1
|
Raloxifene-loaded SLNs with enhanced biopharmaceutical potential: QbD-steered development, in vitro evaluation, in vivo pharmacokinetics, and IVIVC. Drug Deliv Transl Res 2021; 12:1136-1160. [PMID: 33966178 DOI: 10.1007/s13346-021-00990-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2021] [Indexed: 12/13/2022]
Abstract
Raloxifene hydrochloride, a second-generation selective estrogen receptor modulator, has been approved for the management of breast cancer. However, it is known to exhibit poor (~ 2%) and inconsistent oral bioavailability in humans, primarily ascribable to its low aqueous solubility, extensive first-pass metabolism, P-gp efflux, and presystemic glucuronide conjugation. The present research work entails the systematic development and evaluation of SLNs of RLX for its enhanced biopharmaceutical performance against breast cancer. Factor screening studies were conducted using Taguchi design, followed by optimization studies employing Box-Behnken design. Preparation of SLNs was carried out using glyceryl monostearate and Compritol® 888 ATO (i.e., lipid), Phospholipid S-100 (i.e., co-surfactant), and TPGS-1000 (i.e., surfactant) employing solvent diffusion method. The optimized formulation was evaluated for zeta potential, average particle size, field emission scanning electron microscope, transmission electron microscopy, and in vitro release study. Further, MCF-7 cells (cell cytotoxicity assay, apoptosis assay, and reactive oxygen species assay) and Caco-2 cells (cell uptake studies and P-gp efflux assay) were employed to evaluate the in vitro anticancer potential of the developed optimized formulation. In vivo pharmacokinetic studies were conducted in Sprague-Dawley rats to evaluate the therapeutic profile of the developed formulation. The optimized SLN formulations exhibited a mean particle size of 109.7 nm, PDI 0.289 with a zeta potential of - 13.7 mV. In vitro drug dissolution studies showed Fickian release, with release exponent of 0.137. Cell cytotoxicity assay, apoptosis assay, and cellular uptake indicated 6.40-, 5.40-, and 3.18-fold improvement in the efficacy of RLX-SLNs vis-à-vis pure RLX. Besides, the pharmacokinetic studies indicated quite significantly improved biopharmaceutical performance of RLX-SLNs vis-à-vis pure drug, with 4.06-fold improvement in Cmax, 4.40-fold in AUC(0-72 h), 4.56-fold in AUC(0-∞), 1.53-fold in Ka, 2.12-fold in t1/2, and 1.22-fold in Tmax. Further, for RLX-SLNs and pure drug, high degree of level A linear correlation was established between fractions of drug dissolved (in vitro) and of drug absorbed (in vivo) at the corresponding time-points. Stability studies indicated the robustness of RLX-SLNs when stored at for 3 months. Results obtained from the different studies construe promising the anticancer potential of the developed RLX-SLNs, thereby ratifying the lipidic nanocarriers as an efficient drug delivery strategy for improving the biopharmaceutical attributes of RLX.
Collapse
|
2
|
Yildiz-Ozturk E, Saglam-Metiner P, Yesil-Celiktas O. Lung carcinoma spheroids embedded in a microfluidic platform. Cytotechnology 2021; 73:457-471. [PMID: 34149177 DOI: 10.1007/s10616-021-00470-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/07/2021] [Indexed: 01/13/2023] Open
Abstract
Three-dimensional (3D) spheroid cell cultures are excellent models used in cancer biology research and drug screening. The objective of this study was to develop a lung carcinoma spheroid based microfluidic platform with perfusion function to mimic lung cancer pathology and investigate the effect of a potential drug molecule, panaxatriol. Spheroids were successfully formed on agar microtissue molds at the end of 10 days, reaching an average diameter of about 317.18 ± 4.05 μm and subsequently transferred to 3D dynamic microfluidic system with perfusion function. While the size of the 3D spheroids embedded in the Matrigel matrix in the platform had gradually increased both in the static and dynamic control groups, the size of the spheroids were reduced and fragmented in the drug treated groups. Cell viability results showed that panaxatriol exhibited higher cytotoxic effect on cancer cells than healthy cells and the IC50 value was determined as 61.55 µM. Furthermore, panaxatriol has been more effective on single cells around the spheroid structure, whereas less in 3D spheroid tissues with a compact structure in static conditions compared to dynamic systems, where a flow rate of 2 µL/min leading to a shear stress of 0.002 dyne/cm2 was applied. Application of such dynamic systems will contribute to advancing basic research and increasing the predictive accuracy of potential drug molecules, which may accelerate the translation of novel therapeutics to the clinic, possibly decreasing the use of animal models. Supplementary Information The online version contains supplementary material available at 10.1007/s10616-021-00470-7.
