1
|
Paz-Cortés E, Pastor AR, Salinas-Marín R, Ramírez OT, Palomares LA. Molecular characterization of the effects of heat shock on the infection cycle progression and productivity of the baculovirus expression vector system. PLoS One 2025; 20:e0320917. [PMID: 40173159 PMCID: PMC11964234 DOI: 10.1371/journal.pone.0320917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Baculoviruses are widely utilized in biotechnology for various purposes, including recombinant protein expression, antigen presentation, vaccine production, as biopesticides, and as gene therapy vectors. The productivity of the baculovirus expression vector system (BEVS) is significantly affected by the condition of the host cell. However, the impact of host cell stress on the complex baculovirus infection cycle remains not fully understood. This study examines the effects of three gradual heat shock treatments on the production of recombinant protein and viral titers in Sf9 cells (Spodoptera frugiperda) infected with a recombinant baculovirus AcMNPV with fluorescent reporters under late (vp39) and very late (polh) promoters. The heat shock regimens applied before infection were 30°C for 2.5 hours, 37°C for 2.5 hours, and constant 30°C, combined with prostaglandin A1 (PGA1) to enhance the cellular stress response. Significant differences in viral progeny and baculovirus genome replication were observed. Notably, a constant 30°C heat shock increased early viral titers but decreased late-stage yields. Using flow cytometry, we monitored the signal from the two fluorescent reporters and found that some heat shock conditions differentially accelerated or increased their timing or expression levels, with different patterns for each reporter. Additionally we identified, cloned, and sequenced two inducible HSP70 genes from S. frugiperda to track their expression throughout infection, providing insights into the cell's stress response and the effect of PGA1. These findings suggest that modulating the host heat-shock response can improve baculovirus production and offer insights into the host-virus relationship for new elements or strategies to improve BEVS productivity.
Collapse
Affiliation(s)
- Enrique Paz-Cortés
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Ana Ruth Pastor
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Roberta Salinas-Marín
- Laboratorio Nacional para la Producción y Análisis de Moléculas y Medicamentos Biotecnológicos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Laboratorio de Glicobiología y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Octavio T. Ramírez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
- Laboratorio Nacional para la Producción y Análisis de Moléculas y Medicamentos Biotecnológicos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Laura A. Palomares
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Harrison RL, Jarvis DL. Transforming Lepidopteran Insect Cells for Improved Protein Processing and Expression. Methods Mol Biol 2016; 1350:359-79. [PMID: 26820868 DOI: 10.1007/978-1-4939-3043-2_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The lepidopteran insect cells used with the baculovirus expression vector system (BEVS) are capable of synthesizing and accurately processing foreign proteins. However, proteins expressed in baculovirus-infected cells often fail to be completely processed, or are not processed in a manner that meets a researcher's needs. This chapter discusses a metabolic engineering approach that addresses this problem. Basically, this approach involves the addition of new or enhancement of existing protein processing functions in established lepidopteran insect cell lines. In addition to improvements in protein processing, this approach has also been used to improve protein expression levels obtained with the BEVS. Methods for engineering cell lines and assessing their properties as improved hosts for the BEVS are detailed. Examples of lepidopteran insect cell lines engineered for improved protein N-glycosylation, folding/trafficking, and expression are described in detail.
Collapse
Affiliation(s)
- Robert L Harrison
- Invasive Insect Biocontrol & Behavior Laboratory, USDA, ARS, BARC, Building 007, Room 301, BARC-W, 10300 Baltimore Avenue, Beltsville, MD, 20705, USA.
| | - Donald L Jarvis
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
3
|
George S, Jauhar AM, Mackenzie J, Kieβlich S, Aucoin MG. Temporal characterization of protein production levels from baculovirus vectors coding for GFP and RFP genes under non-conventional promoter control. Biotechnol Bioeng 2015; 112:1822-31. [PMID: 25850946 DOI: 10.1002/bit.25600] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/20/2015] [Accepted: 03/03/2015] [Indexed: 11/08/2022]
Abstract
The ease of use and versatility of the Baculovirus Expression Vector System (BEVS) has made it one of the most widely used systems for recombinant protein production However, co-expression systems currently in use mainly make use of the very strong very late p10 and polyhedron (polh) promoters to drive expression of foreign genes, which does not provide much scope for tailoring expression ratios within the cell. This work demonstrates the use of different Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) promoters to control the timing and expression of two easily traceable fluorescent proteins, the enhanced green fluorescent protein (eGFP), and a red fluorescent protein (DsRed2) in a BEVS co-expression system. Our results show that gene expression levels can easily be controlled using this strategy, and also that modulating the expression level of one protein can influence the level of expression of the other protein within the system, thus confirming the concept of genes "competing" for limited cellular resources. Plots of "expression ratios" of the two model genes over time were obtained, and may be used in future work to tightly control timing and levels of foreign gene expression in an insect cell co-expression system.
