1
|
Rathore D, Sevda S, Prasad S, Venkatramanan V, Chandel AK, Kataki R, Bhadra S, Channashettar V, Bora N, Singh A. Bioengineering to Accelerate Biodiesel Production for a Sustainable Biorefinery. Bioengineering (Basel) 2022; 9:618. [PMID: 36354528 PMCID: PMC9687738 DOI: 10.3390/bioengineering9110618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 09/08/2024] Open
Abstract
Biodiesel is an alternative, carbon-neutral fuel compared to fossil-based diesel, which can reduce greenhouse gas (GHGs) emissions. Biodiesel is a product of microorganisms, crop plants, and animal-based oil and has the potential to prosper as a sustainable and renewable energy source and tackle growing energy problems. Biodiesel has a similar composition and combustion properties to fossil diesel and thus can be directly used in internal combustion engines as an energy source at the commercial level. Since biodiesel produced using edible/non-edible crops raises concerns about food vs. fuel, high production cost, monocropping crisis, and unintended environmental effects, such as land utilization patterns, it is essential to explore new approaches, feedstock and technologies to advance the production of biodiesel and maintain its sustainability. Adopting bioengineering methods to produce biodiesel from various sources such as crop plants, yeast, algae, and plant-based waste is one of the recent technologies, which could act as a promising alternative for creating genuinely sustainable, technically feasible, and cost-competitive biodiesel. Advancements in genetic engineering have enhanced lipid production in cellulosic crops and it can be used for biodiesel generation. Bioengineering intervention to produce lipids/fat/oil (TGA) and further their chemical or enzymatic transesterification to accelerate biodiesel production has a great future. Additionally, the valorization of waste and adoption of the biorefinery concept for biodiesel production would make it eco-friendly, cost-effective, energy positive, sustainable and fit for commercialization. A life cycle assessment will not only provide a better understanding of the various approaches for biodiesel production and waste valorization in the biorefinery model to identify the best technique for the production of sustainable biodiesel, but also show a path to draw a new policy for the adoption and commercialization of biodiesel.
Collapse
Affiliation(s)
- Dheeraj Rathore
- School of Environment and Sustainable Development, Central University of Gujarat, Gandhinagar 382030, Gujarat, India
| | - Surajbhan Sevda
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India
| | - Shiv Prasad
- Division of Environment Science, ICAR—Indian Agricultural Research Institute, New Delhi 110012, Delhi, India
| | - Veluswamy Venkatramanan
- School of Interdisciplinary and Transdisciplinary Studies, Indira Gandhi National Open University, New Delhi 110068, Delhi, India
| | - Anuj Kumar Chandel
- Department of Biotechnology, Engineering School of Lorena (EEL), University of São Paulo (USP), Estrada Municipal do Campinho, Lorena 12602-810, SP, Brazil
| | - Rupam Kataki
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Sudipa Bhadra
- Environmental Bioprocess Laboratory, Department of Biotechnology, National Institute of Technology, Warangal 506004, Telangana, India
| | - Veeranna Channashettar
- Environmental and Industrial Biotechnology Division, The Energy and Resources Institute, Lodhi Road, New Delhi 110003, Delhi, India
| | - Neelam Bora
- Department of Energy, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Anoop Singh
- Department of Scientific and Industrial Research (DSIR), Ministry of Science and Technology, Government of India, Technology Bhawan, New Mehrauli Road, New Delhi 110016, Delhi, India
| |
Collapse
|
2
|
Gutiérrez-González M, Latorre Y, Zúñiga R, Aguillón JC, Molina MC, Altamirano C. Transcription factor engineering in CHO cells for recombinant protein production. Crit Rev Biotechnol 2019; 39:665-679. [PMID: 31030575 DOI: 10.1080/07388551.2019.1605496] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The continuous increase of approved biopharmaceutical products drives the development of more efficient recombinant protein expression systems. Chinese hamster ovary (CHO) cells are the mainstay for this purpose but have some drawbacks, such as low levels of expression. Several strategies have been applied to increase the productivity of CHO cells with different outcomes. Transcription factor (TF) engineering has emerged as an interesting and successful approach, as these proteins can act as master regulators; the expression and function of a TF can be controlled by small molecules, and it is possible to design tailored TFs and promoters with desired features. To date, the majority of studies have focused on the use of TFs with growth, metabolic, cell cycle or endoplasmic reticulum functions, although there is a trend to develop new, synthetic TFs. Moreover, new synthetic biological approaches are showing promising advances for the development of specific TFs, even with tailored ligand sensitivity. In this article, we summarize the strategies to increase recombinant protein expression by modulating and designing TFs and with advancements in synthetic biology. We also illustrate how this class of proteins can be used to develop more robust expression systems.