Collapse
Affiliation(s)
- Ece Yildiz-Ozturk
- Ege University Translational Pulmonary Research Center (Ege TPRC), 35100 Izmir, Turkey
| | - Pelin Saglam-Metiner
- Faculty of Engineering, Department of Bioengineering, Ege University, 35100 Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Ege University Translational Pulmonary Research Center (Ege TPRC), 35100 Izmir, Turkey.,Faculty of Engineering, Department of Bioengineering, Ege University, 35100 Izmir, Turkey
| |
Collapse
|
3
|
Nomoto T, Yao Y, Inoue Y, Suzuki M, Kanamori K, Takemoto H, Matsui M, Tomoda K, Nishiyama N. Fructose-functionalized polymers to enhance therapeutic potential of p-boronophenylalanine for neutron capture therapy. J Control Release 2021; 332:184-193. [PMID: 33636247 DOI: 10.1016/j.jconrel.2021.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 02/17/2021] [Indexed: 11/24/2022]
Abstract
In boron neutron capture therapy (BNCT), boron drugs should accumulate selectively within a tumor and be quickly cleared from blood and normal organs. However, it is usually challenging to achieve the efficient tumor accumulation and the quick clearance simultaneously. Here we report the complex composed of a fructose-modified poly(ethylene glycol)-poly(l-lysine) block copolymer and p-boronophenylalanine, termed PEG-P[Lys/Lys(fructose)]-BPA, as a boron delivery system permitting selective accumulation within the target tumor with quick clearance from normal organs as well as blood. Our PEG-P[Lys/Lys(fructose)]-BPA could be internalized into tumor cells through LAT1 amino acid transporter-mediated endocytosis and retain in the targeted cells, thereby accomplishing more efficient accumulation and retention in a subcutaneous tumor than clinically used fructose-BPA complexes. Importantly, the moderately cationic property of the polymer facilitated renal clearance and PEG-P[Lys/Lys(fructose)]-BPA exhibited high accumulation contrast between the target tumor and the blood/normal organ. Finally, upon thermal neutron irradiation, PEG-P[Lys/Lys(fructose)]-BPA significantly inhibited the tumor growth in mice. PEG-P[Lys/Lys(fructose)]-BPA may be a promising boron delivery system for BNCT.
Collapse
Affiliation(s)
- Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
| | - Ying Yao
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Yukiya Inoue
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010, Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Kaito Kanamori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keishiro Tomoda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan; Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan.
| |
Collapse
|
4
|
Nomoto T, Inoue Y, Yao Y, Suzuki M, Kanamori K, Takemoto H, Matsui M, Tomoda K, Nishiyama N. Poly(vinyl alcohol) boosting therapeutic potential of p-boronophenylalanine in neutron capture therapy by modulating metabolism. SCIENCE ADVANCES 2020; 6:eaaz1722. [PMID: 32010792 PMCID: PMC6976296 DOI: 10.1126/sciadv.aaz1722] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 11/25/2019] [Indexed: 05/10/2023]
Abstract
In the current clinical boron neutron capture therapy (BNCT), p-boronophenylalanine (BPA) has been the most powerful drug owing to its ability to accumulate selectively within cancers through cancer-related amino acid transporters including LAT1. However, the therapeutic success of BPA has been sometimes compromised by its unfavorable efflux from cytosol due to their antiport mechanism. Here, we report that poly(vinyl alcohol) (PVA) can form complexes with BPA through reversible boronate esters in aqueous solution, and the complex termed PVA-BPA can be internalized into cancer cells through LAT1-mediated endocytosis, thereby enhancing cellular uptake and slowing the untoward efflux. In in vivo study, compared with clinically used fructose-BPA complexes, PVA-BPA exhibited efficient tumor accumulation and prolonged tumor retention with quick clearance from bloodstream and normal organs. Ultimately, PVA-BPA showed critically enhanced antitumor activity in BNCT. The facile technique proposed in this study offers an approach for drug delivery focusing on drug metabolism.
