1
|
Anziani P, Becker J, Mignon C, Arnaud-Barbe N, Courtois V, Izac M, Pizzato R, Abi-Ghanem J, Tran VD, Sarafian M, Bunescu A, Garnier D, Abachin E, Renauld-Mongénie G, Guyard C. Deep longitudinal multi-omics analysis of Bordetella pertussis cultivated in bioreactors highlights medium starvations and transitory metabolisms, associated to vaccine antigen biosynthesis variations and global virulence regulation. Front Microbiol 2023; 14:1036386. [PMID: 36876086 PMCID: PMC9976334 DOI: 10.3389/fmicb.2023.1036386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/05/2023] [Indexed: 02/16/2023] Open
Abstract
Bordetella pertussis is the bacterial causative agent of whooping cough, a serious respiratory illness. An extensive knowledge on its virulence regulation and metabolism is a key factor to ensure pertussis vaccine manufacturing process robustness. The aim of this study was to refine our comprehension of B. pertussis physiology during in vitro cultures in bioreactors. A longitudinal multi-omics analysis was carried out over 26 h small-scale cultures of B. pertussis. Cultures were performed in batch mode and under culture conditions intending to mimic industrial processes. Putative cysteine and proline starvations were, respectively, observed at the beginning of the exponential phase (from 4 to 8 h) and during the exponential phase (18 h 45 min). As revealed by multi-omics analyses, the proline starvation induced major molecular changes, including a transient metabolism with internal stock consumption. In the meantime, growth and specific total PT, PRN, and Fim2 antigen productions were negatively affected. Interestingly, the master virulence-regulating two-component system of B. pertussis (BvgASR) was not evidenced as the sole virulence regulator in this in vitro growth condition. Indeed, novel intermediate regulators were identified as putatively involved in the expression of some virulence-activated genes (vags). Such longitudinal multi-omics analysis applied to B. pertussis culture process emerges as a powerful tool for characterization and incremental optimization of vaccine antigen production.
Collapse
Affiliation(s)
- Paul Anziani
- Sanofi, Marcy-l'Étoile, France.,BIOASTER, Lyon, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
2
|
van den Biggelaar RHGA, Hoefnagel MHN, Vandebriel RJ, Sloots A, Hendriksen CFM, van Eden W, Rutten VPMG, Jansen CA. Overcoming scientific barriers in the transition from in vivo to non-animal batch testing of human and veterinary vaccines. Expert Rev Vaccines 2021; 20:1221-1233. [PMID: 34550041 DOI: 10.1080/14760584.2021.1977628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Before release, vaccine batches are assessed for quality to evaluate whether they meet the product specifications. Vaccine batch tests, in particular of inactivated and toxoid vaccines, still largely rely on in vivo methods. Improved vaccine production processes, ethical concerns, and suboptimal performance of some in vivo tests have led to the development of in vitro alternatives. AREAS COVERED This review describes the scientific constraints that need to be overcome for replacement of in vivo batch tests, as well as potential solutions. Topics include the critical quality attributes of vaccines that require testing, the use of cell-based assays to mimic aspects of in vivo vaccine-induced immune responses, how difficulties with testing adjuvanted vaccines in vitro can be overcome, the use of altered batches to validate new in vitro test methods, and how cooperation between different stakeholders is key to moving the transition forward. EXPERT OPINION For safety testing, many in vitro alternatives are already available or at an advanced level of development. For potency testing, in vitro alternatives largely comprise immunochemical methods that assess several, but not all critical vaccine properties. One-to-one replacement by in vitro alternatives is not always possible and a combination of methods may be required.
