1
|
Mączka W, Juchniewicz K, Galek R, Grabarczyk M, Wińska K. Biotransformation of Carvone by Hylocereus undatus Shoots. Chem Biodivers 2025:e00475. [PMID: 40393447 DOI: 10.1002/cbdv.202500475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/22/2025]
Abstract
The aim of the study was to assess the potential of in vitro cultures of Hylocereus undatus (pitaya; dragon fruit) to biotransform carvone and determine the products. Pitaya plants were used for their rich enzymatic system capable of complex biochemical reactions. Carvone enantiomers were chosen as model compounds. The biotransformation was conducted in liquid phosphate buffer under controlled laboratory conditions for two days. Samples were taken at 24 and 48 h and analyzed using gas chromatography. The reaction yield in both cases was approximately 17%. The reaction pathway for both isomers differed from previous reports. In both cases, the carbonyl group was first reduced, followed by the reduction of the double bond. The main transformation products of (R)-(-)-carvone included n-dihydrocarveol (13.47%), with minor amounts of trans-carveol (2.09%) and iso-dihydrocarveol (0.71%). Additionally, for the (S)-isomer, trans-dihydrocarvone formation was observed, indicating complex metabolic pathways. Biotransformation of the (S)-enantiomer resulted in a mixture of trans-carveol (0.64%), cis-carveol (6.43%), dihydrocarveol (5.74%), and trans-dihydrocarvone (4.43%). This study is the first to use pitaya for organic compound transformation, bridging research on tropical and temperate plants.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Kamil Juchniewicz
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Renata Galek
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Science, Wroclaw, Poland
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| |
Collapse
|
2
|
Chen J, Qi S, Wang Z, Hu L, Liu J, Huang G, Peng Y, Fang Z, Wu Q, Hu Y, Guo K. Ene-Reductase-Catalyzed Aromatization of Simple Cyclohexanones to Phenols. Angew Chem Int Ed Engl 2024; 63:e202408359. [PMID: 39106109 DOI: 10.1002/anie.202408359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/09/2024]
Abstract
Direct aromatization of cyclohexanones to synthesize substituted phenols represents a significant challenge in modern synthetic chemistry. Herein, we describe a novel ene-reductase (TsER) catalytic system that converts substituted cyclohexanones into the corresponding phenols. This process involves the successive dehydrogenation of two saturated carbon-carbon bonds within the six-membered ring of cyclohexanones and utilizes molecular oxygen to drive the reaction cycle. It demonstrates a versatile and efficient approach for the synthesis of substituted phenols, providing a valuable complement to existing chemical methodologies.
Collapse
Affiliation(s)
- Jie Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Shaofang Qi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Zhiguo Wang
- Institute of Aging Research, Hangzhou Normal University, Zhejiang, Hangzhou, 311121, PR China
| | - Liran Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Jialing Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Guixiang Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Yongzhen Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Qi Wu
- Department of Chemistry, Zhejiang University, Zhejiang, Hangzhou, 310027, PR China
| | - Yujing Hu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 211816, PR China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Jiangsu, Nanjing, 210009, PR China
| |
Collapse
|
3
|
Li RJ, Tian K, Li X, Gaikaiwari AR, Li Z. Engineering P450 Monooxygenases for Highly Regioselective and Active p-Hydroxylation of m-Alkylphenols. ACS Catal 2022. [DOI: 10.1021/acscatal.1c06011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ren-Jie Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Kaiyuan Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Xirui Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Anand Raghavendra Gaikaiwari
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| |
Collapse
|
4
|
Hollmann F, Opperman DJ, Paul CE. Biocatalytic Reduction Reactions from a Chemist's Perspective. Angew Chem Int Ed Engl 2021; 60:5644-5665. [PMID: 32330347 PMCID: PMC7983917 DOI: 10.1002/anie.202001876] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 11/09/2022]
Abstract
Reductions play a key role in organic synthesis, producing chiral products with new functionalities. Enzymes can catalyse such reactions with exquisite stereo-, regio- and chemoselectivity, leading the way to alternative shorter classical synthetic routes towards not only high-added-value compounds but also bulk chemicals. In this review we describe the synthetic state-of-the-art and potential of enzymes that catalyse reductions, ranging from carbonyl, enone and aromatic reductions to reductive aminations.