Collapse
Affiliation(s)
- Takahiro Nomoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Corresponding author. (T.N.); (N.N.)
| | - Yukiya Inoue
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Ying Yao
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Minoru Suzuki
- Division of Particle Radiation Oncology, Particle Radiation Oncology Research Center, Institute for Integrated Radiation and Nuclear Science, Kyoto University, 2-1010 Asashiro-nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Kaito Kanamori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Hiroyasu Takemoto
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Makoto Matsui
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Keishiro Tomoda
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan
- Innovation Center of Nanomedicine, Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-0821, Japan
- Corresponding author. (T.N.); (N.N.)
| |
Collapse
|
5
|
Zhang H, Zhu Y, Shen Y. Microfluidics for Cancer Nanomedicine: From Fabrication to Evaluation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800360. [PMID: 29806174 DOI: 10.1002/smll.201800360] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/12/2018] [Indexed: 05/22/2023]
Abstract
Self-assembled drug delivery systems (sDDSs), made from nanocarriers and drugs, are one of the major types of nanomedicines, many of which are in clinical use, under preclinical investigation, or in clinical trials. One of the hurdles of this type of nanomedicine in real applications is the inherent complexity of their fabrication processes, which generally lack precise control over the sDDS structures and the batch-to-batch reproducibility. Furthermore, the classic 2D in vitro cell model, monolayer cell culture, has been used to evaluate sDDSs. However, 2D cell culture cannot adequately replicate in vivo tissue-level structures and their highly complex dynamic 3D environments, nor can it simulate their functions. Thus, evaluations using 2D cell culture often cannot correctly correlate with sDDS behaviors and effects in humans. Microfluidic technology offers novel solutions to overcome these problems and facilitates studying the structure-performance relationships for sDDS developments. In this Review, recent advances in microfluidics for 1) fabrication of sDDSs with well-defined physicochemical properties, such as size, shape, rigidity, and drug-loading efficiency, and 2) fabrication of 3D-cell cultures as "tissue/organ-on-a-chip" platforms for evaluations of sDDS biological performance are in focus.
Collapse
Affiliation(s)
- Hao Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yifeng Zhu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Youqing Shen
- Center for Bionanoengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
6
|
Pradhan S, Smith AM, Garson CJ, Hassani I, Seeto WJ, Pant K, Arnold RD, Prabhakarpandian B, Lipke EA. A Microvascularized Tumor-mimetic Platform for Assessing Anti-cancer Drug Efficacy. Sci Rep 2018; 8:3171. [PMID: 29453454 PMCID: PMC5816595 DOI: 10.1038/s41598-018-21075-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 12/20/2017] [Indexed: 12/21/2022] Open
Abstract
Assessment of anti-cancer drug efficacy in in vitro three-dimensional (3D) bioengineered cancer models provides important contextual and relevant information towards pre-clinical translation of potential drug candidates. However, currently established models fail to sufficiently recapitulate complex tumor heterogeneity. Here we present a chip-based tumor-mimetic platform incorporating a 3D in vitro breast cancer model with a tumor-mimetic microvascular network, replicating the pathophysiological architecture of native vascularized breast tumors. The microfluidic platform facilitated formation of mature, lumenized and flow-aligned endothelium under physiological flow recapitulating both high and low perfused tumor regions. Metastatic and non-metastatic breast cancer cells were maintained in long-term 3D co-culture with stromal fibroblasts in a poly(ethylene glycol)-fibrinogen hydrogel matrix within adjoining tissue chambers. The interstitial space between the chambers and endothelium contained pores to mimic the "leaky" vasculature found in vivo and facilitate cancer cell-endothelial cell communication. Microvascular pattern-dependent flow variations induced concentration gradients within the 3D tumor mass, leading to morphological tumor heterogeneity. Anti-cancer drugs displayed cell type- and flow pattern-dependent effects on cancer cell viability, viable tumor area and associated endothelial cytotoxicity. Overall, the developed microfluidic tumor-mimetic platform facilitates investigation of cancer-stromal-endothelial interactions and highlights the role of a fluidic, tumor-mimetic vascular network on anti-cancer drug delivery and efficacy for improved translation towards pre-clinical studies.
