1
|
Moran MJ, Chen J, Piret JM, Balcarcel RR. Super7 passaging method to improve Chinese hamster ovary cell fed-batch performance. Biotechnol Bioeng 2024; 121:3068-3075. [PMID: 38659198 DOI: 10.1002/bit.28723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 04/26/2024]
Abstract
Chinese hamster ovary (CHO) cells are widely used to manufacture biopharmaceuticals, most of all monoclonal antibodies (mAbs). Some CHO cell lines exhibit production instability, where the productivity of the cells decreases as a function of time in culture. To counter this, we designed a passaging strategy that, rather than maximizing the time spent in log-growth phase, mimics the first 7 days of a fed-batch production process. Cultures passaged using this method had lower net growth rates and were more oxidative throughout 6 weeks of passaging. Fed-batch cultures inoculated by cells passaged using this method had increased net growth rates, oxidative metabolism, and volumetric productivity compared to cells passaged using a conventional strategy. Cells from unstable cell lines passaged by this new method produced 80%-160% more mAbs per unit volume than cells passaged by a conventional method. This new method, named Super7, provides the ability to mitigate the impact of production instability in CHO-K1 cell lines without a need for further cell line creation, genetic engineering, or medium development.
Collapse
Affiliation(s)
- Matthew J Moran
- Bayer U.S. LLC, Pharmaceuticals, BD Cell Culture Development, Berkeley, California, USA
| | - Jin Chen
- Bayer U.S. LLC, Pharmaceuticals, BD Cell Culture Development, Berkeley, California, USA
| | - James M Piret
- Department of Chemical & Biological Engineering, Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - R Robert Balcarcel
- Bayer U.S. LLC, Pharmaceuticals, BD Cell Culture Development, Berkeley, California, USA
| |
Collapse
|
2
|
Bauer N, Oberist C, Poth M, Stingele J, Popp O, Ausländer S. Genomic barcoding for clonal diversity monitoring and control in cell-based complex antibody production. Sci Rep 2024; 14:14587. [PMID: 38918509 PMCID: PMC11199663 DOI: 10.1038/s41598-024-65323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024] Open
Abstract
Engineered mammalian cells are key for biotechnology by enabling broad applications ranging from in vitro model systems to therapeutic biofactories. Engineered cell lines exist as a population containing sub-lineages of cell clones that exhibit substantial genetic and phenotypic heterogeneity. There is still a limited understanding of the source of this inter-clonal heterogeneity as well as its implications for biotechnological applications. Here, we developed a genomic barcoding strategy for a targeted integration (TI)-based CHO antibody producer cell line development process. This technology provided novel insights about clone diversity during stable cell line selection on pool level, enabled an imaging-independent monoclonality assessment after single cell cloning, and eventually improved hit-picking of antibody producer clones by monitoring of cellular lineages during the cell line development (CLD) process. Specifically, we observed that CHO producer pools generated by TI of two plasmids at a single genomic site displayed a low diversity (< 0.1% RMCE efficiency), which further depends on the expressed molecules, and underwent rapid population skewing towards dominant clones during routine cultivation. Clonal cell lines from one individual TI event demonstrated a significantly lower variance regarding production-relevant and phenotypic parameters as compared to cell lines from distinct TI events. This implies that the observed cellular diversity lies within pre-existing cell-intrinsic factors and that the majority of clonal variation did not develop during the CLD process, especially during single cell cloning. Using cellular barcodes as a proxy for cellular diversity, we improved our CLD screening workflow and enriched diversity of production-relevant parameters substantially. This work, by enabling clonal diversity monitoring and control, paves the way for an economically valuable and data-driven CLD process.
Collapse
Affiliation(s)
- Niels Bauer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Christoph Oberist
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Michaela Poth
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Julian Stingele
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Oliver Popp
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany
| | - Simon Ausländer
- Large Molecule Research, Roche Pharma Research and Early Development (pRED), Roche Innovation Center Munich, Penzberg, Germany.
| |
Collapse
|
3
|
Feng T, Minevich G, Liu P, Qin HX, Wozniak G, Pham J, Pham K, Korgaonkar A, Kurnellas M, Defranoux NA, Long H, Mitra A, Hu F. AAV- GRN partially corrects motor deficits and ALS/FTLD-related pathology in Tmem106b-/-Grn-/- mice. iScience 2023; 26:107247. [PMID: 37519899 PMCID: PMC10371829 DOI: 10.1016/j.isci.2023.107247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/18/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
Loss of function of progranulin (PGRN), encoded by the granulin (GRN) gene, is implicated in several neurodegenerative diseases. Several therapeutics to boost PGRN levels are currently in clinical trials. However, it is difficult to test the efficacy of PGRN-enhancing drugs in mouse models due to the mild phenotypes of Grn-/- mice. Recently, mice deficient in both PGRN and TMEM106B were shown to develop severe motor deficits and pathology. Here, we show that intracerebral ventricle injection of PGRN-expressing AAV1/9 viruses partially rescues motor deficits, neuronal loss, glial activation, and lysosomal abnormalities in Tmem106b-/-Grn-/- mice. Widespread expression of PGRN is detected in both the brain and spinal cord for both AAV subtypes. However, AAV9 but not AAV1-mediated expression of PGRN results in high levels of PGRN in the serum. Together, these data support using the Tmem106b-/-Grn-/- mouse strain as a robust mouse model to determine the efficacy of PGRN-elevating therapeutics.
