1
|
Liu C, Hirakawa H, Katsube T, Fang Y, Tanaka K, Nenoi M, Fujimori A, Wang B. Altered Induction of Reactive Oxygen Species by X-rays in Hematopoietic Cells of C57BL/6-Tg (CAG-EGFP) Mice. Int J Mol Sci 2021; 22:6929. [PMID: 34203224 PMCID: PMC8268547 DOI: 10.3390/ijms22136929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/20/2022] Open
Abstract
Previous work pointed to a critical role of excessive production of reactive oxygen species (ROS) in increased radiation hematopoietic death in GFP mice. Meanwhile, enhanced antioxidant capability was not demonstrated in the mouse model of radio-induced adaptive response (RAR) using rescue of radiation hematopoietic death as the endpoint. ROS induction by ex vivo X-irradiation at a dose ranging from 0.1 to 7.5 Gy in the nucleated bone marrow cells was comparatively studied using GFP and wild type (WT) mice. ROS induction was also investigated in the cells collected from mice receiving a priming dose (0.5 Gy) efficient for RAR induction in WT mice. Significantly elevated background and increased induction of ROS in the cells from GFP mice were observed compared to those from WT mice. Markedly lower background and decreased induction of ROS were observed in the cells collected from WT mice but not GFP mice, both receiving the priming dose. GFP overexpression could alter background and induction of ROS by X-irradiation in hematopoietic cells. The results provide a reasonable explanation to the previous study on the fate of cells and mice after X-irradiation and confirm enhanced antioxidant capability in RAR. Investigations involving GFP overexpression should be carefully interpreted.
Collapse
Affiliation(s)
- Cuihua Liu
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Hirokazu Hirakawa
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Takanori Katsube
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Yaqun Fang
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Kaoru Tanaka
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| | - Mitsuru Nenoi
- Human Resources Development Center, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan;
| | - Akira Fujimori
- Molecular and Cellular Radiation Biology Group, Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (C.L.); (H.H.); (Y.F.)
| | - Bing Wang
- Dietary Effects Research Group, Department of Radiation Effects Research, National Institute of Radiological Sciences, Quantum Life and Medical Science Directorate, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan; (T.K.); (K.T.)
| |
Collapse
|
2
|
Wolf P, Gavins G, Beck‐Sickinger AG, Seitz O. Strategies for Site-Specific Labeling of Receptor Proteins on the Surfaces of Living Cells by Using Genetically Encoded Peptide Tags. Chembiochem 2021; 22:1717-1732. [PMID: 33428317 PMCID: PMC8248378 DOI: 10.1002/cbic.202000797] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/08/2021] [Indexed: 12/14/2022]
Abstract
Fluorescence microscopy imaging enables receptor proteins to be investigated within their biological context. A key challenge is to site-specifically incorporate reporter moieties into proteins without interfering with biological functions or cellular networks. Small peptide tags offer the opportunity to combine inducible labeling with small tag sizes that avoid receptor perturbation. Herein, we review the current state of live-cell labeling of peptide-tagged cell-surface proteins. Considering their importance as targets in medicinal chemistry, we focus on membrane receptors such as G protein-coupled receptors (GPCRs) and receptor tyrosine kinases (RTKs). We discuss peptide tags that i) are subject to enzyme-mediated modification reactions, ii) guide the complementation of reporter proteins, iii) form coiled-coil complexes, and iv) interact with metal complexes. Given our own contributions in the field, we place emphasis on peptide-templated labeling chemistry.