Collapse
Affiliation(s)
- Shantanu Pradhan
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Ashley M Smith
- Biomedical Technology, CFD Research Corporation, Huntsville, AL, 35806, USA
| | - Charles J Garson
- Biomedical Technology, CFD Research Corporation, Huntsville, AL, 35806, USA
| | - Iman Hassani
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Wen J Seeto
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Kapil Pant
- Biomedical Technology, CFD Research Corporation, Huntsville, AL, 35806, USA
| | - Robert D Arnold
- Department of Drug Discovery and Development, Auburn University, Auburn, AL, 36849, USA
| | | | - Elizabeth A Lipke
- Department of Chemical Engineering, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
7
|
Ozcelikkale A, Moon HR, Linnes M, Han B. In vitro microfluidic models of tumor microenvironment to screen transport of drugs and nanoparticles. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 9:10.1002/wnan.1460. [PMID: 28198106 PMCID: PMC5555839 DOI: 10.1002/wnan.1460] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 11/14/2016] [Accepted: 12/17/2016] [Indexed: 12/16/2022]
Abstract
Advances in nanotechnology have enabled numerous types of nanoparticles (NPs) to improve drug delivery to tumors. While many NP systems have been proposed, their clinical translation has been less than anticipated primarily due to failure of current preclinical evaluation techniques to adequately model the complex interactions between the NP and physiological barriers of tumor microenvironment. This review focuses on microfluidic tumor models for characterization of delivery efficacy and toxicity of cancer nanomedicine. Microfluidics offer significant advantages over traditional macroscale cell cultures by enabling recapitulation of tumor microenvironment through precise control of physiological cues such as hydrostatic pressure, shear stress, oxygen, and nutrient gradients. Microfluidic systems have recently started to be adapted for screening of drugs and NPs under physiologically relevant settings. So far the two primary application areas of microfluidics in this area have been high-throughput screening using traditional culture settings such as single cells or multicellular tumor spheroids, and mimicry of tumor microenvironment for study of cancer-related cell-cell and cell-matrix interactions. These microfluidic technologies are also useful in modeling specific steps in NP delivery to tumor and characterize NP transport properties and outcomes by systematic variation of physiological conditions. Ultimately, it will be possible to design drug-screening platforms uniquely tailored for individual patient physiology using microfluidics. These in vitro models can contribute to development of precision medicine by enabling rapid and patient-specific evaluation of cancer nanomedicine. WIREs Nanomed Nanobiotechnol 2017, 9:e1460. doi: 10.1002/wnan.1460 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Altug Ozcelikkale
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Michael Linnes
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA,
| |
Collapse
|
8
|
Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ. Co-Culture of Tumor Spheroids and Fibroblasts in a Collagen Matrix-Incorporated Microfluidic Chip Mimics Reciprocal Activation in Solid Tumor Microenvironment. PLoS One 2016; 11:e0159013. [PMID: 27391808 PMCID: PMC4938568 DOI: 10.1371/journal.pone.0159013] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/31/2016] [Indexed: 11/27/2022] Open
Abstract
Multicellular 3D culture and interaction with stromal components are considered essential elements in establishing a ‘more clinically relevant’ tumor model. Matrix-embedded 3D cultures using a microfluidic chip platform can recapitulate the microscale interaction within tumor microenvironments. As a major component of tumor microenvironment, cancer-associated fibroblasts (CAFs) play a role in cancer progression and drug resistance. Here, we present a microfluidic chip-based tumor tissue culture model that integrates 3D tumor spheroids (TSs) with CAF in proximity within a hydrogel scaffold. HT-29 human colorectal carcinoma cells grew into 3D TSs and the growth was stimulated when co-cultured with fibroblasts as shown by 1.5-folds increase of % changes in diameter over 5 days. TS cultured for 6 days showed a reduced expression of Ki-67 along with increased expression of fibronectin when co-cultured with fibroblasts compared to mono-cultured TSs. Fibroblasts were activated under co-culture conditions, as demonstrated by increases in α-SMA expression and migratory activity. When exposed to paclitaxel, a survival advantage was observed in TSs co-cultured with activated fibroblasts. Overall, we demonstrated the reciprocal interaction between TSs and fibroblasts in our 7-channel microfluidic chip. The co-culture of 3D TS-CAF in a collagen matrix-incorporated microfluidic chip may be useful to study the tumor microenvironment and for evaluation of drug screening and evaluation.