Collapse
Affiliation(s)
- Robin H G A van den Biggelaar
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Rob J Vandebriel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Arjen Sloots
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | | | - Willem van Eden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Victor P M G Rutten
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christine A Jansen
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Lesne E, Cavell BE, Freire-Martin I, Persaud R, Alexander F, Taylor S, Matheson M, van Els CACM, Gorringe A. Acellular Pertussis Vaccines Induce Anti-pertactin Bactericidal Antibodies Which Drives the Emergence of Pertactin-Negative Strains. Front Microbiol 2020; 11:2108. [PMID: 32983069 PMCID: PMC7481377 DOI: 10.3389/fmicb.2020.02108] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Despite high vaccination coverage, Bordetella pertussis the causative agent of whooping cough is still a health concern worldwide. A resurgence of pertussis cases has been reported, particularly in countries using acellular vaccines with waning immunity and pathogen adaptation thought to be responsible. A better understanding of protective immune responses is needed for the development of improved vaccines. In our study, B. pertussis strain B1917 variants presenting a single gene deletion were generated to analyze the role of vaccine components or candidate vaccine antigens as targets for bactericidal antibodies generated after acellular vaccination or natural infection. Our results show that acellular vaccination generates bactericidal antibodies that are only directed against pertactin. Serum bactericidal assay performed with convalescent samples show that disease induces bactericidal antibodies against Prn but against other antigen(s) as well. Four candidate vaccine antigens (CyaA, Vag8, BrkA, and TcfA) have been studied but were not targets for complement-mediated bactericidal antibodies after natural infection. We confirm that Vag8 and BrkA are involved in complement resistance and would be targeted by blocking antibodies. Our study suggests that the emergence and the widespread circulation of Prn-deficient strains is driven by acellular vaccination and the generation of bactericidal antibodies targeting Prn.
Collapse
Affiliation(s)
- Elodie Lesne
- Public Health England, Porton Down, United Kingdom
| | | | | | - Ruby Persaud
- Public Health England, Porton Down, United Kingdom
| | | | | | | | - Cécile A. C. M. van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | | |
Collapse
|
4
|
Raeven RHM, van Vlies N, Salverda MLM, van der Maas L, Uittenbogaard JP, Bindels THE, Rigters J, Verhagen LM, Kruijer S, van Riet E, Metz B, van der Ark AAJ. The Role of Virulence Proteins in Protection Conferred by Bordetella pertussis Outer Membrane Vesicle Vaccines. Vaccines (Basel) 2020; 8:E429. [PMID: 32751680 PMCID: PMC7563335 DOI: 10.3390/vaccines8030429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/16/2020] [Accepted: 07/27/2020] [Indexed: 12/13/2022] Open
Abstract
The limited protective immunity induced by acellular pertussis vaccines demands development of novel vaccines that induce broader and longer-lived immunity. In this study, we investigated the protective capacity of outer membrane vesicle pertussis vaccines (omvPV) with different antigenic composition in mice to gain insight into which antigens contribute to protection. We showed that total depletion of virulence factors (bvg(-) mode) in omvPV led to diminished protection despite the presence of high antibody levels. Antibody profiling revealed overlap in humoral responses induced by vaccines in bvg(-) and bvg(+) mode, but the potentially protective responses in the bvg(+) vaccine were mainly directed against virulence-associated outer membrane proteins (virOMPs) such as BrkA and Vag8. However, deletion of either BrkA or Vag8 in our outer membrane vesicle vaccines did not affect the level of protection. In addition, the vaccine-induced immunity profile, which encompasses broad antibody and mixed T-helper 1, 2 and 17 responses, was not changed. We conclude that the presence of multiple virOMPs in omvPV is crucial for protection against Bordetella pertussis. This protective immunity does not depend on individual proteins, as their absence or low abundance can be compensated for by other virOMPs.