Collapse
Affiliation(s)
- Philipp Wolf
- Faculty of Life SciencesInstitute of BiochemistryLeipzig UniversityBrüderstrasse 3404103LeipzigGermany
| | - Georgina Gavins
- Faculty of Mathematics and Natural SciencesDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| | - Annette G. Beck‐Sickinger
- Faculty of Life SciencesInstitute of BiochemistryLeipzig UniversityBrüderstrasse 3404103LeipzigGermany
| | - Oliver Seitz
- Faculty of Mathematics and Natural SciencesDepartment of ChemistryHumboldt-Universität zu BerlinBrook-Taylor-Str. 212489BerlinGermany
| |
Collapse
|
3
|
Fedik NS, Kletskii ME, Burov ON, Lisovin AV, Kurbatov SV, Chistyakov VA, Morozov PG. Comprehensive study of nitrofuroxanoquinolines. New perspective donors of NO molecules. Nitric Oxide 2019; 93:15-24. [DOI: 10.1016/j.niox.2019.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/31/2019] [Indexed: 10/26/2022]
|
4
|
Development of an oxidative stress sensor in live bacteria using the optimized HyPer2 protein. Antonie van Leeuwenhoek 2018; 112:167-177. [DOI: 10.1007/s10482-018-1140-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/07/2018] [Indexed: 01/15/2023]
|
5
|
McKay R, Hauk P, Quan D, Bentley WE. Development of Cell-Based Sentinels for Nitric Oxide: Ensuring Marker Expression and Unimodality. ACS Synth Biol 2018; 7:1694-1701. [PMID: 29975512 PMCID: PMC7025431 DOI: 10.1021/acssynbio.8b00146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We generated "sentinel" bacteria that respond to the biomarker nitric oxide (NO) and produce a homogeneous and strong fluorescent response. Our dual-plasmid system consists of a signal "relay" vector that employs an NO-responsive promoter that amplifies the native signal (via expression of T7 Polymerase (T7Pol)) to a second vector responsible for GFP expression. Importantly, to achieve an optimal "sentinel" response, we developed strategies that balance the transcriptional load within cells by altering (i) translation and (ii) activity of the T7Pol. Our optimized genetic circuitry was then used to transform commensal E. coli Nissle, as a proof-of-concept toward an ingestible cell-based sensor for Crohn's disease (CD) that, in turn, is marked by elevated levels of intestinal NO. Thus, the "biosensors" demonstrated here may serve as a simple diagnostic tool, contrasting the standard of care including colonoscopies or biopsies.
Collapse
Affiliation(s)
- Ryan McKay
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - Pricila Hauk
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - David Quan
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
6
|
Mathieu A, Fleurier S, Frénoy A, Dairou J, Bredeche MF, Sanchez-Vizuete P, Song X, Matic I. Discovery and Function of a General Core Hormetic Stress Response in E. coli Induced by Sublethal Concentrations of Antibiotics. Cell Rep 2017; 17:46-57. [PMID: 27681420 DOI: 10.1016/j.celrep.2016.09.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 07/18/2016] [Accepted: 08/29/2016] [Indexed: 01/28/2023] Open
Abstract
A better understanding of the impact of antibiotics on bacteria is required to increase the efficiency of antibiotic treatments and to slow the emergence of resistance. Using Escherichia coli, we examined how bacteria exposed to sublethal concentrations of ampicillin adjust gene expression patterns and metabolism to simultaneously deal with the antibiotic-induced damage and maintain rapid growth. We found that the treated cells increased energy production, as well as translation and macromolecular repair and protection. These responses are adaptive, because they confer increased survival not only to lethal ampicillin treatment but also to non-antibiotic lethal stresses. This robustness is modulated by nutrient availability. Because different antibiotics and other stressors induce the same set of responses, we propose that it constitutes a general core hormetic stress response. It is plausible that this response plays an important role in the robustness of bacteria exposed to antibiotic treatments and constant environmental fluctuations in natural environments.
Collapse
Affiliation(s)
- Aurélie Mathieu
- Inserm Unit 1001, Faculté de Médecine Paris Descartes, Université Paris-Descartes-Sorbonne Paris Cité, 75014 Paris, France
| | - Sébastien Fleurier
- Inserm Unit 1001, Faculté de Médecine Paris Descartes, Université Paris-Descartes-Sorbonne Paris Cité, 75014 Paris, France
| | - Antoine Frénoy
- Inserm Unit 1001, Faculté de Médecine Paris Descartes, Université Paris-Descartes-Sorbonne Paris Cité, 75014 Paris, France
| | - Julien Dairou
- UMR 8601 CNRS, Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université Paris Descartes-Sorbonne Paris Cité, 75270 Paris, France
| | - Marie-Florence Bredeche
- Inserm Unit 1001, Faculté de Médecine Paris Descartes, Université Paris-Descartes-Sorbonne Paris Cité, 75014 Paris, France
| | - Pilar Sanchez-Vizuete
- Inserm Unit 1001, Faculté de Médecine Paris Descartes, Université Paris-Descartes-Sorbonne Paris Cité, 75014 Paris, France
| | - Xiaohu Song
- Inserm Unit 1001, Faculté de Médecine Paris Descartes, Université Paris-Descartes-Sorbonne Paris Cité, 75014 Paris, France
| | - Ivan Matic
- Inserm Unit 1001, Faculté de Médecine Paris Descartes, Université Paris-Descartes-Sorbonne Paris Cité, 75014 Paris, France; Centre National de la Recherche Scientifique, 75016 Paris, France.