Collapse
Affiliation(s)
- Su-Yeong Jeong
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ji-Hyun Lee
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoojin Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Seok Chung
- School of Mechanical Engineering, Korea University, Seoul, Republic of Korea
| | - Hyo-Jeong Kuh
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Life Sciences, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
9
|
Guller A, Grebenyuk P, Shekhter A, Zvyagin A, Deyev SM. Bioreactor-Based Tumor Tissue Engineering. Acta Naturae 2016; 8:44-58. [PMID: 27795843 PMCID: PMC5081698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Indexed: 11/16/2022] Open
Abstract
This review focuses on modeling of cancer tumors using tissue engineering technology. Tumor tissue engineering (TTE) is a new method of three-dimensional (3D) simulation of malignant neoplasms. Design and development of complex tissue engineering constructs (TECs) that include cancer cells, cell-bearing scaffolds acting as the extracellular matrix, and other components of the tumor microenvironment is at the core of this approach. Although TECs can be transplanted into laboratory animals, the specific aim of TTE is the most realistic reproduction and long-term maintenance of the simulated tumor properties in vitro for cancer biology research and for the development of new methods of diagnosis and treatment of malignant neoplasms. Successful implementation of this challenging idea depends on bioreactor technology, which will enable optimization of culture conditions and control of tumor TECs development. In this review, we analyze the most popular bioreactor types in TTE and the emerging applications.
Collapse
Affiliation(s)
- A.E. Guller
- Macquarie University, Sydney, 2109, New South Wales, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney 2109, New South Wales, Australia
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, 8, Trubetskaya Str., Moscow, 119992, Russia
- Lobachevsky Nizhniy Novgorod State University, 23, Gagarina Ave., Nizhniy Novgorod, 603950, Russia
| | | | - A.B. Shekhter
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, 8, Trubetskaya Str., Moscow, 119992, Russia
| | - A.V. Zvyagin
- Macquarie University, Sydney, 2109, New South Wales, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney 2109, New South Wales, Australia
- Sechenov First Moscow State Medical University, Institute for Regenerative Medicine, 8, Trubetskaya Str., Moscow, 119992, Russia
- Lobachevsky Nizhniy Novgorod State University, 23, Gagarina Ave., Nizhniy Novgorod, 603950, Russia
| | - S. M. Deyev
- Lobachevsky Nizhniy Novgorod State University, 23, Gagarina Ave., Nizhniy Novgorod, 603950, Russia
- Institute of Bioorganic Chemistry, 16/10, Miklukho-Maklaya Str., Moscow, 117871, Russia
- National Research Tomsk Polytechnic University, 30, Lenina Ave., Tomsk, 634050, Russia
| |
Collapse
|
10
|
Zheng F, Fu F, Cheng Y, Wang C, Zhao Y, Gu Z. Organ-on-a-Chip Systems: Microengineering to Biomimic Living Systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:2253-82. [PMID: 26901595 DOI: 10.1002/smll.201503208] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 12/09/2015] [Indexed: 05/20/2023]
Abstract
"Organ-on-a-chip" systems integrate microengineering, microfluidic technologies, and biomimetic principles to create key aspects of living organs faithfully, including critical microarchitecture, spatiotemporal cell-cell interactions, and extracellular microenvironments. This creative platform and its multiorgan integration recapitulating organ-level structures and functions can bring unprecedented benefits to a diversity of applications, such as developing human in vitro models for healthy or diseased organs, enabling the investigation of fundamental mechanisms in disease etiology and organogenesis, benefiting drug development in toxicity screening and target discovery, and potentially serving as replacements for animal testing. Recent advances in novel designs and examples for developing organ-on-a-chip platforms are reviewed. The potential for using this emerging technology in understanding human physiology including mechanical, chemical, and electrical signals with precise spatiotemporal controls are discussed. The current challenges and future directions that need to be pursued for these proof-of-concept studies are also be highlighted.