Collapse
Affiliation(s)
- Tuancheng Feng
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Pengan Liu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry Xin Qin
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | | | - Jenny Pham
- Alector Inc, South San Francisco, CA 94080, USA
| | - Khanh Pham
- Alector Inc, South San Francisco, CA 94080, USA
| | | | | | | | - Hua Long
- Alector Inc, South San Francisco, CA 94080, USA
| | | | - Fenghua Hu
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Marx N, Eisenhut P, Weinguny M, Klanert G, Borth N. How to train your cell - Towards controlling phenotypes by harnessing the epigenome of Chinese hamster ovary production cell lines. Biotechnol Adv 2022; 56:107924. [PMID: 35149147 DOI: 10.1016/j.biotechadv.2022.107924] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/24/2022]
Abstract
Recent advances in omics technologies and the broad availability of big datasets have revolutionized our understanding of Chinese hamster ovary cells in their role as the most prevalent host for production of complex biopharmaceuticals. In consequence, our perception of this "workhorse of the biopharmaceutical industry" has successively shifted from that of a nicely working, but unknown recombinant protein producing black box to a biological system governed by multiple complex regulatory layers that might possibly be harnessed and manipulated at will. Despite the tremendous progress that has been made to characterize CHO cells on various omics levels, our understanding is still far from complete. The well-known inherent genetic plasticity of any immortalized and rapidly dividing cell line also characterizes CHO cells and can lead to problematic instability of recombinant protein production. While the high mutational frequency has been a focus of CHO cell research for decades, the impact of epigenetics and its role in differential gene expression has only recently been addressed. In this review we provide an overview about the current understanding of epigenetic regulation in CHO cells and discuss its significance for shaping the cell's phenotype. We also look into current state-of-the-art technology that can be applied to harness and manipulate the epigenetic network so as to nudge CHO cells towards a specific phenotype. Here, we revise current strategies on site-directed integration and random as well as targeted epigenome modifications. Finally, we address open questions that need to be investigated to exploit the full repertoire of fine-tuned control of multiplexed gene expression using epigenetic and systems biology tools.
Collapse
Affiliation(s)
- Nicolas Marx
- University of Natural Resources and Life Sciences, Vienna, Austria
| | - Peter Eisenhut
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Marcus Weinguny
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Centre for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
5
|
Screening of CHO-K1 endogenous promoters for expressing recombinant proteins in mammalian cell cultures. Plasmid 2022; 119-120:102620. [DOI: 10.1016/j.plasmid.2022.102620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 12/28/2022]
|
6
|
Zhang Z, Chen J, Wang J, Gao Q, Ma Z, Xu S, Zhang L, Cai J, Zhou W. Reshaping cell line development and CMC strategy for fast responses to pandemic outbreak. Biotechnol Prog 2021; 37:e3186. [PMID: 34148295 DOI: 10.1002/btpr.3186] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
The global pandemic outbreak COVID-19 (SARS-COV-2), has prompted many pharmaceutical companies to develop vaccines and therapeutic biologics for its prevention and treatment. Most of the therapeutic biologics are common human IgG antibodies, which were identified by next-generation sequencing (NGS) with the B cells from the convalescent patients. To fight against pandemic outbreaks like COVID-19, biologics development strategies need to be optimized to speed up the timeline. Since the advent of therapeutic biologics, strategies of transfection and cell line selection have been continuously improved for greater productivity and efficiency. NGS has also been implemented for accelerated cell bank testing. These recent advances enable us to rethink and reshape the chemistry, manufacturing, and controls (CMC) strategy in order to start supplying Good Manufacturing Practices (GMP) materials for clinical trials as soon as possible. We elucidated an accelerated CMC workflow for biologics, including using GMP-compliant pool materials for phase I clinical trials, selecting the final clone with product quality similar to that of phase I materials for late-stage development and commercial production.