| |
Collapse
|
7
|
Ganini D, Leinisch F, Kumar A, Jiang J, Tokar EJ, Malone CC, Petrovich RM, Mason RP. Fluorescent proteins such as eGFP lead to catalytic oxidative stress in cells. Redox Biol 2017; 12:462-468. [PMID: 28334681 PMCID: PMC5362137 DOI: 10.1016/j.redox.2017.03.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 12/11/2022] Open
Abstract
Fluorescent proteins are an important tool that has become omnipresent in life sciences research. They are frequently used for localization of proteins and monitoring of cells [1,2]. Green fluorescent protein (GFP) was the first and has been the most used fluorescent protein. Enhanced GFP (eGFP) was optimized from wild-type GFP for increased fluorescence yield and improved expression in mammalian systems [3]. Many GFP-like fluorescent proteins have been discovered, optimized or created, such as the red fluorescent protein TagRFP [4]. Fluorescent proteins are expressed colorless and immature and, for eGFP, the conversion to the fluorescent form, mature, is known to produce one equivalent of hydrogen peroxide (H2O2) per molecule of chromophore [5,6]. Even though it has been proposed that this process is non-catalytic and generates nontoxic levels of H2O2 [6], this study investigates the role of fluorescent proteins in generating free radicals and inducing oxidative stress in biological systems. Immature eGFP and TagRFP catalytically generate the free radical superoxide anion (O2•-) and H2O2 in the presence of NADH. Generation of the free radical O2•- and H2O2 by eGFP in the presence of NADH affects the gene expression of cells. Many biological pathways are altered, such as a decrease in HIF1α stabilization and activity. The biological pathways altered by eGFP are known to be implicated in the pathophysiology of many diseases associated with oxidative stress; therefore, it is critical that such experiments using fluorescent proteins are validated with alternative methodologies and the results are carefully interpreted. Since cells inevitably experience oxidative stress when fluorescent proteins are expressed, the use of this tool for cell labeling and in vivo cell tracing also requires validation using alternative methodologies.
Collapse
Affiliation(s)
- Douglas Ganini
- Free Radical Biology, Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Fabian Leinisch
- Free Radical Biology, Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ashutosh Kumar
- Free Radical Biology, Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - JinJie Jiang
- Free Radical Biology, Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Erik J Tokar
- Stem Cell Toxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Christine C Malone
- Protein Expression Core Facility, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Robert M Petrovich
- Protein Expression Core Facility, Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Ronald P Mason
- Free Radical Biology, Immunity, Inflammation & Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
8
|
Bongers M, Chrysanthopoulos PK, Behrendorff JBYH, Hodson MP, Vickers CE, Nielsen LK. Systems analysis of methylerythritol-phosphate pathway flux in E. coli: insights into the role of oxidative stress and the validity of lycopene as an isoprenoid reporter metabolite. Microb Cell Fact 2015; 14:193. [PMID: 26610700 PMCID: PMC4662018 DOI: 10.1186/s12934-015-0381-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/11/2015] [Indexed: 12/13/2022] Open
Abstract
Background High-throughput screening methods assume that the output measured is representative of changes in metabolic flux toward the desired product and is not affected by secondary phenotypes. However, metabolic engineering can result in unintended phenotypes that may go unnoticed in initial screening. The red pigment lycopene, a carotenoid with antioxidant properties, has been used as a reporter of isoprenoid pathway flux in metabolic engineering for over a decade. Lycopene production is known to vary between wild-type Escherichia coli hosts, but the reasons behind this variation have never been fully elucidated. Results In an examination of six E. coli strains we observed that strains also differ in their capacity for increased lycopene production in response to metabolic engineering. A combination of genetic complementation, quantitative SWATH proteomics, and biochemical analysis in closely-related strains was used to examine the mechanistic reasons for variation in lycopene accumulation. This study revealed that rpoS, a gene previously identified in lycopene production association studies, exerts its effect on lycopene accumulation not through modulation of pathway flux, but through alteration of cellular oxidative status. Specifically, absence of rpoS results in increased accumulation of reactive oxygen species during late log and stationary phases. This change in cellular redox has no effect on isoprenoid pathway flux, despite the presence of oxygen-sensitive iron-sulphur cluster enzymes and the heavy redox requirements of the methylerythritol phosphate pathway. Instead, decreased cellular lycopene in the ΔrpoS strain is caused by degradation of lycopene in the presence of excess reactive oxygen species. Conclusions Our results demonstrate that lycopene is not a reliable indicator of isoprenoid pathway flux in the presence of oxidative stress, and suggest that caution should be exercised when using lycopene as a screening tool in genome-wide metabolic engineering studies. More extensive use of systems biology for strain analysis will help elucidate such unpredictable side-effects in metabolic engineering projects. Electronic supplementary material The online version of this article (doi:10.1186/s12934-015-0381-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mareike Bongers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Panagiotis K Chrysanthopoulos
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Metabolomics Australia (Queensland Node), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - James B Y H Behrendorff
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Mark P Hodson
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia. .,Metabolomics Australia (Queensland Node), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| | - Lars K Nielsen
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia.