Collapse
Affiliation(s)
- Fuyin Zheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Fanfan Fu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Yao Cheng
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Chunyan Wang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, 210096, China
| |
Collapse
|
11
|
Wang Z, Samanipour R, Kim K. Organ-on-a-Chip Platforms for Drug Screening and Tissue Engineering. BIOSYSTEMS & BIOROBOTICS 2016. [DOI: 10.1007/978-3-319-21813-7_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Stadler M, Walter S, Walzl A, Kramer N, Unger C, Scherzer M, Unterleuthner D, Hengstschläger M, Krupitza G, Dolznig H. Increased complexity in carcinomas: Analyzing and modeling the interaction of human cancer cells with their microenvironment. Semin Cancer Biol 2015; 35:107-24. [DOI: 10.1016/j.semcancer.2015.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/19/2015] [Accepted: 08/21/2015] [Indexed: 02/08/2023]
|
13
|
Yildiz-Ozturk E, Yesil-Celiktas O. Diffusion phenomena of cells and biomolecules in microfluidic devices. BIOMICROFLUIDICS 2015; 9:052606. [PMID: 26180576 PMCID: PMC4491013 DOI: 10.1063/1.4923263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/18/2015] [Indexed: 05/05/2023]
Abstract
Biomicrofluidics is an emerging field at the cross roads of microfluidics and life sciences which requires intensive research efforts in terms of introducing appropriate designs, production techniques, and analysis. The ultimate goal is to deliver innovative and cost-effective microfluidic devices to biotech, biomedical, and pharmaceutical industries. Therefore, creating an in-depth understanding of the transport phenomena of cells and biomolecules becomes vital and concurrently poses significant challenges. The present article outlines the recent advancements in diffusion phenomena of cells and biomolecules by highlighting transport principles from an engineering perspective, cell responses in microfluidic devices with emphases on diffusion- and flow-based microfluidic gradient platforms, macroscopic and microscopic approaches for investigating the diffusion phenomena of biomolecules, microfluidic platforms for the delivery of these molecules, as well as the state of the art in biological applications of mammalian cell responses and diffusion of biomolecules.
Collapse
Affiliation(s)
- Ece Yildiz-Ozturk
- Department of Bioengineering, Faculty of Engineering, Ege University , 35100 Bornova-Izmir, Turkey
| | - Ozlem Yesil-Celiktas
- Department of Bioengineering, Faculty of Engineering, Ege University , 35100 Bornova-Izmir, Turkey
| |
Collapse
|
14
|
Unger C, Kramer N, Walzl A, Scherzer M, Hengstschläger M, Dolznig H. Modeling human carcinomas: physiologically relevant 3D models to improve anti-cancer drug development. Adv Drug Deliv Rev 2014; 79-80:50-67. [PMID: 25453261 DOI: 10.1016/j.addr.2014.10.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/02/2014] [Accepted: 10/15/2014] [Indexed: 12/18/2022]
Abstract
Anti-cancer drug development is inefficient, mostly due to lack of efficacy in human patients. The high fail rate is partly due to the lack of predictive models or the inadequate use of existing preclinical test systems. However, progress has been made and preclinical models were improved or newly developed, which all account for basic features of solid cancers, three-dimensionality and heterotypic cell interaction. Here we give an overview of available in vivo and in vitro models of cancer, which meet the criteria of being 3D and mirroring human tumor-stroma interactions. We only focus on drug response models without touching models for pharmacokinetic and dynamic, toxicity or delivery aspects.