Collapse
Affiliation(s)
- Zheng Zhang
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Ji Chen
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Junghao Wang
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Qiao Gao
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Zhujun Ma
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Shurong Xu
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Li Zhang
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Jill Cai
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Weichang Zhou
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| |
Collapse
|
7
|
Marx N, Dhiman H, Schmieder V, Freire CM, Nguyen LN, Klanert G, Borth N. Enhanced targeted DNA methylation of the CMV and endogenous promoters with dCas9-DNMT3A3L entails distinct subsequent histone modification changes in CHO cells. Metab Eng 2021; 66:268-282. [PMID: 33965614 DOI: 10.1016/j.ymben.2021.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/02/2021] [Accepted: 04/22/2021] [Indexed: 01/08/2023]
Abstract
With the emergence of new CRISPR/dCas9 tools that enable site specific modulation of DNA methylation and histone modifications, more detailed investigations of the contribution of epigenetic regulation to the precise phenotype of cells in culture, including recombinant production subclones, is now possible. These also allow a wide range of applications in metabolic engineering once the impact of such epigenetic modifications on the chromatin state is available. In this study, enhanced DNA methylation tools were targeted to a recombinant viral promoter (CMV), an endogenous promoter that is silenced in its native state in CHO cells, but had been reactivated previously (β-galactoside α-2,6-sialyltransferase 1) and an active endogenous promoter (α-1,6-fucosyltransferase), respectively. Comparative ChIP-analysis of histone modifications revealed a general loss of active promoter histone marks and the acquisition of distinct repressive heterochromatin marks after targeted methylation. On the other hand, targeted demethylation resulted in autologous acquisition of active promoter histone marks and loss of repressive heterochromatin marks. These data suggest that DNA methylation directs the removal or deposition of specific histone marks associated with either active, poised or silenced chromatin. Moreover, we show that de novo methylation of the CMV promoter results in reduced transgene expression in CHO cells. Although targeted DNA methylation is not efficient, the transgene is repressed, thus offering an explanation for seemingly conflicting reports about the source of CMV promoter instability in CHO cells. Importantly, modulation of epigenetic marks enables to nudge the cell into a specific gene expression pattern or phenotype, which is stabilized in the cell by autologous addition of further epigenetic marks. Such engineering strategies have the added advantage of being reversible and potentially tunable to not only turn on or off a targeted gene, but also to achieve the setting of a desirable expression level.
Collapse
Affiliation(s)
- Nicolas Marx
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Heena Dhiman
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Valerie Schmieder
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | | | - Ly Ngoc Nguyen
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Gerald Klanert
- Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria
| | - Nicole Borth
- BOKU University of Natural Resources and Life Sciences, Vienna, Austria; Austrian Center for Industrial Biotechnology GmbH, Vienna, Austria.
| |
Collapse
|
8
|
Michalec-Wawiórka B, Czapiński J, Filipek K, Rulak P, Czerwonka A, Tchórzewski M, Rivero-Müller A. An Improved Vector System for Homogeneous and Stable Gene Regulation. Int J Mol Sci 2021; 22:ijms22105206. [PMID: 34069024 PMCID: PMC8157167 DOI: 10.3390/ijms22105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/24/2021] [Accepted: 05/08/2021] [Indexed: 11/16/2022] Open
Abstract
Precise analysis of the genetic expression and functioning of proteins requires experimental approaches that, among others, enable tight control of gene expression at the transcriptional level. Doxycycline-induced Tet-On/Tet-Off expression systems provide such an opportunity, and are frequently used to regulate the activity of genes in eukaryotic cells. Since its development, the Tet-system has evolved tight gene control in mammalian cells; however, some challenges are still unaddressed. In the current set up, the establishment of the standard Tet-based system in target cells is time-consuming and laborious and has been shown to be inefficient, especially in a long-term perspective. In this work, we present an optimized inducible expression system, which enables rapid generation of doxycycline-responsive cells according to a one- or two-step protocol. The reported modifications of the Tet-On system expand the toolbox for regulated mammalian gene expression and provide high, stable, and homogenous expression of the Tet-On3G transactivator, which is of fundamental importance in the regulation of transgenes.
Collapse
Affiliation(s)
- Barbara Michalec-Wawiórka
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (P.R.); (M.T.)
- Correspondence:
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (J.C.); (A.C.); (A.R.-M.)
- Postgraduate School of Molecular Medicine, 02-091 Warsaw, Poland
| | - Kamil Filipek
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (P.R.); (M.T.)
| | - Patrycja Rulak
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (P.R.); (M.T.)
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (J.C.); (A.C.); (A.R.-M.)
| | - Marek Tchórzewski
- Department of Molecular Biology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 20-033 Lublin, Poland; (K.F.); (P.R.); (M.T.)
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093 Lublin, Poland; (J.C.); (A.C.); (A.R.-M.)
| |
Collapse
|
9
|
Li ES, Saha MS. Optimizing Calcium Detection Methods in Animal Systems: A Sandbox for Synthetic Biology. Biomolecules 2021; 11:343. [PMID: 33668387 PMCID: PMC7996158 DOI: 10.3390/biom11030343] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/16/2022] Open
Abstract
Since the 1970s, the emergence and expansion of novel methods for calcium ion (Ca2+) detection have found diverse applications in vitro and in vivo across a series of model animal systems. Matched with advances in fluorescence imaging techniques, the improvements in the functional range and stability of various calcium indicators have significantly enhanced more accurate study of intracellular Ca2+ dynamics and its effects on cell signaling, growth, differentiation, and regulation. Nonetheless, the current limitations broadly presented by organic calcium dyes, genetically encoded calcium indicators, and calcium-responsive nanoparticles suggest a potential path toward more rapid optimization by taking advantage of a synthetic biology approach. This engineering-oriented discipline applies principles of modularity and standardization to redesign and interrogate endogenous biological systems. This review will elucidate how novel synthetic biology technologies constructed for eukaryotic systems can offer a promising toolkit for interfacing with calcium signaling and overcoming barriers in order to accelerate the process of Ca2+ detection optimization.