| |
Collapse
|
9
|
Cell damage detection using Escherichia coli reporter plasmids: fluorescent and colorimetric assays. Arch Microbiol 2015; 197:815-21. [DOI: 10.1007/s00203-015-1119-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/21/2014] [Accepted: 05/07/2015] [Indexed: 10/23/2022]
|
10
|
Selection of Escherichia coli heat shock promoters toward their application as stress probes. J Biotechnol 2014; 188:61-71. [PMID: 25128614 DOI: 10.1016/j.jbiotec.2014.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 07/24/2014] [Accepted: 08/05/2014] [Indexed: 02/04/2023]
Abstract
The mechanism of heat shock response of Escherichia coli can be explored to program novel biological functions. In this study, the strongest heat shock promoters were identified by microarray experiments conducted at different temperatures (37°C and 45°C, 5min). The promoters of the genes ibpA, dnaK and fxsA were selected and validated by RT-qPCR. These promoters were used to construct and characterize stress probes using green fluorescence protein (GFP). Cellular stress levels were evaluated in experiments conducted at different shock temperatures during several exposure times. It was concluded that the strength of the promoter is not the only relevant factor in the construction of an efficient stress probe. Furthermore, it was found to be crucial to test and optimize the ribosome binding site (RBS) in order to obtain translational efficiency that balances the transcription levels previously verified by microarrays and RT-qPCR. These heat shock promoters can be used to trigger in situ gene expression of newly constructed biosynthetic pathways.
Collapse
|
11
|
Zafrilla G, Iglesias A, Marín M, Torralba L, Dorado-Morales P, Racero JL, Alcaina JJ, Morales LJ, Martínez L, Collantes M, Gómez L, Vilanova C, Porcar M. Towards light-mediated sensing of bacterial comfort. Lett Appl Microbiol 2014; 59:127-32. [PMID: 24785827 DOI: 10.1111/lam.12255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/25/2014] [Accepted: 03/19/2014] [Indexed: 11/29/2022]
Abstract
UNLABELLED Bacterial comfort is central to biotechnological applications. Here, we report the characterization of different sensoring systems, the first step within a broader synthetic biology-inspired light-mediated strategy to determine Escherichia coli perception of environmental factors critical to bacterial performance. We did so by directly 'asking' bacterial cultures with light-encoded questions corresponding to the excitation wavelength of fluorescent proteins placed under the control of environment-sensitive promoters. We built four genetic constructions with fluorescent proteins responding to glucose, temperature, oxygen and nitrogen; and a fifth construction allowing UV-induced expression of heterologous genes. Our engineered strains proved able to give feedback in response to key environmental factors and to express heterologous proteins upon light induction. This light-based dialoguing strategy reported here is the first effort towards developing a human-bacteria interphase with both fundamental and applied implications. SIGNIFICANCE AND IMPACT OF THE STUDY The results we present here are at the core of a larger synthetic biology research effort aiming at establishing a dialogue with bacteria. The framework is to convert the human voice into electric pulses, these into light pulses exciting bacterial fluorescent proteins, and convert light-emission back into electric pulses, which will be finally transformed into synthetic voice messages. We report here the first results of the project, in the form of light-based determination of key parameters for bacterial comfort. The ultimate goal of this strategy is to combine different engineered populations to have a combined feedback from the pool.
Collapse
Affiliation(s)
- G Zafrilla
- Universitat de València (Cavanilles Institute of Biodiversity and Evolutionary Biology), Valencia, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Nakayama T, Yonekura SI, Yonei S, Zhang-Akiyama QM. Escherichia coli pyruvate:flavodoxin oxidoreductase, YdbK - regulation of expression and biological roles in protection against oxidative stress. Genes Genet Syst 2014; 88:175-88. [PMID: 24025246 DOI: 10.1266/ggs.88.175] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
E. coli YdbK is predicted to be a pyruvate:flavodoxin oxidoreductase (PFOR). However, enzymatic activity and the regulation of gene expression of it are not well understood. In this study, we found that E. coli cells overexpressing the ydbK gene had enhanced PFOR activity, indicating the product of ydbK to be a PFOR. The PFOR was labile to oxygen. The expression of ydbK was induced by superoxide generators such as methyl viologen (MV) in a SoxS-dependent manner after a lag period. We identified a critical element upstream of ydbK gene required for the induction by MV and proved direct binding of SoxS to the element. E. coli ydbK mutant was highly sensitive to MV, which was enhanced by additional inactivation of fpr gene encoding ferredoxin (flavodoxin):NADP(H) reductase (FPR). Aconitase activity, a superoxide sensor, was more extensively decreased by MV in the E. coli ydbK mutant than in wild-type strain. The induction level of soxS gene was higher in E. coli ydbK fpr double mutant than in wild-type strain. These results indicate that YdbK helps to protect cells from oxidative stress. It is possible that YdbK maintains the cellular redox state together with FPR and is involved in the reduction of oxidized proteins including SoxR in the late stages of the oxidative stress response in E. coli.