Collapse
Affiliation(s)
- Steve George
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
| | - Altamash M Jauhar
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
| | - Jennifer Mackenzie
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
| | - Sascha Kieβlich
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1
- Technical University of Braunschweig, Braunschweig, Germany
| | - Marc G Aucoin
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada, N2L3G1.
| |
Collapse
|
4
|
Zhu J, Hao P, Chen G, Han C, Li X, Zeller FJ, Hsam SLK, Hu Y, Yan Y. Molecular cloning, phylogenetic analysis, and expression profiling of endoplasmic reticulum molecular chaperone BiP genes from bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2014; 14:260. [PMID: 25273817 PMCID: PMC4189733 DOI: 10.1186/s12870-014-0260-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Accepted: 09/23/2014] [Indexed: 05/18/2023]
Abstract
BACKGROUND The endoplasmic reticulum chaperone binding protein (BiP) is an important functional protein, which is involved in protein synthesis, folding assembly, and secretion. In order to study the role of BiP in the process of wheat seed development, we cloned three BiP homologous cDNA sequences in bread wheat (Triticum aestivum), completed by rapid amplification of cDNA ends (RACE), and examined the expression of wheat BiP in wheat tissues, particularly the relationship between BiP expression and the subunit types of HMW-GS using near-isogenic lines (NILs) of HMW-GS silencing, and under abiotic stress. RESULTS Sequence analysis demonstrated that all BiPs contained three highly conserved domains present in plants, animals, and microorganisms, indicating their evolutionary conservation among different biological species. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) revealed that TaBiP (Triticum aestivum BiP) expression was not organ-specific, but was predominantly localized to seed endosperm. Furthermore, immunolocalization confirmed that TaBiP was primarily located within the protein bodies (PBs) in wheat endosperm. Three TaBiP genes exhibited significantly down-regulated expression following high molecular weight-glutenin subunit (HMW-GS) silencing. Drought stress induced significantly up-regulated expression of TaBiPs in wheat roots, leaves, and developing grains. CONCLUSIONS The high conservation of BiP sequences suggests that BiP plays the same role, or has common mechanisms, in the folding and assembly of nascent polypeptides and protein synthesis across species. The expression of TaBiPs in different wheat tissue and under abiotic stress indicated that TaBiP is most abundant in tissues with high secretory activity and with high proportions of cells undergoing division, and that the expression level of BiP is associated with the subunit types of HMW-GS and synthesis. The expression of TaBiPs is developmentally regulated during seed development and early seedling growth, and under various abiotic stresses.
Collapse
Affiliation(s)
- Jiantang Zhu
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Pengchao Hao
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Guanxing Chen
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Caixia Han
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Xiaohui Li
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Friedrich J Zeller
- />Department of Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, D-85354 Germany
| | - Sai LK Hsam
- />Department of Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technical University of Munich, Freising-Weihenstephan, D-85354 Germany
| | - Yingkao Hu
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yueming Yan
- />College of Life Science, Capital Normal University, Beijing, 100048 China
| |
Collapse
|
5
|
Murata T, Usui T. Enzymatic Synthesis of Oligosaccharides and Neoglycoconjugates. Biosci Biotechnol Biochem 2014; 70:1049-59. [PMID: 16717404 DOI: 10.1271/bbb.70.1049] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Oligosaccharides involved in glycoconjugates play important roles in a number of biological events. To elucidate the biological functions of oligosaccharides, sufficient quantities of structurally defined oligosaccharides, are of limited availability by traditional purification methods, are required. Hence, chemical and enzymatic syntheses of oligosaccharides are becoming increasingly important in glycobiology and glycotechnology. In addition, oligosaccharides often occur as glycoconjugates attached to proteins or lipids. Hence, the development of simple and effective methods for synthesizing neoglycoconjugates such as neoglycoprotein and neoglycolipids is essential for an understanding of the biological function of these molecules. Here we review the most recent developments in the enzymatic synthesis of oligosaccharides and neoglycoconjugates.