Collapse
Affiliation(s)
| | - Margaret S. Saha
- Department of Biology, College of William and Mary, Williamsburg, VA 23185, USA;
| |
Collapse
|
10
|
Mirzaie V, Eslaminejad T, Babaei H, Nematollahi-Mahani SN. Enhancing the Butyrylcholinesterase Activity in HEK-293 Cell Line by Dual-Promoter Vector Decorated on Lipofectamine. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:3589-3599. [PMID: 32943846 PMCID: PMC7481294 DOI: 10.2147/dddt.s260419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/06/2020] [Indexed: 01/16/2023]
Abstract
Purpose Human butyrylcholinesterase (BChE) serves as a bio scavenger to counteract organophosphate poisoning. It is also a potential drug candidate in several therapeutic fields. Therefore, in the present study, we constructed a new dual-promoter plasmid consisting of Cytomegalovirus (CMV) and human elongation factor 1α (EF-1α) promoters and transfected that into HEK-293 cells using Lipofectamine to enhance the BChE secretion. Methods The new dual-promoter construction (pBudCE dual BChE) including two copies of the BChE gene was designed and transfected into cells by liposomal structures. The cloned plasmids were evaluated by enzyme digestion and gel electrophoresis analysis. Experimental groups were categorized into the cells transfected by pBudCE dual BChE (treatment), pCMV (positive control) vectors, and nontransfected cells (negative control). BChE gene expression was evaluated by qRT-PCR and the enzyme activity was assessed using modified Ellman’s method. The freeze-thaw process was carried out for analyzing the stability of the pBudCE dual BChE vector. Results Validation examination of the cloned plasmids confirmed the successful cloning process. The gene expression level and Ellman’s method value in pBudCE dual BChE was higher than the other groups. CMV promoter has also increased the enzyme activity, although the difference was not significant compared with the control group. Interestingly, freeze-thaw cycles followed by several passages did not affect the enzyme activity. Conclusion The designed construction with CMV and EF-1α promoters could increase BChE gene expression and the activity of the BChE enzyme in HEK-293 cell line. Large-scale production of BChE enzyme can be achieved by using dual-promoter plasmid construction compared to a single-promoter vector to be used in clinical trials.
Collapse
Affiliation(s)
- Vida Mirzaie
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Touba Eslaminejad
- Pharmaceutics Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Homayoon Babaei
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Seyed Noureddin Nematollahi-Mahani
- Neuroscience Research Centre, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Afzal Research Institute (NGO), Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
11
|
Effects of viral promoters, the Woodchuck hepatitis post-transcriptional regulatory element, and weakened antibiotic resistance markers on transgene expression in Chinese hamster ovary cells. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Welch JT, Arden NS. Considering “clonality”: A regulatory perspective on the importance of the clonal derivation of mammalian cell banks in biopharmaceutical development. Biologicals 2019; 62:16-21. [DOI: 10.1016/j.biologicals.2019.09.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 12/23/2022] Open
|
13
|
Tharmalingam T, Barkhordarian H, Tejeda N, Daris K, Yaghmour S, Yam P, Lu F, Goudar C, Munro T, Stevens J. Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol Prog 2019; 34:613-623. [PMID: 29882350 PMCID: PMC6099272 DOI: 10.1002/btpr.2666] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 05/09/2018] [Indexed: 12/19/2022]
Abstract
Regulatory guidelines require the sponsors to provide assurance of clonality of the production cell line, and when such evidence is not available, additional studies are typically required to further ensure consistent long‐term manufacturing of the product. One potential approach to provide such assurance of clonal derivation of a production cell line is to characterize subclones generated from the original cell line and assess their phenotypic and genotypic similarity with the hypothesis that cell lines derived from a clonal bank will share performance, productivity and product quality characteristics. In this study, a production cell line that was cloned by a validated FACS approach coupled with day 0 imaging for verification of single‐cell deposition was subcloned using validated FACS and imaging methods. A total of 46 subclones were analyzed for growth, productivity, product quality, copy number, and integration site analysis. Significant diversity in cell growth, protein productivity, product quality attributes, and copy number was observed between the subclones, despite stability of the parent clone over time. The diversity in protein productivity and quality of the subclones were reproduced across time and production scales, suggesting that the resulting population post sub‐cloning originating from a single cell is stable but with unique properties. Overall, this work demonstrates that the characteristics of isolated subclones are not predictive of a clonally derived parental clone. Consequently, the analysis of subclones may not be an effective approach to demonstrate clonal origin of a cell bank. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:613–623, 2018
Collapse
Affiliation(s)
- Tharmala Tharmalingam
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Hedieh Barkhordarian
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Nicole Tejeda
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Kristi Daris
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Sam Yaghmour
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Pheng Yam