Collapse
Affiliation(s)
- Takayuki Nakayama
- Laboratory of Stress Response Biology, Department of Biological Sciences, Graduate School of Science, Kyoto University
| | | | | | | |
Collapse
|
13
|
The ABC-type efflux pump MacAB protects Salmonella enterica serovar typhimurium from oxidative stress. mBio 2013; 4:e00630-13. [PMID: 24169575 PMCID: PMC3809562 DOI: 10.1128/mbio.00630-13] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multidrug efflux pumps are integral membrane proteins known to actively excrete antibiotics. The macrolide-specific pump MacAB, the only ABC-type drug efflux pump in Salmonella, has previously been linked to virulence in mice. The molecular mechanism of this link between macAB and infection is unclear. We demonstrate that macAB plays a role in the detoxification of reactive oxygen species (ROS), compounds that salmonellae are exposed to at various stages of infection. macAB is induced upon exposure to H2O2 and is critical for survival of Salmonella enterica serovar Typhimurium in the presence of peroxide. Furthermore, we determined that macAB is required for intracellular replication inside J774.A1 murine macrophages but is not required for survival in ROS-deficient J774.D9 macrophages. macAB mutants also had reduced survival in the intestine in the mouse colitis model, a model characterized by a strong neutrophilic intestinal infiltrate where bacteria may experience the cytotoxic actions of ROS. Using an Amplex red-coupled assay, macAB mutants appear to be unable to induce protection against exogenous H2O2in vitro, in contrast to the isogenic wild type. In mixed cultures, the presence of the wild-type organism, or media preconditioned by the growth of the wild-type organism, was sufficient to rescue the macAB mutant from peroxide-mediated killing. Our data indicate that the MacAB drug efflux pump has functions beyond resistance to antibiotics and plays a role in the protection of Salmonella against oxidative stress. Intriguingly, our data also suggest the presence of a soluble anti-H2O2 compound secreted by Salmonella cells through a MacAB-dependent mechanism. The ABC-type multidrug efflux pump MacAB is known to be required for Salmonella enterica serovar Typhimurium virulence after oral infection in mice, yet the function of this pump during infection is unknown. We show that this pump is necessary for colonization of niches in infected mice where salmonellae encounter oxidative stress during infection. MacAB is required for growth in cultured macrophages that produce reactive oxygen species (ROS) but is not needed in macrophages that do not generate ROS. In addition, we show that MacAB is required to resist peroxide-mediated killing in vitro and for the inactivation of peroxide in the media. Finally, wild-type organisms, or supernatant from wild-type organisms grown in the presence of peroxide, rescue the growth defect of macAB mutants in H2O2. MacAB appears to participate in the excretion of a compound that induces protection against ROS-mediated killing, revealing a new role for this multidrug efflux pump.
Collapse
|
14
|
Dimitrov MD, Pesheva MG, Venkov PV. New cell-based assay indicates dependence of antioxidant biological activity on the origin of reactive oxygen species. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:4344-4351. [PMID: 23586517 DOI: 10.1021/jf401045w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The mobility of the Ty1 transposon in Saccharomyces cerevisiae was found to vary proportionally with the level of ROS generated in cells, which provides the possibility to determine antioxidant activity by changes in a cellular process instead of using chemical reactions. The study of propolis, royal jelly, and honey with the newly developed Ty1antiROS test reveals an inverse exponential dependence of antioxidant activity on increased concentrations. This dependence can be transformed to proportional by changing the source of ROS: instead of cell-produced to applied as hydrogen peroxide. The different test responses are not due to excess of added hydrogen peroxide, as evidenced by the exponential dependence found by usage of yap1Δ tester cells accumulating cell-generated ROS. Results indicate that the activity of antioxidants to oxidative radicals depends on the origin of ROS, and this activity is elevated for cell-generated ROS compared to ROS added as reagents in the assay.