Collapse
Affiliation(s)
- Takeomi Murata
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, Japan.
| | | |
Collapse
|
6
|
Fernandes F, Teixeira AP, Carinhas N, Carrondo MJT, Alves PM. Insect cells as a production platform of complex virus-like particles. Expert Rev Vaccines 2013; 12:225-36. [PMID: 23414412 DOI: 10.1586/erv.12.153] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Virus-like particles (VLPs) are multiprotein structures that resemble the conformation of native viruses but lack a viral genome, potentiating their application as safer and cheaper vaccines. The production of VLPs has been strongly linked with the use of insect cells and the baculovirus expression vector system, especially those particles composed of two or more structural viral proteins. In fact, this expression platform has been extensively improved over the years to address the challenges of coexpression of multiple proteins and their proper assembly into complexes in the same cell. In this article, the role of insect cell technology in the development and production of complex VLPs is overviewed; recent achievements, current bottlenecks and future trends are also highlighted.
Collapse
Affiliation(s)
- Fabiana Fernandes
- ITQB-Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
7
|
Liu F, Wu X, Li L, Liu Z, Wang Z. Use of baculovirus expression system for generation of virus-like particles: successes and challenges. Protein Expr Purif 2013; 90:104-16. [PMID: 23742819 PMCID: PMC7128112 DOI: 10.1016/j.pep.2013.05.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/13/2013] [Accepted: 05/15/2013] [Indexed: 11/10/2022]
Abstract
A brief overview of principles and applications of BES. Generation of VLPs using BES. Major properties of BES: promoting generation of VLPs. Bioprocess considerations for generation of VLPs.
The baculovirus expression system (BES) has been one of the versatile platforms for the production of recombinant proteins requiring multiple post-translational modifications, such as folding, oligomerization, phosphorylation, glycosylation, acylation, disulfide bond formation and proteolytic cleavage. Advances in recombinant DNA technology have facilitated application of the BES, and made it possible to express multiple proteins simultaneously in a single infection and to produce multimeric proteins sharing functional similarity with their natural analogs. Therefore, the BES has been used for the production of recombinant proteins and the construction of virus-like particles (VLPs), as well as for the development of subunit vaccines, including VLP-based vaccines. The VLP, which consists of one or more structural proteins but no viral genome, resembles the authentic virion but cannot replicate in cells. The high-quality recombinant protein expression and post-translational modifications obtained with the BES, along with its capacity to produce multiple proteins, imply that it is ideally suited to VLP production. In this article, we critically review the pros and cons of using the BES as a platform to produce both enveloped and non-enveloped VLPs.
Collapse
Affiliation(s)
- Fuxiao Liu
- National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, Shandong 266032, China
| | | | | | | | | |
Collapse
|
8
|
Cox MMJ. Recombinant protein vaccines produced in insect cells. Vaccine 2012; 30:1759-66. [PMID: 22265860 PMCID: PMC7115678 DOI: 10.1016/j.vaccine.2012.01.016] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 01/02/2012] [Accepted: 01/05/2012] [Indexed: 11/15/2022]
Abstract
The baculovirus-insect cell expression system is a well known tool for the production of complex proteins. The technology is also used for commercial manufacture of various veterinary and human vaccines. This review paper provides an overview of how this technology can be applied to produce a multitude of vaccine candidates. The key advantage of this recombinant protein manufacturing platform is that a universal "plug and play" process may be used for producing a broad range of protein-based prophylactic and therapeutic vaccines for both human and veterinary use while offering the potential for low manufacturing costs. Large scale mammalian cell culture facilities previously established for the manufacturing of monoclonal antibodies that have now become obsolete due to yield improvement could be deployed for the manufacturing of these vaccines. Alternatively, manufacturing capacity could be established in geographic regions that do not have any vaccine production capability. Dependent on health care priorities, different vaccines could be manufactured while maintaining the ability to rapidly convert to producing pandemic influenza vaccine when the need arises.