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Fang Lu
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Chetan Goudar
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Trent Munro
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| | - Jennitte Stevens
- Drug Substance Technologies, Process Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 91320
| |
Collapse
|
14
|
Krebs LE, Bowden DM, Bray CM, Shaw MM, Frye CC. Effective and efficient characterization of Chinese hamster ovary production cell lines using automated intracellular staining and statistical modeling. Biotechnol Prog 2019; 34:570-583. [PMID: 29882242 DOI: 10.1002/btpr.2667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/15/2018] [Indexed: 11/05/2022]
Abstract
Mammalian cell line development is critical to bioproduct manufacturing. Success requires selecting a line with desirable performance characteristics, including consistent expression throughout the proposed manufacturing window. Given the genetic and phenotypic flux inherent to immortalized lines such as Chinese hamster ovary cells, clonally-derived cell line characterization is vital. We describe here the development and implementation of a novel addition to our characterization approach to ensure production cell line suitability: automated intracellular staining with statistical modeling. Case studies are presented which highlight this method's sensitivity to epigenetic expression effects, closing a gap left by our historically-leveraged genetic suitability characterization. Additionally, we demonstrate how an orthogonal, complimentary assay can help identify opportunities for improvement in even a well-established methodology such as our genetic suitability assessment. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:570-583, 2018.
Collapse
|
15
|
Jia Y, Guo X, Lu J, Wang X, Qiu L, Wang T. CRISPR/Cas9-mediated gene knockout for DNA methyltransferase Dnmt3a in CHO cells displays enhanced transgenic expression and long-term stability. J Cell Mol Med 2018; 22:4106-4116. [PMID: 29851281 PMCID: PMC6111867 DOI: 10.1111/jcmm.13687] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/23/2018] [Indexed: 12/14/2022] Open
Abstract
CHO cells are the preferred host for the production of complex pharmaceutical proteins in the biopharmaceutical industry, and genome engineering of CHO cells would benefit product yield and stability. Here, we demonstrated the efficacy of a Dnmt3a-deficient CHO cell line created by CRISPR/Cas9 genome editing technology through gene disruptions in Dnmt3a, which encode the proteins involved in DNA methyltransferases. The transgenes, which were driven by the 2 commonly used CMV and EF1α promoters, were evaluated for their expression level and stability. The methylation levels of CpG sites in the promoter regions and the global DNA were compared in the transfected cells. The Dnmt3a-deficent CHO cell line based on Dnmt3a KO displayed an enhanced long-term stability of transgene expression under the control of the CMV promoter in transfected cells in over 60 passages. Under the CMV promoter, the Dnmt3a-deficent cell line with a high transgene expression displayed a low methylation rate in the promoter region and global DNA. Under the EF1α promoter, the Dnmt3a-deficient and normal cell lines with low transgene expression exhibited high DNA methylation rates. These findings provide insight into cell line modification and design for improved recombinant protein production in CHO and other mammalian cells.
Collapse
Affiliation(s)
- Yan‐Long Jia
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao Guo
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Jiang‐Tao Lu
- College of PharmacyXinxiang Medical UniversityXinxiangHenanChina
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
| | - Xiao‐Yin Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Le‐Le Qiu
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| | - Tian‐Yun Wang
- International Joint Research Laboratory for Recombiant Pharmaceutical Protein Expression System of HenanXinxiang Medical UniversityXinxiangHenanChina
- School of Basic MedicineXinxiang Medical UniversityXinxiangHenanChina
| |
Collapse
|
16
|
An IRES-Mediated Tricistronic Vector for Efficient Generation of Stable, High-Level Monoclonal Antibody Producing CHO DG44 Cell Lines. Methods Mol Biol 2018; 1827:335-349. [PMID: 30196505 DOI: 10.1007/978-1-4939-8648-4_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The generation of stable, high-level monoclonal antibody (mAb) producing cell lines remains a major challenge in biopharmaceutical industry. The commonly used plasmid vectors for mAb expression, which express light chain (LC), heavy chain (HC), and selection marker genes on separate vectors or via multiple promoters on a single vector, are not able to accurately control the ratio of LC over HC expression and tend to result in non-expressing clones. To overcome these issues, we have developed a tricistronic vector using two internal ribosome entry sites (IRES) to express the LC, HC, and dihydrofolate reductase (DHFR) selection marker genes in one transcript. In this tricistronic vector, the three genes are under the control of a hapten-modified human cytomegalovirus (hCMV) promoter containing a core CpG island element (IE) to enhance the production stability. The LC gene is arranged as the first cistron followed by a wild-type IRES to control the HC expression. Such design expresses excess LC polypeptides which enhance mAb expression level and reduce aggregate. A mutated IRES with attenuated strength is applied on DHFR to reduce its expression for enhancing the stringency of selection for high producers. This vector allows easy generation of stable, high mAb producing CHO DG44 pools and clones for antibody development and manufacturing.