Collapse
Affiliation(s)
- Martin D Dimitrov
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia 1407, Bulgaria.
| | | | | |
Collapse
|
15
|
Global stress response in a prokaryotic model of DJ-1-associated Parkinsonism. J Bacteriol 2013; 195:1167-78. [PMID: 23292772 DOI: 10.1128/jb.02202-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
YajL is the most closely related Escherichia coli homolog of Parkinsonism-associated protein DJ-1, a protein with a yet-undefined function in the oxidative-stress response. YajL protects cells against oxidative-stress-induced protein aggregation and functions as a covalent chaperone for the thiol proteome, including FeS proteins. To clarify the cellular responses to YajL deficiency, transcriptional profiling of the yajL mutant was performed. Compared to the parental strain, the yajL mutant overexpressed genes coding for chaperones, proteases, chemical chaperone transporters, superoxide dismutases, catalases, peroxidases, components of thioredoxin and glutaredoxin systems, iron transporters, ferritins and FeS cluster biogenesis enzymes, DNA repair proteins, RNA chaperones, and small regulatory RNAs. It also overexpressed the RNA polymerase stress sigma factors sigma S (multiple stresses) and sigma 32 (protein stress) and activated the OxyR and SoxRS oxidative-stress transcriptional regulators, which together trigger the global stress response. The yajL mutant also overexpressed genes involved in septation and adopted a shorter and rounder shape characteristic of stressed bacteria. Biochemical experiments showed that this upregulation of many stress genes resulted in increased expression of stress proteins and improved biochemical function. Thus, protein defects resulting from the yajL mutation trigger the onset of a robust and global stress response in a prokaryotic model of DJ-1-associated Parkinsonism.
Collapse
|
16
|
Demidova EV, Goryachkovskaya TN, Malup TK, Bannikova SV, Semenov AI, Vinokurov NA, Kolchanov NA, Popik VM, Peltek SE. Studying the non-thermal effects of terahertz radiation on E. coli/pKatG-GFP biosensor cells. Bioelectromagnetics 2012; 34:15-21. [PMID: 22674118 DOI: 10.1002/bem.21736] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 04/26/2012] [Indexed: 11/11/2022]
Abstract
Studies of the impact of terahertz radiation on living objects present a significant interest since its use for security systems is currently considered promising. We studied the non-thermal impact of terahertz radiation on E. coli/pKatG-gfp biosensor cells. The Novosibirsk free electron laser (NovoFEL), which currently has the world's highest average and peak power, was used as the source of terahertz radiation. We demonstrated that exposure to terahertz radiation at the wavelengths of 130, 150, and 200 µm and a power of 1.4 W/cm(2) induces changes in green fluorescent protein (GFP) fluorescence values and thus induces the expression of GFP in E. coli/pKatG-gfp biosensor cells. Possible mechanisms of the E. coli response to non-thermal exposure to terahertz radiation are discussed.
Collapse
Affiliation(s)
- Elizaveta V Demidova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Yeom J, Lee Y, Park W. Effects of non-ionic solute stresses on biofilm formation and lipopolysaccharide production in Escherichia coli O157:H7. Res Microbiol 2012; 163:258-67. [DOI: 10.1016/j.resmic.2012.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/30/2012] [Indexed: 10/14/2022]
|
18
|
Kotova VY, Manukhov IV, Zavilgelskii GB. Lux-biosensors for detection of SOS-response, heat shock, and oxidative stress. APPL BIOCHEM MICRO+ 2010. [DOI: 10.1134/s0003683810080089] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Burton NA, Johnson MD, Antczak P, Robinson A, Lund PA. Novel Aspects of the Acid Response Network of E. coli K-12 Are Revealed by a Study of Transcriptional Dynamics. J Mol Biol 2010; 401:726-42. [DOI: 10.1016/j.jmb.2010.06.054] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/10/2010] [Accepted: 06/25/2010] [Indexed: 10/19/2022]
|
20
|
de Jong H, Ranquet C, Ropers D, Pinel C, Geiselmann J. Experimental and computational validation of models of fluorescent and luminescent reporter genes in bacteria. BMC SYSTEMS BIOLOGY 2010; 4:55. [PMID: 20429918 PMCID: PMC2877006 DOI: 10.1186/1752-0509-4-55] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 04/29/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Fluorescent and luminescent reporter genes have become popular tools for the real-time monitoring of gene expression in living cells. However, mathematical models are necessary for extracting biologically meaningful quantities from the primary data. RESULTS We present a rigorous method for deriving relative protein synthesis rates (mRNA concentrations) and protein concentrations by means of kinetic models of gene expression. We experimentally and computationally validate this approach in the case of the protein Fis, a global regulator of transcription in Escherichia coli. We show that the mRNA and protein concentration profiles predicted from the models agree quite well with direct measurements obtained by Northern and Western blots, respectively. Moreover, we present computational procedures for taking into account systematic biases like the folding time of the fluorescent reporter protein and differences in the half-lives of reporter and host gene products. The results show that large differences in protein half-lives, more than mRNA half-lives, may be critical for the interpretation of reporter gene data in the analysis of the dynamics of regulatory systems. CONCLUSIONS The paper contributes to the development of sound methods for the interpretation of reporter gene data, notably in the context of the reconstruction and validation of models of regulatory networks. The results have wide applicability for the analysis of gene expression in bacteria and may be extended to higher organisms.