Collapse
Affiliation(s)
- Manon M J Cox
- Protein Sciences Corporation, 1000 Research Parkway, Meriden, CT 06450, USA.
| |
Collapse
|
9
|
Sokolenko S, George S, Wagner A, Tuladhar A, Andrich JMS, Aucoin MG. Co-expression vs. co-infection using baculovirus expression vectors in insect cell culture: Benefits and drawbacks. Biotechnol Adv 2012; 30:766-81. [PMID: 22297133 PMCID: PMC7132753 DOI: 10.1016/j.biotechadv.2012.01.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 01/13/2012] [Accepted: 01/17/2012] [Indexed: 12/12/2022]
Abstract
The baculovirus expression vector system (BEVS) is a versatile and powerful platform for protein expression in insect cells. With the ability to approach similar post-translational modifications as in mammalian cells, the BEVS offers a number of advantages including high levels of expression as well as an inherent safety during manufacture and of the final product. Many BEVS products include proteins and protein complexes that require expression from more than one gene. This review examines the expression strategies that have been used to this end and focuses on the distinguishing features between those that make use of single polycistronic baculovirus (co-expression) and those that use multiple monocistronic baculoviruses (co-infection). Three major areas in which researchers have been able to take advantage of co-expression/co-infection are addressed, including compound structure-function studies, insect cell functionality augmentation, and VLP production. The core of the review discusses the parameters of interest for co-infection and co-expression with time of infection (TOI) and multiplicity of infection (MOI) highlighted for the former and the choice of promoter for the latter. In addition, an overview of modeling approaches is presented, with a suggested trajectory for future exploration. The review concludes with an examination of the gaps that still remain in co-expression/co-infection knowledge and practice.
Collapse
Affiliation(s)
- Stanislav Sokolenko
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | | | |
Collapse
|
10
|
Opportunities and challenges for the baculovirus expression system. J Invertebr Pathol 2011; 107 Suppl:S3-15. [PMID: 21784228 DOI: 10.1016/j.jip.2011.05.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 01/28/2011] [Accepted: 01/28/2011] [Indexed: 11/23/2022]
|
11
|
Dojima T, Nishina T, Kato T, Uno T, Yagi H, Kato K, Ueda H, Park EY. Improved secretion of molecular chaperone-assisted human IgG in silkworm, and no alterations in their N-linked glycan structures. Biotechnol Prog 2010; 26:232-8. [PMID: 19918885 DOI: 10.1002/btpr.313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Human 29IJ6 IgG was expressed in silkworm using a Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid system. The mean amounts of 296IJ6 IgG produced in larval hemolymph and whole pupae were 30.1 microg/larva and 78.0 microg/pupa, respectively. The use of molecular chaperones including calreticulin (CRT), calnexin (CNX), and immunoglobulin heavy chain binding protein (BiP, GRP78) improved the production of 296IJ6 IgG secretion in the larvae fivefold. The total yield of recombinant 29IJ6 IgG was 239 microg/mL when coexpressed with CRT. However, the overexpression of molecular chaperones had negative effects on secretion. The N-linked glycans of secreted 296IJ6 IgG in silkworm hemolymph were dominated by paucimannose structures. Small amounts of GlcNAc residues linked to the Manalpha1,3 branch were detected. When molecular chaperones were coexpressed, the compositions of N-linked glycans in the IgG1 produced were unchanged compared with those produced without them. This suggests that N-glycosylation is controlled by a regulatory function in the Golgi apparatus even though the post-translational modification of 296IJ6 IgG was assisted by the coexpression of molecular chaperones. Therefore, if the glycosylation pathways that coexpress N-acetylglucosaminyltransferase, galactosyltransferase, and sialyltransferase could be improved, silkworm larvae might prove a useful system for producing human antibodies.