Collapse
|
17
|
Yeo JHM, Ho SCL, Mariati M, Koh E, Tay SJ, Woen S, Zhang P, Yang Y. Optimized Selection Marker and CHO Host Cell Combinations for Generating High Monoclonal Antibody Producing Cell Lines. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700175] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 09/13/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Jessna H. M. Yeo
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Mariati Mariati
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Esther Koh
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Shi Jie Tay
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Susanto Woen
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Peiqing Zhang
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Institute; Agency for Science; Technology and Research (A*STAR) Singapore Singapore
| |
Collapse
|
18
|
Rajendra Y, Balasubramanian S, McCracken NA, Norris DL, Lian Z, Schmitt MG, Frye CC, Barnard GC. Evaluation of piggyBac-mediated CHO pools to enable material generation to support GLP toxicology studies. Biotechnol Prog 2017; 33:1436-1448. [DOI: 10.1002/btpr.2495] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 04/13/2017] [Indexed: 11/12/2022]
Affiliation(s)
- Yashas Rajendra
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company; Lilly Corporate Center, Indianapolis IN 46225
| | - Sowmya Balasubramanian
- Bioprocess Research and Development, Eli Lilly and Company, LTC-North; 1200 Kentucky Avenue, Indianapolis IN 46221
| | - Neil A. McCracken
- Bioprocess Research and Development, Eli Lilly and Company, LTC-North; 1200 Kentucky Avenue, Indianapolis IN 46221
| | - Dawn L. Norris
- Bioprocess Research and Development, Eli Lilly and Company, LTC-North; 1200 Kentucky Avenue, Indianapolis IN 46221
| | - Zhirui Lian
- Bioprocess Research and Development, Eli Lilly and Company, LTC-North; 1200 Kentucky Avenue, Indianapolis IN 46221
| | - Matthew G. Schmitt
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company; Lilly Corporate Center, Indianapolis IN 46225
| | - Christopher C. Frye
- Bioprocess Research and Development, Eli Lilly and Company, LTC-North; 1200 Kentucky Avenue, Indianapolis IN 46221
| | - Gavin C. Barnard
- Biotechnology Discovery Research, Lilly Research Laboratories, Eli Lilly and Company; Lilly Corporate Center, Indianapolis IN 46225
| |
Collapse
|
19
|
Wang X, Xu Z, Tian Z, Zhang X, Xu D, Li Q, Zhang J, Wang T. The EF-1α promoter maintains high-level transgene expression from episomal vectors in transfected CHO-K1 cells. J Cell Mol Med 2017; 21:3044-3054. [PMID: 28557288 PMCID: PMC5661254 DOI: 10.1111/jcmm.13216] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Accepted: 04/01/2017] [Indexed: 02/03/2023] Open
Abstract
In our previous study, we demonstrated that episomal vectors based on the characteristic sequence of matrix attachment regions (MARs) and containing the cytomegalovirus (CMV) promoter allow transgenes to be maintained episomally in Chinese hamster ovary (CHO) cells. However, the transgene expression was unstable and the number of copies was low. In this study, we focused on enhancers, various promoters and promoter variants that could improve the transgene expression stability, expression magnitude (level) and the copy number of a MAR‐based episomal vector in CHO‐K1 cells. In comparison with the CMV promoter, the eukaryotic translation elongation factor 1 α (EF‐1α, gene symbol EEF1A1) promoter increased the transfection efficiency, the transgene expression, the proportion of expression‐positive clones and the copy number of the episomal vector in long‐term culture. By contrast, no significant positive effects were observed with an enhancer, CMV promoter variants or CAG promoter in the episomal vector in long‐term culture. Moreover, the high‐expression clones harbouring the EF‐1α promoter tended to be more stable in long‐term culture, even in the absence of selection pressure. According to these findings, we concluded that the EF‐1α promoter is a potent regulatory sequence for episomal vectors because it maintains high transgene expression, transgene stability and copy number. These results provide valuable information on improvement of transgene stability and the copy number of episomal vectors.