Collapse
Affiliation(s)
- Hidde de Jong
- INRIA Grenoble - Rhône-Alpes, 655 Av. de l'Europe, Montbonnot, 38334 St Ismier Cedex, France
| | - Caroline Ranquet
- Institut Jean Roget, LAPM, UMR5163, Campus Santé, Université Joseph Fourier, Domaine de la Merci, 38700 La Tronche, France
- INRIA Grenoble - Rhône-Alpes, 655 Av. de l'Europe, Montbonnot, 38334 St Ismier Cedex, France
| | - Delphine Ropers
- INRIA Grenoble - Rhône-Alpes, 655 Av. de l'Europe, Montbonnot, 38334 St Ismier Cedex, France
| | - Corinne Pinel
- Institut Jean Roget, LAPM, UMR5163, Campus Santé, Université Joseph Fourier, Domaine de la Merci, 38700 La Tronche, France
- INRIA Grenoble - Rhône-Alpes, 655 Av. de l'Europe, Montbonnot, 38334 St Ismier Cedex, France
| | - Johannes Geiselmann
- Institut Jean Roget, LAPM, UMR5163, Campus Santé, Université Joseph Fourier, Domaine de la Merci, 38700 La Tronche, France
- INRIA Grenoble - Rhône-Alpes, 655 Av. de l'Europe, Montbonnot, 38334 St Ismier Cedex, France
| |
Collapse
|
21
|
Xu LY, Link AJ. Stress responses to heterologous membrane protein expression in Escherichia coli. Biotechnol Lett 2009; 31:1775-82. [PMID: 19588252 DOI: 10.1007/s10529-009-0075-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 06/19/2009] [Accepted: 06/22/2009] [Indexed: 11/25/2022]
Abstract
The stress response of E. coli to the expression of two recombinant membrane proteins, the E. coli AAA+ protease FtsH and the human G-protein coupled receptor CB1, was examined using several members of a promoter-GFP library. Several genes from the heat-shock and envelope stress regulons (rpoH, clpP, lon, and ftsH) were strongly induced by expression of either membrane protein. Flow cytometry was used to monitor the real-time dynamics of the transcription of these reporter genes in response to membrane protein expression. Co-expression of CB1 and FtsH led to an additive response in these four reporter genes suggesting that the stresses may be occurring via different physiological mechanisms.
Collapse
Affiliation(s)
- Lucy Y Xu
- Department of Chemical Engineering, Princeton University, A207 Engineering Quadrangle, Princeton, NJ 08544, USA
| | | |
Collapse
|
22
|
Gvakharia BO, Bottomley PJ, Arp DJ, Sayavedra-Soto LA. Construction of recombinant Nitrosomonas europaea expressing green fluorescent protein in response to co-oxidation of chloroform. Appl Microbiol Biotechnol 2009; 82:1179-85. [PMID: 19247648 DOI: 10.1007/s00253-009-1914-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/05/2009] [Accepted: 02/08/2009] [Indexed: 11/29/2022]
Abstract
Transcriptional fusions with gfp driven by the promoter region of mbla (NE2571) in pPRO/mbla4 and clpB (NE2402) in pPRO/clpb7 were used to transform the ammonia-oxidizing bacterium Nitrosomonas europaea (ATCC 19718). The two genes were chosen because their transcript levels were found at much higher levels in N. europaea in response to oxidation of chloroform and chloromethane. In N. europaea transformed with pPRO/mbla4, green fluorescent protein (GFP)-dependent fluorescence increased from 3- to 18-fold above control levels in response to increasing chloroform concentrations (7 to 28 microM), and from 8- to 10-fold in response to increasing hydrogen peroxide concentrations (2.5-7.5 mM). The GFP-dependent fluorescence of N. europaea transformed with pPRO/clpb7 also showed an increase of 6- to 10-fold in response to chloroform (28-100 microM) but did not respond to H(2)O(2). Our data provide proof of concept that biosensors can be fabricated in ammonia-oxidizing bacteria using "sentinel" genes that up-regulate in response to stress caused either by co-oxidation of chlorinated solvents or by the presence of H(2)O(2). The fabricated biosensors had a consistent concentration-dependent response to chloroform; however, these did not respond to other chlorinated compounds that cause similar cellular stress.