Collapse
|
15
|
Vellonen KS, Malinen M, Mannermaa E, Subrizi A, Toropainen E, Lou YR, Kidron H, Yliperttula M, Urtti A. A critical assessment of in vitro tissue models for ADME and drug delivery. J Control Release 2014; 190:94-114. [DOI: 10.1016/j.jconrel.2014.06.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/22/2014] [Accepted: 06/23/2014] [Indexed: 12/22/2022]
|
16
|
Bhise NS, Ribas J, Manoharan V, Zhang YS, Polini A, Massa S, Dokmeci MR, Khademhosseini A. Organ-on-a-chip platforms for studying drug delivery systems. J Control Release 2014; 190:82-93. [PMID: 24818770 DOI: 10.1016/j.jconrel.2014.05.004] [Citation(s) in RCA: 254] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/24/2014] [Accepted: 05/02/2014] [Indexed: 01/03/2023]
Abstract
Novel microfluidic tools allow new ways to manufacture and test drug delivery systems. Organ-on-a-chip systems - microscale recapitulations of complex organ functions - promise to improve the drug development pipeline. This review highlights the importance of integrating microfluidic networks with 3D tissue engineered models to create organ-on-a-chip platforms, able to meet the demand of creating robust preclinical screening models. Specific examples are cited to demonstrate the use of these systems for studying the performance of drug delivery vectors and thereby reduce the discrepancies between their performance at preclinical and clinical trials. We also highlight the future directions that need to be pursued by the research community for these proof-of-concept studies to achieve the goal of accelerating clinical translation of drug delivery nanoparticles.
Collapse
Affiliation(s)
- Nupura S Bhise
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - João Ribas
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal; Biocant - Biotechnology Innovation Center, 3060-197 Cantanhede, Portugal
| | - Vijayan Manoharan
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Yu Shrike Zhang
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Alessandro Polini
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Solange Massa
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Mehmet R Dokmeci
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | - Ali Khademhosseini
- Division of Biomedical Engineering, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston 02115, USA; Department of Physics, King Abdulaziz University, Jeddah 21569, Saudi Arabia.
| |
Collapse
|
17
|
Polini A, Prodanov L, Bhise NS, Manoharan V, Dokmeci MR, Khademhosseini A. Organs-on-a-chip: a new tool for drug discovery. Expert Opin Drug Discov 2014; 9:335-52. [PMID: 24620821 DOI: 10.1517/17460441.2014.886562] [Citation(s) in RCA: 148] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION The development of emerging in vitro tissue culture platforms can be useful for predicting human response to new compounds, which has been traditionally challenging in the field of drug discovery. Recently, several in vitro tissue-like microsystems, also known as 'organs-on-a-chip', have emerged to provide new tools for better evaluating the effects of various chemicals on human tissue. AREAS COVERED The aim of this article is to provide an overview of the organs-on-a-chip systems that have been recently developed. First, the authors introduce single-organ platforms, focusing on the most studied organs such as liver, heart, blood vessels and lung. Later, the authors briefly describe tumor-on-a-chip platforms and highlight their application for testing anti-cancer drugs. Finally, the article reports a few examples of other organs integrated in microfluidic chips along with preliminary multiple-organs-on-a-chip examples. The article also highlights key fabrication points as well as the main application areas of these devices. EXPERT OPINION This field is still at an early stage and major challenges need to be addressed prior to the embracement of these technologies by the pharmaceutical industry. To produce predictive drug screening platforms, several organs have to be integrated into a single microfluidic system representative of a humanoid. The routine production of metabolic biomarkers of the organ constructs, as well as their physical environment, have to be monitored prior to and during the delivery of compounds of interest to be able to translate the findings into useful discoveries.
Collapse
Affiliation(s)
- Alessandro Polini
- Brigham and Women's Hospital, Harvard Medical School, Division of Biomedical Engineering, Department of Medicine , Cambridge, MA 02139 , USA
| | | | | | | | | | | |
Collapse
|
18
|
Tsui JH, Lee W, Pun SH, Kim J, Kim DH. Microfluidics-assisted in vitro drug screening and carrier production. Adv Drug Deliv Rev 2013; 65:1575-88. [PMID: 23856409 DOI: 10.1016/j.addr.2013.07.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 06/06/2013] [Accepted: 07/05/2013] [Indexed: 12/11/2022]
Abstract
Microfluidic platforms provide several unique advantages for drug development. In the production of drug carriers, physical properties such as size and shape, and chemical properties such as drug composition and pharmacokinetic parameters, can be modified simply and effectively by tuning the flow rate and geometries. Large numbers of carriers can then be fabricated with minimal effort and with little to no batch-to-batch variation. Additionally, cell or tissue culture models in microfluidic systems can be used as in vitro drug screening tools. Compared to in vivo animal models, microfluidic drug screening platforms allow for high-throughput and reproducible screening at a significantly lower cost, and when combined with current advances in tissue engineering, are also capable of mimicking native tissues. In this review, various microfluidic platforms for drug and gene carrier fabrication are reviewed to provide guidelines for designing appropriate carriers. In vitro microfluidic drug screening platforms designed for high-throughput analysis and replication of in vivo conditions are also reviewed to highlight future directions for drug research and development.