Collapse
Affiliation(s)
- Takashi Dojima
- Integrated Bioscience Section, Graduate School of Science and Technology, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Yasuda H, Hirose S, Kawakatsu T, Wakasa Y, Takaiwa F. Overexpression of BiP has Inhibitory Effects on the Accumulation of Seed Storage Proteins in Endosperm Cells of Rice. ACTA ACUST UNITED AC 2009; 50:1532-43. [DOI: 10.1093/pcp/pcp098] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
13
|
Comparison of the N-linked glycosylation of human beta1,3-N-acetylglucosaminyltransferase 2 expressed in insect cells and silkworm larvae. J Biotechnol 2009; 143:27-33. [PMID: 19540883 DOI: 10.1016/j.jbiotec.2009.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/30/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
N-Glycosylation of human beta1,3N-acetylglucosaminyltransferase 2 (beta3GnT2) is essential for its biological function. beta3GnT2 fused to GFP(uv) (GFP(uv)-beta3GnT2) was produced by non-virus expression systems in stably transformed insect cells and silkworm larvae using a recombinant BmNPV bacmid, and purified for analysis of N-glycosylation. The N-glycan structure of beta3GnT2 was identified by glycoamidase A digestion, labeling with 2-aminopyridine (PA), and HPLC mapping. The paucimannosidic N-glycan structure (73.2%) was predominant in stably transformed Trichoplusia ni cells. In contrast, N-glycan with Gal (21.3%) and GlcNAc (16.2%) terminal residues linked to Manalpha(1,3) branch were detected on beta3GnT2 expressed in silkworm larvae. The presence of terminal Gal and bisecting GlcNAc residues such as Galbeta1, 4GlcNAcbeta1, 2Manalpha1,3(GlcNAcbeta1,4)(Manalpha1,6)Manbeta1, 4GlcNAc is not typical structure for lepidopteran insect N-glycosylation. Although allergenic alpha1,3-fucose residues have been found in T. ni cells, only alpha1,6-fucose residues were attached to the beta3GnT2 glycan in silkworm larvae. Therefore, silkworm larvae might be a useful host for producing human glycoproteins.
Collapse
|
14
|
Nakajima M, Kato T, Kanamasa S, Park EY. Molecular chaperone-assisted production of human alpha-1,4-N-acetylglucosaminyltransferase in silkworm larvae using recombinant BmNPV bacmids. Mol Biotechnol 2009; 43:67-75. [PMID: 19418270 DOI: 10.1007/s12033-009-9174-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Accepted: 04/15/2009] [Indexed: 02/05/2023]
Abstract
In this study, human alpha-1,4-N-acetylglucosaminyltransferase (alpha4GnT) fused with GFP(uv) (GFP(uv)-alpha4GnT) was expressed using both a transformed cell system and silkworm larvae. A Tn-pXgp-GFP(uv)-alpha4GnT cell line, isolated after expression vector transfection, produced 106 mU/ml of alpha4GnT activity in suspension culture. When Bombyx mori nucleopolyhedrovirus containing a GFP(uv)-alpha4GnT fusion gene (BmNPV-CP (-)/GFP(uv)-alpha4GnT) bacmid was injected into silkworm larvae, alpha4GnT activity in larval hemolymph was 352 mU/ml, which was 3.3-fold higher than that of the Tn-pXgp-GFP(uv)-alpha4GnT cell line. With human calnexin (CNX) or human immunoglobulin heavy chain-binding protein (BiP, GRP78) coexpressed under the control of the ie-2 promoter, alpha4GnT activity in larval hemolymph increased by 1.4-2.0-fold. Moreover, when BmNPV-CP (-)/GFP(uv)-alpha4GnT bacmid injection was delayed for 3 h after BmNPV-CP (-)/CNX injection, the alpha4GnT activity increased significantly to 922 mU/ml, which was 8.7-fold higher than that of the Tn-pXgp-GFP(uv)-alpha4GnT cell line. Molecular chaperone assisted-expression in silkworm larvae using the BmNPV bacmid is a promising tool for recombinant protein production. This system could lead to large-scale production of more complex recombinant proteins.
Collapse
Affiliation(s)
- Makoto Nakajima
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | | | | | | |
Collapse
|
15
|
Khan SU, Schröder M. Engineering of chaperone systems and of the unfolded protein response. Cytotechnology 2008; 57:207-31. [PMID: 19003179 PMCID: PMC2570002 DOI: 10.1007/s10616-008-9157-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 07/18/2008] [Indexed: 12/19/2022] Open
Abstract
Production of recombinant proteins in mammalian cells is a successful technology that delivers protein pharmaceuticals for therapies and for diagnosis of human disorders. Cost effective production of protein biopharmaceuticals requires extensive optimization through cell and fermentation process engineering at the upstream and chemical engineering of purification processes at the downstream side of the production process. The majority of protein pharmaceuticals are secreted proteins. Accumulating evidence suggests that the folding and processing of these proteins in the endoplasmic reticulum (ER) is a general rate- and yield limiting step for their production. We will summarize our knowledge of protein folding in the ER and of signal transduction pathways activated by accumulation of unfolded proteins in the ER, collectively called the unfolded protein response (UPR). On the basis of this knowledge we will evaluate engineering approaches to increase cell specific productivities through engineering of the ER-resident protein folding machinery and of the UPR.