Collapse
Affiliation(s)
- Barbara O Gvakharia
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | | | | | | |
Collapse
|
23
|
Hartog E, Ben-Shalom L, Shachar D, Matthews KR, Yaron S. Regulation ofmarA, soxS, rob, acrABandmicFinSalmonella entericaserovar Typhimurium. Microbiol Immunol 2008; 52:565-74. [DOI: 10.1111/j.1348-0421.2008.00075.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Peltek SE, Goryachkovskaya TN, Popik VM, Pindyurin VF, Eliseev VS, Gol’denberg BG, Shcheglov MA, Tikunova NV, Khlebodarova TM, Rubtsov NB, Kulipanov GN, Kolchanov NA. Microfluidics in biology and genosensor construction. ACTA ACUST UNITED AC 2008. [DOI: 10.1134/s1995078008090127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Tikunova NV, Khlebodarova TM, Kachko AV, Stepanenko IL, Kolchanov NA. A computational-experimental approach to designing a polyfunctional genosensor derived from the Escherichia coli gene yfiA promoter. DOKL BIOCHEM BIOPHYS 2008; 417:357-61. [PMID: 18274460 DOI: 10.1134/s1607672907060191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- N V Tikunova
- Institute of Cytology and Genetics, Siberian Division, Russian Academy of Sciences, pr. Akademika Lavrent'eva 10, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
26
|
Khlebodarova TM, Tikunova NV, Kachko AV, Stepanenko IL, Podkolodny NL, Kolchanov NA. Application of bioinformatics resources for genosensor design. J Bioinform Comput Biol 2007; 5:507-20. [PMID: 17636858 DOI: 10.1142/s0219720007002813] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2006] [Revised: 02/12/2007] [Accepted: 02/13/2007] [Indexed: 11/18/2022]
Abstract
Two novel databases, GenSensor and ConSensor, have been developed. GenSensor accumulates information on the sensitivities of the prokaryotic genes to external stimuli and may facilitate designing of novel genosensors; ConSensor contains data about the structure and efficiency of the available genosensor plasmid constructs. Using these databases, candidate genes for the design of novel multiple functional genosensors were searched, and the Escherichia coli dps gene was chosen as the candidate. The genetic construct derived from its promoter was developed and tested for its sensitivity to various stress agents: hydrogen peroxide (oxidative stress), phenol (protein and membrane damaging), and mitomycin C (DNA damaging). This genosensor was found to be sensitive to all stress conditions applied confirming its ability to serve as multi-functional genosensor. The GenSensor and ConSensor databases are available at http://wwwmgs.bionet.nsc.ru/mgs/dbases/gensensor/index.html.
Collapse
Affiliation(s)
- Tamara M Khlebodarova
- Institute of Cytology and Genetics SB RAS, Lavrentieva Ave., 10, Novosibirsk 630090, Russia.
| | | | | | | | | | | |
Collapse
|
27
|
Tkachenko AG, Fedotova MV. Dependence of protective functions of Escherichia coli polyamines on strength of stress caused by superoxide radicals. BIOCHEMISTRY (MOSCOW) 2007; 72:109-16. [PMID: 17309444 DOI: 10.1134/s0006297907010130] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mechanisms of antioxidant effect of polyamines were studied in dependence on the strength of superoxide stress. Under conditions of weak stress, polyamines from Escherichia coli cultures were shown to function mainly as a scavenger of free superoxide radicals, whereas under conditions of strong stress they mainly acted as positive modulators of antioxidant genes. Spectrofluorimetry was used to show that both polyamine-dependent mutants and wild type cells treated with inhibitors of polyamine synthesis contained an elevated amount of free oxygen radicals, which could be decreased to the normal level by addition of exogenous polyamines. Under conditions of strong stress, polyamines positively influenced expression of the soxRS regulon genes of antioxidant defense, which was accompanied by an increase in the quantity (activity) of their gene products, such as glucose-6-phosphate dehydrogenase (Zwf) and fumarase (FumC). These effects led to an increase in the number of live cells in the cultures subjected to superoxide stress.
Collapse
Affiliation(s)
- A G Tkachenko
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, 614081, Russia.
| | | |
Collapse
|