Collapse
Affiliation(s)
- Jonathan H Tsui
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
19
|
Delamarche E, Tonna N, Lovchik RD, Bianco F, Matteoli M. Pharmacology on microfluidics: multimodal analysis for studying cell-cell interaction. Curr Opin Pharmacol 2013; 13:821-8. [PMID: 23876840 DOI: 10.1016/j.coph.2013.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/02/2013] [Accepted: 07/03/2013] [Indexed: 01/09/2023]
Abstract
Understanding the mechanisms of cell-cell interaction is a key unanswered question in modern pharmacology, given crosstalk defects are at the basis of many pathologies. Microfluidics represents a valuable tool for analyzing intercellular communication mediated by transmission of soluble signals, as occurring for example between neurons and glial cells in neuroinflammation, or between tumor and surrounding cells in cancer. However, the use of microfluidics for studying cell behavior still encompasses many technical and biological challenges. In this review, a state of the art of successes, potentials and limitations of microfluidics applied to key biological questions in modern pharmacology is analyzed and commented.
Collapse
|
20
|
Torrejon KY, Pu D, Bergkvist M, Danias J, Sharfstein ST, Xie Y. Recreating a human trabecular meshwork outflow system on microfabricated porous structures. Biotechnol Bioeng 2013; 110:3205-18. [PMID: 23775275 DOI: 10.1002/bit.24977] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 01/15/2023]
Abstract
Glaucoma is the leading cause of irreversible blindness, resulting from an increase in intraocular pressure (IOP). IOP is the only modifiable risk factor of glaucoma and is controlled by the outflow of the aqueous humor through the human trabecular meshwork (HTM). Currently, the lack of a proper in vitro HTM model impedes advances in understanding outflow physiology and discovering effective IOP-lowering anti-glaucoma therapeutics. Therefore, we designed and constructed an in vitro HTM model using micropatterned, porous SU-8 scaffolds, which support cells to recapitulate functional HTM morphology and allow the study of outflow physiology. The pore size of SU-8 scaffolds, surface coating, cell seeding density, and culture duration were evaluated for HTM cell growth. The bioengineered HTM was characterized by F-actin staining and immunocytochemistry of HTM markers. A stand-alone perfusion chamber with an integrated pressure sensing system was further constructed and used for the investigation of the outflow facility of the bioengineered HTM treated with latrunculin B-an IOP lowering agent. Cells in the in vitro model exhibited HTM-like morphology, expression of α-smooth muscle actin, myocilin, and αß-crystallin, outflow characteristics and drug responsiveness. Altogether, we have developed an in vitro HTM model system for understanding HTM cell biology and screening of pharmacological or biological agents that affect trabecular outflow facility, expediting discovery of IOP-lowering, anti-glaucoma therapeutics.
Collapse
Affiliation(s)
- Karen Y Torrejon
- College of Nanoscale Science and Engineering, University at Albany, State University of New York, 257 Fuller Road, Albany, New York, 12203
| | | | | | | | | | | |
Collapse
|
21
|
Ozcelikkale A, Ghosh S, Han B. Multifaceted Transport Characteristics of Nanomedicine: Needs for Characterization in Dynamic Environment. Mol Pharm 2013; 10:2111-26. [PMID: 23517188 DOI: 10.1021/mp3005947] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Altug Ozcelikkale
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Soham Ghosh
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| | - Bumsoo Han
- School
of Mechanical Engineering and ‡Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana,
United States
| |
Collapse
|