Collapse
Affiliation(s)
| | - Yesenia Latorre
- b Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| | - Roberto Zúñiga
- a Centro de InmunoBiotecnología, Universidad de Chile , Santiago , Chile
| | | | | | - Claudia Altamirano
- b Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso , Valparaíso , Chile
| |
Collapse
|
3
|
Wang D, Dai W, Wu J, Wang J. Improving transcriptional activity of human cytomegalovirus major immediate-early promoter by mutating NF-κB binding sites. Protein Expr Purif 2017; 142:16-24. [PMID: 28941824 DOI: 10.1016/j.pep.2017.09.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023]
Abstract
Many mammalian gene expression vectors express the transferred genes under the control of the cytomegalovirus (CMV) major immediate-early promoter (MIEP). The human MIEP has been known as the strongest promoter in mammalian cells and utilized widely in mammalian expression systems. There are four NF-κB binding sites (named as κBs) in the human MIEP. In this study, we have constructed multiple mutated MIEPs by changing the natural κBs in the human MIEP into the high-affinity artificial sequences that were in vitro selected by using systematic evolution of ligands by exponential enrichment (SELEX) and predicted by bioinformatics. With various transcriptional activity evaluations, we found three mutated MIEPs with the transcriptional activity higher than the wild-type MIEP, which should be useful and widely applicable in many mammalian transgene expression fields such as gene engineering, gene therapy and gene editing. This study provides a useful approach for promoter engineering in biotechnology. This study also produced a series of mutated MIEPs with various transcriptional activities, which may be used for the fine control of gene expression output in the future synthetic biology.
Collapse
Affiliation(s)
- Danyang Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Wei Dai
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jian Wu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Jinke Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China.
| |
Collapse
|
4
|
Identifying and engineering promoters for high level and sustainable therapeutic recombinant protein production in cultured mammalian cells. Biotechnol Lett 2014; 36:1569-79. [DOI: 10.1007/s10529-014-1523-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/25/2014] [Indexed: 12/15/2022]
|
5
|
Lin H, Wang Q, Shen Q, Zhan J, Zhao Y. Genetic engineering of microorganisms for biodiesel production. Bioengineered 2012; 4:292-304. [PMID: 23222170 DOI: 10.4161/bioe.23114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples.
Collapse
Affiliation(s)
- Hui Lin
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou, China; Institute of Plant Science; College of Life Sciences; Zhejiang University; Hangzhou, China
| | | | | | | | | |
Collapse
|
6
|
Rubin AD, Hogikyan ND, Oh A, Feldman EL. Potential for promoting recurrent laryngeal nerve regeneration by remote delivery of viral gene therapy. Laryngoscope 2012; 122:349-55. [PMID: 22241608 DOI: 10.1002/lary.22436] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/06/2011] [Accepted: 10/13/2011] [Indexed: 12/22/2022]
Abstract
OBJECTIVES/HYPOTHESIS The aims of this study were to demonstrate the ability to enhance nerve regeneration by remote delivery of a viral vector to the crushed recurrent laryngeal nerve (RLN), to demonstrate the usefulness of a crushed RLN model to test the efficacy of viral gene therapy, and to discuss future potential applications of this approach. STUDY DESIGN Animal study. METHODS Adult Sprague-Dawley rats were assigned to two groups. In the experimental group, an adeno-associated viral (AAV) vector carrying a zinc-finger transcription factor, which stimulates endogenous insulinlike growth factor I production (AAV2-TO-6876vp16), was injected into the crushed RLN. In the control group, an AAV vector carrying the gene for green fluorescent protein was injected into the crushed RLN. Unilateral RLN paralysis was confirmed endoscopically. At 1 week, laryngeal endoscopies were repeated and recorded. Larynges were cryosectioned in 15-μm sections and processed for acetylcholine histochemistry (motor endplates) followed by neurofilament immunoperoxidase (nerve fibers). Percentage nerve-endplate contact (PEC) was determined and compared. Vocal fold motion was evaluated by blinded reviewers using a visual analogue scale (VAS). RESULTS The difference between PEC on the crushed and uncrushed sides was statistically less in the experimental group (0.54 ± 0.18 vs. 0.30 ± 0.26, P = .0006). The VAS score at 1 week was significantly better in the experimental group (P = .002). CONCLUSIONS AAV2-TO-6876vp16 demonstrated a neurotrophic effect when injected into the crushed RLN. The RLN offers a conduit for viral gene therapy to the brainstem that could be useful for the treatment of RLN injury or bulbar motor neuron disease.