Collapse
Affiliation(s)
- René H. M. Raeven
- Intravacc (Institute for Translational Vaccinology), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands; (N.v.V.); (M.L.M.S.); (L.v.d.M.); (J.P.U.); (T.H.E.B.); (J.R.); (L.M.V.); (S.K.); (E.v.R.); (B.M.); (A.A.J.v.d.A.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Kruiswijk C, Richard G, Salverda MLM, Hindocha P, Martin WD, De Groot AS, Van Riet E. In silico identification and modification of T cell epitopes in pertussis antigens associated with tolerance. Hum Vaccin Immunother 2020; 16:277-285. [PMID: 31951773 PMCID: PMC7062413 DOI: 10.1080/21645515.2019.1703453] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The resurgence of whooping cough since the introduction of acellular (protein) vaccines has led to a renewed interest in the development of improved pertussis vaccines; Outer Membrane Vesicles (OMVs) carrying pertussis antigens have emerged as viable candidates. An in silico immunogenicity screen was carried out on 49 well-known Bordetella pertussis proteins in order to better understand their potential role toward the efficacy of pertussis OMVs for vaccine design; seven proteins were identified as being good candidates for including in optimized cellular and acellular pertussis vaccines. We then screened these antigens for putative tolerance-inducing sequences, as proteins with reduced tolerogenicity have improved vaccine potency in preclinical models. We used specialized homology tools (JanusMatrix) to identify peptides in the proteins that were cross-reactive with human sequences. Four of the 19 identified cross-reactive peptides were detolerized in silico using a separate tool, OptiMatrix, which disrupted the potential of these peptides to bind to human HLA and murine MHC. Four selected cross-reactive peptides and their detolerized variants were synthesized and their binding to a set of eight common HLA class II alleles was assessed in vitro. Reduced binding affinity to HLA class II was observed for the detolerized variants compared to the wild-type peptides, highlighting the potential of this approach for designing more efficacious pertussis vaccines.
Collapse
Affiliation(s)
- Corine Kruiswijk
- Department of Experimental Immunology & Clinical Research, Intravacc, Bilthoven, Netherlands
| | | | - Merijn L M Salverda
- Department of Experimental Immunology & Clinical Research, Intravacc, Bilthoven, Netherlands
| | | | | | | | - Elly Van Riet
- Department of Experimental Immunology & Clinical Research, Intravacc, Bilthoven, Netherlands
| |
Collapse
|
6
|
Kamminga T, Slagman SJ, Martins Dos Santos VAP, Bijlsma JJE, Schaap PJ. Risk-Based Bioengineering Strategies for Reliable Bacterial Vaccine Production. Trends Biotechnol 2019; 37:805-816. [PMID: 30961926 DOI: 10.1016/j.tibtech.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/25/2019] [Accepted: 03/04/2019] [Indexed: 11/18/2022]
Abstract
Design of a reliable process for bacterial antigen production requires understanding of and control over critical process parameters. Current methods for process design use extensive screening experiments for determining ranges of critical process parameters yet fail to give clear insights into how they influence antigen potency. To address this gap, we propose to apply constraint-based, genome-scale metabolic models to reduce the need of experimental screening for strain selection and to optimize strains based on model driven iterative Design-Build-Test-Learn (DBTL) cycles. Application of these systematic methods has not only increased the understanding of how metabolic network properties influence antigen potency, but also allows identification of novel critical process parameters that need to be controlled to achieve high process reliability.
Collapse
Affiliation(s)
- Tjerko Kamminga
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, The Netherlands; Bioprocess Technology and Support, MSD Animal Health, Boxmeer, The Netherlands; https://www.wur.nl/en/Research-Results/Chair-groups/Agrotechnology-and-Food-Sciences/Laboratory-of-Systems-and-Synthetic-Biology.htm.
| | - Simen-Jan Slagman
- Manufacturing Science and Technology, Bilthoven Biologicals, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, The Netherlands; https://www.wur.nl/en/Research-Results/Chair-groups/Agrotechnology-and-Food-Sciences/Laboratory-of-Systems-and-Synthetic-Biology.htm
| | - Jetta J E Bijlsma
- Discovery and Technology, MSD Animal Health, Boxmeer, The Netherlands
| | - Peter J Schaap
- Laboratory of Systems and Synthetic Biology, Department of Agrotechnology and Food Sciences, Wageningen University and Research, Wageningen, The Netherlands; https://www.wur.nl/en/Research-Results/Chair-groups/Agrotechnology-and-Food-Sciences/Laboratory-of-Systems-and-Synthetic-Biology.htm.