Collapse
Affiliation(s)
- Xiaoyin Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China.,Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang, Henan, China
| | - Zhongjie Xu
- Life Science and Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhengwei Tian
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xi Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Danhua Xu
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Qin Li
- Test Laboratory, Xinxiang Medical University, Xinxiang, Henan, China
| | - Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Tianyun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, Henan, China
| |
Collapse
|
20
|
Zhao CP, Guo X, Chen SJ, Li CZ, Yang Y, Zhang JH, Chen SN, Jia YL, Wang TY. Matrix attachment region combinations increase transgene expression in transfected Chinese hamster ovary cells. Sci Rep 2017; 7:42805. [PMID: 28216629 PMCID: PMC5316954 DOI: 10.1038/srep42805] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/16/2017] [Indexed: 11/09/2022] Open
Abstract
Matrix attachment regions (MARs) are cis-acting DNA elements that can increase transgene expression levels in a CHO cell expression system. To investigate the effects of MAR combinations on transgene expression and the underlying regulatory mechanisms, we generated constructs in which the enhanced green fluorescent protein (eGFP) gene flanked by different combinations of human β-interferon and β-globin MAR (iMAR and gMAR, respectively), which was driven by the cytomegalovirus (CMV) or simian virus (SV) 40 promoter. These were transfected into CHO-K1 cells, which were screened with geneticin; eGFP expression was detected by flow cytometry. The presence of MAR elements increased transfection efficiency and transient and stably expression of eGFP expression under both promoters; the level was higher when the two MARs differed (i.e., iMAR and gMAR) under the CMV but not the SV40 promoter. For the latter, two gMARs showed the highest activity. We also found that MARs increased the ratio of stably transfected positive colonies. These results indicate that combining the CMV promoter with two different MAR elements or the SV40 promoter with two gMARs is effective for inducing high expression level and stability of transgenes.
Collapse
Affiliation(s)
- Chun-Peng Zhao
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Xiao Guo
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Si-Jia Chen
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Chang-Zheng Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Yun Yang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Jun-He Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Shao-Nan Chen
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| | - Yan-Long Jia
- Pharmacy College, Xinxiang Medical University, Xinxiang 453003, Henan, China
| | - Tian-Yun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Henan 453003, China
| |
Collapse
|
21
|
Tsuruta LR, Lopes dos Santos M, Yeda FP, Okamoto OK, Moro AM. Genetic analyses of Per.C6 cell clones producing a therapeutic monoclonal antibody regarding productivity and long-term stability. Appl Microbiol Biotechnol 2016; 100:10031-10041. [DOI: 10.1007/s00253-016-7841-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 08/21/2016] [Accepted: 09/07/2016] [Indexed: 11/27/2022]
|
22
|
Moritz B, Woltering L, Becker PB, Göpfert U. High levels of histone H3 acetylation at the CMV promoter are predictive of stable expression in Chinese hamster ovary cells. Biotechnol Prog 2016; 32:776-86. [DOI: 10.1002/btpr.2271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/11/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Benjamin Moritz
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich; Germany
- Biomedical Center and Center for Integrated Protein Science, Molecular Biology Division, Ludwig-Maximilians-University; Munich Germany
| | - Laura Woltering
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich; Germany
| | - Peter B. Becker
- Biomedical Center and Center for Integrated Protein Science, Molecular Biology Division, Ludwig-Maximilians-University; Munich Germany
| | - Ulrich Göpfert
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich; Germany
| |
Collapse
|
23
|
Inverse PCR and Quantitative PCR as Alternative Methods to Southern Blotting Analysis to Assess Transgene Copy Number and Characterize the Integration Site in Transgenic Woody Plants. Biochem Genet 2016; 54:291-305. [DOI: 10.1007/s10528-016-9719-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 02/08/2016] [Indexed: 01/16/2023]
|
24
|
Moritz B, Becker PB, Göpfert U. CMV promoter mutants with a reduced propensity to productivity loss in CHO cells. Sci Rep 2015; 5:16952. [PMID: 26581326 PMCID: PMC4652263 DOI: 10.1038/srep16952] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/22/2015] [Indexed: 11/09/2022] Open
Abstract
The major immediate-early promoter and enhancer of the human cytomegalovirus (hCMV-MIE) is one of the most potent DNA elements driving recombinant gene expression in mammalian cells. Therefore, it is widely employed not only in research but also in large-scale industrial applications, e.g. for the production of therapeutic antibodies in Chinese hamster ovary cells (CHO). As we have reported previously, multi-site methylation of hCMV-MIE is linked to productivity loss in permanently transfected CHO cells lines. In particular, the cytosine located 179 bp upstream of the transcription start site (C-179) is frequently methylated. Therefore, our objective was to study whether mutation of C-179 and other cytosines within hCMV-MIE might lessen the instability of transgene expression. We discovered that the single mutation of C-179 to G can significantly stabilise the production of recombinant protein under control of hCMV-MIE in permanently transfected CHO cells.
Collapse
Affiliation(s)
- Benjamin Moritz
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Penzberg, Germany
| | - Peter B Becker
- Biomedical Center and Center for Integrated Protein Science Munich, Ludwig Maximilian University, Munich, Germany
| | - Ulrich Göpfert
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Penzberg, Germany
| |
Collapse
|
25
|
Mariati, Koh EYC, Yeo JHM, Ho SCL, Yang Y. Toward stable gene expression in CHO cells. Bioengineered 2015; 5:340-5. [PMID: 25482237 DOI: 10.4161/bioe.32111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific.