Collapse
Affiliation(s)
- Adam D Rubin
- Lakeshore Professional Voice Center, St. Clair Shores, Michigan, University of Michigan, Ann Arbor, Michigan 48081, USA.
| | | | | | | |
Collapse
|
7
|
Geiβler R, Scholze H, Hahn S, Streubel J, Bonas U, Behrens SE, Boch J. Transcriptional activators of human genes with programmable DNA-specificity. PLoS One 2011; 6:e19509. [PMID: 21625585 PMCID: PMC3098229 DOI: 10.1371/journal.pone.0019509] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 03/30/2011] [Indexed: 02/07/2023] Open
Abstract
TAL (transcription activator-like) effectors are translocated by Xanthomonas bacteria into plant cells where they activate transcription of target genes. DNA target sequence recognition occurs in a unique mode involving a central domain of tandem repeats. Each repeat recognizes a single base pair in a contiguous DNA sequence and a pair of adjacent hypervariable amino acid residues per repeat specifies which base is bound. Rearranging the repeats allows the design of novel TAL proteins with predictable DNA-recognition specificities. TAL protein-based transcriptional activation in plant cells is mediated by a C-terminal activation domain (AD). Here, we created synthetic TAL proteins with designed repeat compositions using a novel modular cloning strategy termed “Golden TAL Technology”. Newly programmed TAL proteins were not only functional in plant cells, but also in human cells and activated targeted expression of exogenous as well as endogenous genes. Transcriptional activation in different human cell lines was markedly improved by replacing the TAL-AD with the VP16-AD of herpes simplex virus. The creation of TAL proteins with potentially any desired DNA-recognition specificity allows their versatile use in biotechnology.
Collapse
Affiliation(s)
- René Geiβler
- Section Microbial Biotechnology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Scholze
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Simone Hahn
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Jana Streubel
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Ulla Bonas
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sven-Erik Behrens
- Section Microbial Biotechnology, Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail: (JB); (S-EB)
| | - Jens Boch
- Institute of Biology, Department of Genetics, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
- * E-mail: (JB); (S-EB)
| |
Collapse
|
8
|
A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2010; 29:143-8. [PMID: 21179091 DOI: 10.1038/nbt.1755] [Citation(s) in RCA: 1516] [Impact Index Per Article: 101.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/14/2010] [Indexed: 11/08/2022]
Abstract
Nucleases that cleave unique genomic sequences in living cells can be used for targeted gene editing and mutagenesis. Here we develop a strategy for generating such reagents based on transcription activator-like effector (TALE) proteins from Xanthomonas. We identify TALE truncation variants that efficiently cleave DNA when linked to the catalytic domain of FokI and use these nucleases to generate discrete edits or small deletions within endogenous human NTF3 and CCR5 genes at efficiencies of up to 25%. We further show that designed TALEs can regulate endogenous mammalian genes. These studies demonstrate the effective application of designed TALE transcription factors and nucleases for the targeted regulation and modification of endogenous genes.