| |
Collapse
|
7
|
Metz B, Hoonakker M, Uittenbogaard JP, Weyts M, Mommen GPM, Meiring HD, Tilstra W, Pennings JLA, van der Pol LA, Kuipers B, Sloots A, van den IJssel J, van de Waterbeemd B, van der Ark A. Proteome Analysis Is a Valuable Tool to Monitor Antigen Expression during Upstream Processing of Whole-Cell Pertussis Vaccines. J Proteome Res 2016; 16:528-537. [PMID: 27977922 DOI: 10.1021/acs.jproteome.6b00668] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Physicochemical and immunochemical assays were applied to substantiate the relation between upstream processing and the quality of whole-cell pertussis vaccines. Bordetella pertussis bacteria were cultured on a chemically defined medium using a continuous cultivation process in stirred tank reactors to obtain uniform protein expression. Continuous culture favors the consistent production of proteins known as virulence factors. Magnesium sulfate was added during the steady state of the culture in order to diminish the expression of virulence proteins. Changes in gene expression and antigen composition were measured by microarrays, mass spectrometry and ELISA. Transcriptome and proteome data revealed high similarity between the biological triplicates demonstrating consistent cultivation of B. pertussis. The addition of magnesium sulfate resulted in an instant downregulation of the virulence genes in B. pertussis, but a gradual decrease of virulence proteins. The quantity of virulence proteins concurred highly with the potency of the corresponding whole-cell pertussis vaccines, which were determined by the Kendrick test. In conclusion, proteome analysis provided detailed information on the composition and proportion of virulence proteins present in the whole-cell preparations of B. pertussis. Moreover, proteome analysis is a valuable method to monitor the production process of whole-cell biomass and predict the product quality of whole-cell pertussis vaccines.
Collapse
Affiliation(s)
- Bernard Metz
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Marieke Hoonakker
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Joost P Uittenbogaard
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Michel Weyts
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Geert P M Mommen
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Hugo D Meiring
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Wichard Tilstra
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- National Institute for Public Health and the Environment , P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Leo A van der Pol
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Betsy Kuipers
- National Institute for Public Health and the Environment , P.O. Box 1, 3720 BA Bilthoven, The Netherlands
| | - Arjen Sloots
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Jan van den IJssel
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Bas van de Waterbeemd
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| | - Arno van der Ark
- Institute for Translational Vaccinology (Intravacc) , P.O. Box 450, 3720 AL Bilthoven, The Netherlands
| |
Collapse
|
8
|
Hoonakker ME, Verhagen LM, Pupo E, de Haan A, Metz B, Hendriksen CFM, Han WGH, Sloots A. Vaccine-Mediated Activation of Human TLR4 Is Affected by Modulation of Culture Conditions during Whole-Cell Pertussis Vaccine Preparation. PLoS One 2016; 11:e0161428. [PMID: 27548265 PMCID: PMC4993483 DOI: 10.1371/journal.pone.0161428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 08/05/2016] [Indexed: 12/01/2022] Open
Abstract
The potency of whole-cell pertussis (wP) vaccines is still determined by an intracerebral mouse protection test. To allow development of suitable in vitro alternatives to this test, insight into relevant parameters to monitor the consistency of vaccine quality is essential. To this end, a panel of experimental wP vaccines of varying quality was prepared by sulfate-mediated suppression of the BvgASR master virulence regulatory system of Bordetella pertussis during cultivation. This system regulates the transcription of a range of virulence proteins, many of which are considered important for the induction of effective host immunity. The protein compositions and in vivo potencies of the vaccines were BvgASR dependent, with the vaccine containing the highest amount of virulence proteins having the highest in vivo potency. Here, the capacities of these vaccines to stimulate human Toll-like receptors (hTLR) 2 and 4 and the role these receptors play in wP vaccine-mediated activation of antigen-presenting cells in vitro were studied. Prolonged BvgASR suppression was associated with a decreased capacity of vaccines to activate hTLR4. In contrast, no significant differences in hTLR2 activation were observed. Similarly, vaccine-induced activation of MonoMac-6 and monocyte-derived dendritic cells was strongest with the highest potency vaccine. Blocking of TLR2 and TLR4 showed that differences in antigen-presenting cell activation could be largely attributed to vaccine-dependent variation in hTLR4 signalling. Interestingly, this BvgASR-dependent decrease in hTLR4 activation coincided with a reduction in GlcN-modified lipopolysaccharides in these vaccines. Accordingly, expression of the lgmA-C genes, required for this glucosamine modification, was significantly reduced in bacteria exposed to sulfate. Together, these findings demonstrate that the BvgASR status of bacteria during wP vaccine preparation is critical for their hTLR4 activation capacity and suggest that including such parameters to assess consistency of newly produced vaccines could bring in vitro testing of vaccine quality a step closer.