Collapse
Affiliation(s)
- Saeed U. Khan
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE UK
| | - Martin Schröder
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, DH1 3LE UK
| |
Collapse
|
16
|
Wu CM, Wu TY, Kao SS, Ko JL, Jinn TR. Expression and purification of a recombinant Fip-fve protein from Flammulina velutipes in baculovirus-infected insect cells. J Appl Microbiol 2008; 104:1354-62. [DOI: 10.1111/j.1365-2672.2007.03686.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
17
|
Brillet K, Perret BG, Klein V, Pattus F, Wagner R. Using EGFP fusions to monitor the functional expression of GPCRs in the Drosophila Schneider 2 cells. Cytotechnology 2008; 57:101-9. [PMID: 19003178 DOI: 10.1007/s10616-008-9125-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Accepted: 01/09/2008] [Indexed: 11/30/2022] Open
Abstract
In combining fluorescence measurements with ligand binding assays, the versatility of the EGFP C-terminally fused to the human mu opioid receptor (EGFP-hMOR) has been exploited to notably improve the expression level of functional G protein-coupled receptors in Drosophila S2 cells. A selected array of efficient optimization approaches is presented herein, ranging from a cell-sorting method, allowing for a substantial enrichment in EGFP-hMOR expressing cells, to the addition of chemical and pharmacological chaperones, significantly enhancing the yield and the activity of the expressed receptors. Consistent with previous studies, significant discrepancies were observed between the total amounts of fluorescent receptors over a limited subpopulation capable of ligand binding, even after expression optimization. Subsequently, membrane isopycnic centrifugation experiments allowed to separate the ligand binding active from the non-active membrane fraction, the latter most probably containing misfolded receptors. Taken together, these results illustrate a coherent set of advantageous productive and preparative methods for the production of GPCRs in the highly valuable Drosophila S2 expression system.
Collapse
Affiliation(s)
- Karl Brillet
- Département des Récepteurs et des Protéines Membranaires, Ecole Supérieure de Biotechnologie de Strasbourg, Université de Strasbourg - CNRS, UMR7175, BP 10413, 67 412, Illkirch, France
| | | | | | | | | |
Collapse
|
18
|
Liu JM, David WCC, Ip DTM, Li XH, Li GL, Wu XF, Yue WF, Zhang CX, Miao YG. High-level expression of orange fluorescent protein in the silkworm larvae by the Bac-to-Bac system. Mol Biol Rep 2007; 36:329-35. [DOI: 10.1007/s11033-007-9183-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Accepted: 11/12/2007] [Indexed: 11/28/2022]
|
19
|
Abstract
The biopharmaceuticals market is currently outperforming the pharmaceuticals market and is now valued at US$ 48 billion with an average annual growth of 19%. Behind this success is a 100-fold increase in productivities of eukaryotic expression systems. However, the productivity per cell has remained unchanged for more than 10 years. The engineering of the ER-resident protein folding machinery is discussed together with an overview of signal transduction pathways activated by heterologous protein overexpression to increase cell specific productivities.
Collapse
Affiliation(s)
- Martin Schröder
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
20
|
Kato T, Park EY. Specific expression of GFPuv-β1,3-N-acetylglucosaminyltransferase 2 fusion protein in fat body of Bombyx mori silkworm larvae using signal peptide. Biochem Biophys Res Commun 2007; 359:543-8. [PMID: 17544364 DOI: 10.1016/j.bbrc.2007.05.137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 05/18/2007] [Indexed: 10/23/2022]
Abstract
Bombyxin (bx) and prophenoloxidase-activating enzyme (ppae) signal peptides from Bombyx mori, their modified signal peptides, and synthetic signal peptides were investigated for the secretion of GFP(uv)-beta1,3-N-acetylglucosaminyltransferase 2 (GGT2) fusion protein in B. mori Bm5 cells and silkworm larvae using cysteine protease deficient B. mori multiple nucleopolyhedrovirus (BmMNPV-CP(-)) and its bacmid. The secretion efficiencies of all signal peptides were 15-30% in Bm5 cells and 24-30% in silkworm larvae, while that of the +16 signal peptide was 0% in Bm5 cells and 1% in silkworm larvae. The fusion protein that contained the +16 signal peptide was expressed specifically in the endoplasmic reticulum (ER) and in the fractions of cell precipitations. Ninety-four percent of total intracellular beta1,3-N-acetylglucosaminyltransferase (beta3GnT) activity was detected in cell precipitations following the 600, 8000, and 114,000g centrifugations. In the case of the +38 signal peptide, 60% of total intracellular activity was detected in the supernatant from the 114,000g spin, and only 1% was found in the precipitate. Our results suggest that the +16 signal peptide might be situated in the transmembrane region and not cleaved by signal peptidase in silkworm or B. mori cells. Therefore, the fusion protein connected to the +16 signal peptide stayed in the fat body of silkworm larvae with biological function, and was not secreted extracellularly.
