases in the culture medium. These findings also demonstrated that construction of a protease-deficient strain set is not only useful for practical application in protein production, but also for functional screening, specification and modification of proteases in Sz. pombe, where further investigations of proteolytic processes and improvement through multiple gene manipulations are required.
Collapse
Affiliation(s)
- Alimjan Idiris
- ASPEX Division, Research Centre, Asahi Glass Co. Ltd, 1150 Hazawa-cho, Kanagawa-ku, Yokohama 221-8755, Japan
| | | | | | | | | |
Collapse
|
24
|
Ikeda S, Nikaido K, Araki K, Yoshitake A, Kumagai H, Isoai A. Production of recombinant human lysosomal acid lipase in Schizosaccharomyces pombe: development of a fed-batch fermentation and purification process. J Biosci Bioeng 2005; 98:366-73. [PMID: 16233721 DOI: 10.1016/s1389-1723(04)00297-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 08/28/2004] [Indexed: 11/17/2022]
Abstract
A fed-batch fermentation process has been developed to enable the production of large quantities of recombinant human lysosomal acid lipase (hLAL; EC 3.1.1.13), in Schizosaccharomyces pombe, for preclinical studies as a potential enzyme therapy drug. Recombinant S. pombe, clone ASP397-21, expressed enzymatically active hLAL in the secreted form. A feedback fed-batch system was used to determine the optimal feed rate of a 50% glucose solution used as the carbon source. The feed rate of the glucose solution was calculated by a computer-aided system according to the equation; F=q(sf)(VX)/S(in) (q(sf), specific substrate feed rate [gram substrate/gram dry cell weight/h]; V, volume of culture broth [l]; X, cell density [gram dry cell weight/l]; S(in), concentration of growth limiting substrate in feed solution [gram substrate/gram feed solution]). At the time of the initial consumption of glucose in the batch-phase culture, the nutrient supply was automatically initiated by means of monitoring the respiratory quotient change. The obtained profile of the feed rate was applied to the feed forward control fermentation. Finally, the cells were grown up to >50 g dry cell weight/l, and the hLAL expression level was approximately 16,000 U/l. Expressed hLAL protein was purified in a two-step process by hydrophobic interaction and anion exchange chromatographies. Purified recombinant hLAL exhibited a 90-150 kDa broad band upon SDS-PAGE with specific activity of about 300 U/mg. After endoglycosidase H treatment, the band converged to 45 kDa, equal to the calculated molecular weight, suggesting that hLAL produced in S. pombe was hyper-glycosylated. N-terminal analysis of de-glycosylated hLAL revealed that the signal sequence of hLAL was correctly processed in S. pombe.
Collapse
Affiliation(s)
- Soichiro Ikeda
- ASPEX Division, Asahi Glass Co., Ltd., 1150 Hazawa-cho, Kanagawa-ku, Yokohama 221-8755, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Zheng H, Wang X, Chen J, Zhu K, Zhao Y, Yang Y, Yang S, Jiang W. Expression, purification, and immobilization of His-tagged D-amino acid oxidase of Trigonopsis variabilis in Pichia pastoris. Appl Microbiol Biotechnol 2005; 70:683-9. [PMID: 16217653 DOI: 10.1007/s00253-005-0158-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 08/26/2005] [Accepted: 08/31/2005] [Indexed: 10/25/2022]
Abstract
High-level expression of D: -amino acid oxidase (DAO) has been reported in Pichia pastoris by integrating the DAO gene under the control of the alcohol oxidase promoter (PAOX1). However, the time taken to reach peak product concentration is usually long (approximately 43 h), and cultivation requires tight regulation of methanol feeding. In this paper, we describe the expression of His-tagged DAO (HDAO) in P. pastoris using the glyceraldehydes-3-phosphate dehydrogenase promoter (PGAP). The maximal level of HDAO expression using the PGAP integrant is attained in 13 h and is equal to that obtained using the PAOX1 integrant in 43 h. We also explored the possibility of secreting HDAO in P. pastoris. In-frame fusion of Saccharomyces cerevisiae alpha-factor secretion signal under a PGAP or PAOX1 resulted in low-level secretion of active HDAO, which was not of practical use. The intracellularly expressed HDAO under PGAP was purified by agar-based affinity support and then immobilized on Amberzyme oxirane resin. The immobilized HDAO, with specific activity of 75 U g-1 (wet weight), could be recycled more than 14 times without significant loss of activity. The data suggest that intracellular production of HDAO under PGAP, followed by affinity purification and immobilization on oxirane resin, may serve as an effective process for the manufacture of immobilized DAO for industrial application.
Collapse
Affiliation(s)
- Huabao Zheng
- College of Life Sciences, Zhejiang University, Hangzhou 310029, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Reaction of Trigonopsis variabilis d-amino acid oxidase with 2,6-dichloroindophenol: kinetic characterisation and development of an oxygen-independent assay of the enzyme activity. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.molcatb.2004.12.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
27
|
D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/pl00021754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
28
|
Tishkov VI, Khoronenkova SV. D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/s10541-005-0004-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
29
|
Tishkov VI, Khoronenkova SV. D-amino acid oxidase: structure, catalytic mechanism, and practical application. BIOCHEMISTRY (MOSCOW) 2005. [DOI: 10.1007/s10541-005-0050-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|