Collapse
Affiliation(s)
- Marieke E. Hoonakker
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
- Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| | - Lisa M. Verhagen
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Elder Pupo
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Alex de Haan
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Bernard Metz
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Coenraad F. M. Hendriksen
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
- Department of Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Wanda G. H. Han
- Centre for Immunology of Infectious Diseases and Vaccines, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Arjen Sloots
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| |
Collapse
|
9
|
Bouchez V, Hegerle N, Strati F, Njamkepo E, Guiso N. New Data on Vaccine Antigen Deficient Bordetella pertussis Isolates. Vaccines (Basel) 2015; 3:751-70. [PMID: 26389958 PMCID: PMC4586476 DOI: 10.3390/vaccines3030751] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/25/2015] [Accepted: 09/02/2015] [Indexed: 01/01/2023] Open
Abstract
Evolution of Bordetella pertussis is driven by natural and vaccine pressures. Isolates circulating in regions with high vaccination coverage present multiple allelic and antigenic variations as compared to isolates collected before introduction of vaccination. Furthermore, during the last epidemics reported in regions using pertussis acellular vaccines, isolates deficient for vaccine antigens, such as pertactin (PRN), were reported to reach high proportions of circulating isolates. More sporadic filamentous hemagglutinin (FHA) or pertussis toxin (PT) deficient isolates were also collected. The whole genome of some recent French isolates, deficient or non-deficient in vaccine antigens, were analyzed. Transcription profiles of the expression of the main virulence factors were also compared. The invasive phenotype in an in vitro human tracheal epithelial (HTE) cell model of infection was evaluated. Our genomic analysis focused on SNPs related to virulence genes known to be more likely to present allelic polymorphism. Transcriptomic data indicated that isolates circulating since the introduction of pertussis vaccines present lower transcription levels of the main virulence genes than the isolates of the pre-vaccine era. Furthermore, isolates not producing FHA present significantly higher expression levels of the entire set of genes tested. Finally, we observed that recent isolates are more invasive in HTE cells when compared to the reference strain, but no multiplication occurs within cells.
Collapse
Affiliation(s)
- Valérie Bouchez
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Nicolas Hegerle
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Francesco Strati
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Elisabeth Njamkepo
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| | - Nicole Guiso
- Molecular Prevention and Therapy of Human Diseases, Institut Pasteur, 25 rue du Dr Roux, Paris 75015, France.
- URAS-CNRS 3012, Paris 75015, France.
| |
Collapse
|
10
|
Bordetella pertussis proteins dominating the major histocompatibility complex class II-presented epitope repertoire in human monocyte-derived dendritic cells. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:641-50. [PMID: 24599530 DOI: 10.1128/cvi.00665-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Knowledge of naturally processed Bordetella pertussis-specific T cell epitopes may help to increase our understanding of the basis of cell-mediated immune mechanisms to control this reemerging pathogen. Here, we elucidate for the first time the dominant major histocompatibility complex (MHC) class II-presented B. pertussis CD4(+) T cell epitopes, expressed on human monocyte-derived dendritic cells (MDDC) after the processing of whole bacterial cells by use of a platform of immunoproteomics technology. Pertussis epitopes identified in the context of HLA-DR molecules were derived from two envelope proteins, i.e., putative periplasmic protein (PPP) and putative peptidoglycan-associated lipoprotein (PAL), and from two cytosolic proteins, i.e., 10-kDa chaperonin groES protein (groES) and adenylosuccinate synthetase (ASS). No epitopes were detectable from known virulence factors. CD4(+) T cell responsiveness in healthy adults against peptide pools representing epitope regions or full proteins confirmed the immunogenicity of PAL, PPP, groES, and ASS. Elevated lymphoproliferative activity to PPP, groES, and ASS in subjects within a year after the diagnosis of symptomatic pertussis suggested immunogenic exposure to these proteins during clinical infection. The PAL-, PPP-, groES-, and ASS-specific responses were associated with secretion of functional Th1 (tumor necrosis factor alpha [TNF-α] and gamma interferon [IFN-γ]) and Th2 (interleukin 5 [IL-5] and IL-13) cytokines. Relative paucity in the natural B. pertussis epitope display of MDDC, not dominated by epitopes from known protective antigens, can interfere with the effectiveness of immune recognition of B. pertussis. A more complete understanding of hallmarks in B. pertussis-specific immunity may advance the design of novel immunological assays and prevention strategies.