Collapse
Affiliation(s)
- Tatsuya Kato
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, Shizuoka 422-8529, Japan
| | | |
Collapse
|
21
|
Park EY, Kageshima A, Kwon MS, Kato T. Enhanced production of secretory beta1,3-N-acetylglucosaminyltransferase 2 fusion protein into hemolymph of Bombyx mori larvae using recombinant BmNPV bacmid integrated signal sequence. J Biotechnol 2007; 129:681-8. [PMID: 17346841 DOI: 10.1016/j.jbiotec.2007.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 01/17/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
The enhanced secretion of beta1,3-N-acetylglucosaminyltransferase 2 (beta3GnT2) fusion protein into the hemolymph of Bombyx mori larvae was studied using a recombinant B. mori nucleopolyhedrovirus (BmNPV) bacmid integrating seven signal sequences. When the BmNPV bacmid encoding the signal sequences from the silkworm B. mori bombyxin (bx) and B. mori prophenoloxidase-activating enzyme (ppae) was injected into silkworm larvae, 56.1 and 51.5mU/ml beta3GnT, respectively, were secreted into the hemolymph of silkworm larvae. For bx, 97.3% of the total beta3GnT activity was secreted into hemolymph, and only 1.1% remained in the intestines of silkworm larvae. For ppae, 90.8% of the total beta3GnT activity was secreted to the hemolymph, but 7.8% remained in the intestines of silkworm larvae. Using the BmNPV bacmid encoding bx, the amount of secreted beta3GnT was 91mug per larva, which was 2.5% of the total amount of protein in the hemolymph.
Collapse
Affiliation(s)
- Enoch Y Park
- Laboratory of Biotechnology, Department of Applied Biological Chemistry, Shizuoka University, 836 Ohya Suruga-Ku, Shizuoka, Japan.
| | | | | | | |
Collapse
|
22
|
Jardin BA, Montes J, Lanthier S, Tran R, Elias C. High cell density fed batch and perfusion processes for stable non-viral expression of secreted alkaline phosphatase (SEAP) using insect cells: Comparison to a batch Sf-9-BEV system. Biotechnol Bioeng 2007; 97:332-45. [PMID: 17054119 DOI: 10.1002/bit.21224] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The development of insect cells expressing recombinant proteins in a stable continuous manner is an attractive alternative to the BEV system for recombinant protein production. High cell density fed batch and continuous perfusion processes can be designed to maximize the productivity of stably transformed cells. A cell line (Sf-9SEAP) expressing high levels of the reporter protein SEAP stably was obtained by lipid-mediated transfection of Sf-9 insect cells and further selection and screening. The expression of the Sf-9SEAP cells was compared with the BEVS system. It was observed that, the yield obtained in BEVS was similar to the batch Sf-9SEAP at 8 and 7 IU/mL, respectively. The productivity of this foreign gene product with the stable cells was enhanced by bioprocess intensification employing the fed-batch and perfusion modes of culture to increase the cell density in culture. The fed batch process yielded a maximum cell density of 28 x 10(6) cells/mL and 12 IU/mL of SEAP. Further improvements in the productivity could be made using the perfusion process, which demonstrated a stable production rate for extended periods of time. The process was maintained for 43 days, with a steady-state cell density of 17-20 x 10(6) cells/mL and 7 IU/mL SEAP. The total yield obtained in the perfusion process (394 IU) was approximately 22 and 8 times higher than that obtained in a batch (17.6 IU) and fed batch (46.1 IU) process, respectively.