Collapse
Affiliation(s)
- Mariati
- a Bioprocessing Technology Institute; Agency for Science, Technology, and Research (A*STAR); Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
26
|
Osborne GW, Andersen SB, Battye FL. Development of a novel cell sorting method that samples population diversity in flow cytometry. Cytometry A 2015; 87:1047-51. [PMID: 25944021 DOI: 10.1002/cyto.a.22678] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Flow cytometry based electrostatic cell sorting is an important tool in the separation of cell populations. Existing instruments can sort single cells into multi-well collection plates, and keep track of cell of origin and sorted well location. However currently single sorted cell results reflect the population distribution and fail to capture the population diversity. Software was designed that implements a novel sorting approach, "Slice and Dice Sorting," that links a graphical representation of a multi-well plate to logic that ensures that single cells are sampled and sorted from all areas defined by the sort region/s. Therefore the diversity of the total population is captured, and the more frequently occurring or rarer cell types are all sampled. The sorting approach was tested computationally, and using functional cell based assays. Computationally we demonstrate that conventional single cell sorting can sample as little as 50% of the population diversity dependant on the population distribution, and that Slice and Dice sorting samples much more of the variety present within a cell population. We then show by sorting single cells into wells using the Slice and Dice sorting method that there are cells sorted using this method that would be either rarely sorted, or not sorted at all using conventional single cell sorting approaches. The present study demonstrates a novel single cell sorting method that samples much more of the population diversity than current methods. It has implications in clonal selection, stem cell sorting, single cell sequencing and any areas where population heterogeneity is of importance.
Collapse
Affiliation(s)
- Geoffrey W Osborne
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.,The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stacey B Andersen
- The Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD 4072, Australia
| | - Francis L Battye
- Frank Battye Flow Cytometry Consulting, Viewbank, VIC 3084, Australia
| |
Collapse
|
27
|
Valente KN, Lenhoff AM, Lee KH. Expression of difficult-to-remove host cell protein impurities during extended Chinese hamster ovary cell culture and their impact on continuous bioprocessing. Biotechnol Bioeng 2015; 112:1232-42. [DOI: 10.1002/bit.25515] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/24/2014] [Accepted: 12/03/2014] [Indexed: 12/11/2022]
Affiliation(s)
- Kristin N. Valente
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark 19716 Delaware
- Delaware Biotechnology Institute; University of Delaware; Newark 19711 Delaware
| | - Abraham M. Lenhoff
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark 19716 Delaware
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering; University of Delaware; Newark 19716 Delaware
- Delaware Biotechnology Institute; University of Delaware; Newark 19711 Delaware
| |
Collapse
|
28
|
Impact of Using Different Promoters and Matrix Attachment Regions on Recombinant Protein Expression Level and Stability in Stably Transfected CHO Cells. Mol Biotechnol 2014; 57:138-44. [DOI: 10.1007/s12033-014-9809-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Mariati, Yeo JHM, Koh EYC, Ho SCL, Yang Y. Insertion of core CpG island element into human CMV promoter for enhancing recombinant protein expression stability in CHO cells. Biotechnol Prog 2014; 30:523-34. [DOI: 10.1002/btpr.1919] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/02/2014] [Indexed: 01/17/2023]
Affiliation(s)
- Mariati
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Jessna H. M. Yeo
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Esther Y. C. Koh
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Steven C. L. Ho
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
| | - Yuansheng Yang
- Bioprocessing Technology Inst., Agency for Science, Technology and Research (A*STAR); Singapore 138668 Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University; Singapore 637459 Singapore
| |
Collapse
|
30
|
Establishment of a CpG island microarray for analyses of genome-wide DNA methylation in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2013; 98:579-89. [PMID: 24146078 PMCID: PMC3890572 DOI: 10.1007/s00253-013-5282-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/12/2013] [Accepted: 09/19/2013] [Indexed: 01/08/2023]
Abstract
Optimizing productivity and growth rates of recombinant Chinese hamster ovary (CHO) cells requires insight into the regulation of cellular processes. In this regard, the elucidation of the epigenetic process of DNA methylation, known to influence transcription by a differential occurrence in CpG islands in promoter regions, is increasingly gaining importance. However, DNA methylation has not yet been investigated on a genomic scale in CHO cells and suitable tools have not existed until now. Based on the genomic and transcriptomic CHO data currently available, we developed a customized oligonucleotide microarray covering 19598 CpG islands (89 % of total bioinformatically identified CpG islands) in the CHO genome. We applied our CHO-specific CpG island microarray to investigate the effect of butyrate treatment on differential DNA methylation in CHO cultures in a time-dependent approach. Supplementation of butyrate is known to enhance cell specific productivities in CHO cells and leads to alterations of epigenetic silencing events. Gene ontology clusters regarding, e.g., chromatin modification or DNA repair, were significantly overrepresented 24 h after butyrate addition. Functional classifications furthermore indicated that several major signaling systems such as the Wnt/β-catenin pathway were affected by butyrate treatment. Our novel CHO-specific CpG island microarray will provide valuable information in future studies of cellular processes associated with productivity and product characteristics.
Collapse
|