Collapse
|
11
|
King AJ, van der Lee S, Mohangoo A, van Gent M, van der Ark A, van de Waterbeemd B. Genome-wide gene expression analysis of Bordetella pertussis isolates associated with a resurgence in pertussis: elucidation of factors involved in the increased fitness of epidemic strains. PLoS One 2013; 8:e66150. [PMID: 23776625 PMCID: PMC3679012 DOI: 10.1371/journal.pone.0066150] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/01/2013] [Indexed: 12/11/2022] Open
Abstract
Bordetella pertussis (B. pertussis) is the causative agent of whooping cough, which is a highly contagious disease in the human respiratory tract. Despite vaccination since the 1950s, pertussis remains the most prevalent vaccine-preventable disease in developed countries. A recent resurgence pertussis is associated with the expansion of B. pertussis strains with a novel allele for the pertussis toxin (ptx) promoter ptxP3 in place of resident ptxP1 strains. The recent expansion of ptxP3 strains suggests that these strains carry mutations that have increased their fitness. Compared to the ptxP1 strains, ptxP3 strains produce more Ptx, which results in increased virulence and immune suppression. In this study, we investigated the contribution of gene expression changes of various genes on the increased fitness of the ptxP3 strains. Using genome-wide gene expression profiling, we show that several virulence genes had higher expression levels in the ptxP3 strains compared to the ptxP1 strains. We provide the first evidence that wildtype ptxP3 strains are better colonizers in an intranasal mouse infection model. This study shows that the ptxP3 mutation and the genetic background of ptxP3 strains affect fitness by contributing to the ability to colonize in a mouse infection model. These results show that the genetic background of ptxP3 strains with a higher expression of virulence genes contribute to increased fitness.
Collapse
Affiliation(s)
- Audrey J. King
- National Institute for Public Health and the Environment (RIVM), Laboratory for Infectious Diseases and Screening (LIS) Centre for Infectious Disease Control, Bilthoven, The Netherlands
- * E-mail:
| | - Saskia van der Lee
- National Institute for Public Health and the Environment (RIVM), Laboratory for Infectious Diseases and Screening (LIS) Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Archena Mohangoo
- National Institute for Public Health and the Environment (RIVM), Laboratory for Infectious Diseases and Screening (LIS) Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Marjolein van Gent
- National Institute for Public Health and the Environment (RIVM), Laboratory for Infectious Diseases and Screening (LIS) Centre for Infectious Disease Control, Bilthoven, The Netherlands
| | - Arno van der Ark
- National Institute for Public Health and the Environment (RIVM), Department of Vaccinology, Bilthoven, The Netherlands
| | - Bas van de Waterbeemd
- National Institute for Public Health and the Environment (RIVM), Department of Vaccinology, Bilthoven, The Netherlands
| |
Collapse
|
12
|
Production of biomass and filamentous hemagglutinin by Bordetella bronchiseptica. Bioprocess Biosyst Eng 2013; 37:115-23. [PMID: 23743730 DOI: 10.1007/s00449-013-0977-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
The mammalian pathogen Bordetella bronchiseptica was grown under controlled batch conditions with glutamate as the primary carbon and nitrogen source. First, a Box-Behnken statistical design quantified the effect of Mg, sulfate, and nicotinate on the antigen filamentous hemagglutinin (FHA) formation. Using lactic acid as a secondary carbon source for pH control, Mg, and SO₄ each negatively affected antigen expression, while nicotinate positively affected antigen expression. Sulfate had a stronger negative effect than Mg with 10 mM eliminating FHA altogether; the highest FHA expression (about 1,000 ng/mL) occurred when either Mg concentration or SO₄ concentration, but not both, was about 0.1 mM. Using two Mg and SO₄ compositions modeled to yield the greatest antigen expression, three other organic acids were compared as the secondary carbon source: acetate, citrate, and succinate. Mixtures of acetate and glutamate resulted in the greatest organic acid consumption, OD, and FHA concentration (about 1,500 ng/mL), although significant acetate accumulated during these batch processes. The mechanism leading to elevated FHA expression when acetate is the secondary carbon source is unknown, particularly since these cultures were most prone to phase shift to Bvg(-) cultures.