Collapse
Affiliation(s)
- Barbara Ann Jardin
- Biotechnology Research Institute, National Research Council Canada, 6100 Royalmount Avenue Montreal, Quebec, Canada H4P2R2
| | | | | | | | | |
Collapse
|
23
|
Abstract
The baculovirus-insect cell expression system is an approved system for the production of viral antigens with vaccine potential for humans and animals and has been used for production of subunit vaccines against parasitic diseases as well. Many candidate subunit vaccines have been expressed in this system and immunization commonly led to protective immunity against pathogen challenge. The first vaccines produced in insect cells for animal use are now on the market. This chapter deals with the tailoring of the baculovirus-insect cell expression system for vaccine production in terms of expression levels, integrity and immunogenicity of recombinant proteins, and baculovirus genome stability. Various expression strategies are discussed including chimeric, virus-like particles, baculovirus display of foreign antigens on budded virions or in occlusion bodies, and specialized baculovirus vectors with mammalian promoters that express the antigen in the immunized individual. A historical overview shows the wide variety of viral (glyco)proteins that have successfully been expressed in this system for vaccine purposes. The potential of this expression system for antiparasite vaccines is illustrated. The combination of subunit vaccines and marker tests, both based on antigens expressed in insect cells, provides a powerful tool to combat disease and to monitor infectious agents.
Collapse
Affiliation(s)
- Monique M van Oers
- Laboratory of Virology, Wageningen University, Binnenhaven 11 6709 PD, Wageningen, The Netherlands
| |
Collapse
|
24
|
Fath-Goodin A, Kroemer J, Martin S, Reeves K, Webb BA. Polydnavirus Genes that Enhance the Baculovirus Expression Vector System. Adv Virus Res 2006; 68:75-90. [PMID: 16997009 DOI: 10.1016/s0065-3527(06)68002-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The baculovirus expression vector system (BEVS) is a powerful and versatile system for protein expression, which has many advantages. However, a limitation of any lytic viral expression system, including BEVS, is that death and lysis of infected insect cells terminates protein production. This results in interruption of protein production and higher production costs due to the need to set up new infections, maintain uninfected cells, and produce pure viral stocks. Genetic methods to slow or prevent cell death while maintaining high-level, virus-driven protein production could dramatically increase protein yields. Several approaches have been used to improve the BEVS and increase the synthesis of functional proteins. Successful enhancement of the BEVS was obtained when various gene elements were added to the virus, secretion and posttranslational processing were modified, or protein integrity was improved. A gene family from the insect virus Campoletis sonorensis ichnovirus (CsIV) was discovered that delays lysis of baculovirus-infected cells, thereby significantly enhancing recombinant protein production in the BEVS system. By using the CsIV vankyrin gene family, protein production in the vankyrin-enhanced BEVS (VE-BEVS) was increased by a factor of 4- to 15-fold by either coexpressing the vankyrin protein from a dual BEVS or by providing its activity in trans by expressing the vankyrin protein from a stably transformed cell line. In sum, VE-BEVS is an enhancement of the existing BEVS technology that markedly improves protein expression levels while reducing the cost of labor and materials.
Collapse
Affiliation(s)
- Angelika Fath-Goodin
- Department of Entomology, S-225 Agricultural Science Building North University of Kentucky, Lexington, Kentucky 40546, USA
| | | | | | | | | |
Collapse
|
25
|
Douris V, Swevers L, Labropoulou V, Andronopoulou E, Georgoussi Z, Iatrou K. Stably Transformed Insect Cell Lines: Tools for Expression of Secreted and Membrane‐anchored Proteins and High‐throughput Screening Platforms for Drug and Insecticide Discovery. Adv Virus Res 2006; 68:113-56. [PMID: 16997011 DOI: 10.1016/s0065-3527(06)68004-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Insect cell-based expression systems are prominent amongst current expression platforms for their ability to express virtually all types of heterologous recombinant proteins. Stably transformed insect cell lines represent an attractive alternative to the baculovirus expression system, particularly for the production of secreted and membrane-anchored proteins. For this reason, transformed insect cell systems are receiving increased attention from the research community and the biotechnology industry. In this article, we review recent developments in the field of insect cell-based expression from two main perspectives, the production of secreted and membrane-anchored proteins and the establishment of novel methodological tools for the identification of bioactive compounds that can be used as research reagents and leads for new pharmaceuticals and insecticides.
Collapse
Affiliation(s)
- Vassilis Douris
- Insect Molecular Genetics and Biotechnology Group, Institute of Biology National Centre for Scientific Research Demokritos, GR 153 10 Aghia Paraskevi Attikis (Athens), Greece
| | | | | | | | | | | |
Collapse
|