Collapse
|
9
|
Davis D, Stokoe D. Zinc finger nucleases as tools to understand and treat human diseases. BMC Med 2010; 8:42. [PMID: 20594338 PMCID: PMC2904710 DOI: 10.1186/1741-7015-8-42] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/01/2010] [Indexed: 11/10/2022] Open
Abstract
Recent work has shown that it is possible to target regulatory elements to DNA sequences of an investigator's choosing, increasing the armamentarium for probing gene function. In this review, we discuss the development and use of designer zinc finger proteins (ZFPs) as sequence specific tools. While the main focus of this review is to discuss the attachment of the FokI nuclease to ZFPs and the ability of the resulting fusion protein (termed zinc finger nucleases (ZFNs)) to genomically manipulate a gene of interest, we will also cover the utility of other functional domains, such as transcriptional activators and repressors, and highlight how these are being used as discovery and therapeutic tools.
Collapse
Affiliation(s)
- David Davis
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, USA
| | - David Stokoe
- Department of Molecular Biology, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, USA
| |
Collapse
|
10
|
Lee LW, Mapp AK. Transcriptional switches: chemical approaches to gene regulation. J Biol Chem 2010; 285:11033-8. [PMID: 20147748 DOI: 10.1074/jbc.r109.075044] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Given the role of transcriptional misregulation in the pathogenesis of human disease, there is enormous interest in the development of molecules that exogenously control transcription in a defined manner. The past decade has seen many exciting advancements in the identification of molecules that mimic or inhibit the interactions between natural transcriptional activators and their binding partners. In this minireview, we focus on four activator.target protein complexes, highlighting recent advances as well as challenges in the field.
Collapse
Affiliation(s)
- Lori W Lee
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
11
|
Majmudar CY, Labut AE, Mapp AK. Tra1 as a screening target for transcriptional activation domain discovery. Bioorg Med Chem Lett 2009; 19:3733-5. [PMID: 19497740 PMCID: PMC4322765 DOI: 10.1016/j.bmcl.2009.05.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/09/2009] [Accepted: 05/12/2009] [Indexed: 01/20/2023]
Abstract
There is tremendous interest in developing activator artificial transcription factors that functionally mimic endogenous transcriptional activators for use as mechanistic probes, as components of synthetic cell circuitry, and in transcription-targeted therapies. Here, we demonstrate that a phage display selection against the transcriptional activation domain binding motif of the coactivator Tra1(TRRAP) produces distinct sequences that function with similar binding modes and potency as natural activators. These findings set the stage for binding screens with small molecule libraries against TAD binding motifs to yield next-generation small molecule TADs.
Collapse
Affiliation(s)
- Chinmay Y. Majmudar
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| | - Anne E. Labut
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| | - Anna K. Mapp
- Department of Chemistry, University of Michigan, 930 N. University, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol 2009; 141:31-41. [PMID: 19428728 DOI: 10.1016/j.jbiotec.2009.02.018] [Citation(s) in RCA: 260] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 02/15/2009] [Accepted: 02/20/2009] [Indexed: 01/03/2023]
Abstract
This paper compares three possible strategies for enhanced lipid overproduction in microalgae: the biochemical engineering (BE) approaches, the genetic engineering (GE) approaches, and the transcription factor engineering (TFE) approaches. The BE strategy relies on creating a physiological stress such as nutrient-starvation or high salinity to channel metabolic fluxes to lipid accumulation. The GE strategy exploits our understanding to the lipid metabolic pathway, especially the rate-limiting enzymes, to create a channelling of metabolites to lipid biosynthesis by overexpressing one or more key enzymes in recombinant microalgal strains. The TFE strategy is an emerging technology aiming at enhancing the production of a particular metabolite by means of overexpressing TFs regulating the metabolic pathways involved in the accumulation of target metabolites. Currently, BE approaches are the most established in microalgal lipid production. The TFE is a very promising strategy because it may avoid the inhibitive effects of the BE approaches and the limitation of "secondary bottlenecks" as commonly observed in the GE approaches. However, it is still a novel concept to be investigated systematically.
Collapse
|