Collapse
|
13
|
Streefland M, Martens DE, Beuvery EC, Wijffels RH. Process analytical technology (PAT) tools for the cultivation step in biopharmaceutical production. Eng Life Sci 2013. [DOI: 10.1002/elsc.201200025] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Mathieu Streefland
- Bioprocess Engineering; Wageningen University; Wageningen; The Netherlands
| | - Dirk E. Martens
- Bioprocess Engineering; Wageningen University; Wageningen; The Netherlands
| | | | - René H. Wijffels
- Bioprocess Engineering; Wageningen University; Wageningen; The Netherlands
| |
Collapse
|
14
|
van de Waterbeemd B, Zomer G, van den Ijssel J, van Keulen L, Eppink MH, van der Ley P, van der Pol LA. Cysteine depletion causes oxidative stress and triggers outer membrane vesicle release by Neisseria meningitidis; implications for vaccine development. PLoS One 2013; 8:e54314. [PMID: 23372704 PMCID: PMC3553081 DOI: 10.1371/journal.pone.0054314] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 12/11/2012] [Indexed: 12/13/2022] Open
Abstract
Outer membrane vesicles (OMV) contain immunogenic proteins and contribute to in vivo survival and virulence of bacterial pathogens. The first OMV vaccines successfully stopped Neisseria meningitidis serogroup B outbreaks but required detergent-extraction for endotoxin removal. Current vaccines use attenuated endotoxin, to preserve immunological properties and allow a detergent-free process. The preferred process is based on spontaneously released OMV (sOMV), which are most similar to in vivo vesicles and easier to purify. The release mechanism however is poorly understood resulting in low yield. This study with N. meningitidis demonstrates that an external stimulus, cysteine depletion, can trigger growth arrest and sOMV release in sufficient quantities for vaccine production (±1500 human doses per liter cultivation). Transcriptome analysis suggests that cysteine depletion impairs iron-sulfur protein assembly and causes oxidative stress. Involvement of oxidative stress is confirmed by showing that addition of reactive oxygen species during cysteine-rich growth also triggers vesiculation. The sOMV in this study are similar to vesicles from natural infection, therefore cysteine-dependent vesiculation is likely to be relevant for the in vivo pathogenesis of N. meningitidis.
Collapse
Affiliation(s)
- Bas van de Waterbeemd
- Vaccinology, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
15
|
Josefsberg JO, Buckland B. Vaccine process technology. Biotechnol Bioeng 2012; 109:1443-60. [DOI: 10.1002/bit.24493] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 12/15/2022]
|
16
|
Govindasamy V, Abdullah AN, Sainik Ronald V, Musa S, Che Ab. Aziz ZA, Zain RB, Totey S, Bhonde RR, Abu Kasim NH. Inherent Differential Propensity of Dental Pulp Stem Cells Derived from Human Deciduous and Permanent Teeth. J Endod 2010; 36:1504-15. [DOI: 10.1016/j.joen.2010.05.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 04/30/2010] [Accepted: 05/19/2010] [Indexed: 02/07/2023]
|
17
|
van Dartel DA, Pennings JL, van Schooten FJ, Piersma AH. Transcriptomics-based identification of developmental toxicants through their interference with cardiomyocyte differentiation of embryonic stem cells. Toxicol Appl Pharmacol 2010; 243:420-8. [DOI: 10.1016/j.taap.2009.12.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 12/15/2009] [Indexed: 11/16/2022]
|
18
|
Streefland M, Van Herpen P, Van de Waterbeemd B, Van der Pol L, Beuvery E, Tramper J, Martens D, Toft M. A practical approach for exploration and modeling of the design space of a bacterial vaccine cultivation process. Biotechnol Bioeng 2009; 104:492-504. [DOI: 10.1002/bit.22425] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|