Collapse
Affiliation(s)
- Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Diederik J. Opperman
- Department of BiotechnologyUniversity of the Free State205 Nelson Mandela DriveBloemfontein9300South Africa
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629 HZDelftThe Netherlands
| |
Collapse
|
5
|
Hollmann F, Opperman DJ, Paul CE. Biokatalytische Reduktionen aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001876] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Frank Hollmann
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Diederik J. Opperman
- Department of Biotechnology University of the Free State 205 Nelson Mandela Drive Bloemfontein 9300 Südafrika
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology Van der Maasweg 9 2629 HZ Delft Niederlande
| |
Collapse
|
6
|
Biotransformation of Hydroxychalcones as a Method of Obtaining Novel and Unpredictable Products Using Whole Cells of Bacteria. Catalysts 2020. [DOI: 10.3390/catal10101167] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of our study was the evaluation of the biotransformation capacity of hydroxychalcones—2-hydroxy-4′-methylchalcone (1) and 4-hydroxy-4′-methylchalcone (4) using two strains of aerobic bacteria. The microbial reduction of the α,β-unsaturated bond of 2-hydroxy-4′-methylchalcone (1) in Gordonia sp. DSM 44456 and Rhodococcus sp. DSM 364 cultures resulted in isolation the 2-hydroxy-4′-methyldihydrochalcone (2) as a main product with yields of up to 35%. Additionally, both bacterial strains transformed compound 1 to the second, unexpected product of reduction and simultaneous hydroxylation at C-4 position—2,4-dihydroxy-4′-methyldihydrochalcone (3) (isolated yields 12.7–16.4%). During biotransformation of 4-hydroxy-4′-methylchalcone (4) we observed the formation of three products: reduction of C=C bond—4-hydroxy-4′-methyldihydrochalcone (5), reduction of C=C bond and carbonyl group—3-(4-hydroxyphenyl)-1-(4-methylphenyl)propan-1-ol (6) and also unpredictable 3-(4-hydroxyphenyl)-1,5-di-(4-methylphenyl)pentane-1,5-dione (7). As far as our knowledge is concerned, compounds 3, 6 and 7 have never been described in the scientific literature.
Collapse
|
7
|
Abstract
Flavoenzymes are broadly employed as biocatalysts for a large variety of reactions, owing to the chemical versatility of the flavin cofactor. Oxidases set aside, many flavoenzymes require a source of electrons in form of the biological reductant nicotinamide NAD(P)H in order to initiate catalysis via the reduced flavin. Chemists can take advantage of the reactivity of reduced flavins with oxygen to carry out monooxygenation reactions, while the reduced flavin can also be used for formal hydrogenation reactions. The main advantage of these reactions compared to chemical approaches is the frequent regio-, chemo- and stereo-selectivity of the biocatalysts, which allows the synthesis of chiral molecules in optically active form. This chapter provides an overview of the variety of biocatalytic processes that have been developed with flavoenzymes, with a particular focus on nicotinamide-dependent enzymes. The diversity of molecules obtained is highlighted and in several cases, strategies that allow control of the stereochemical outcome of the reactions are reviewed.
Collapse
Affiliation(s)
- Mélanie Hall
- Department of Chemistry, University of Graz, Graz, Austria.
| |
Collapse
|
8
|
Thermal, electrochemical and photochemical reactions involving catalytically versatile ene reductase enzymes. Enzymes 2020; 47:491-515. [PMID: 32951833 DOI: 10.1016/bs.enz.2020.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Successful exploitation of biocatalytic processes employing flavoproteins requires the implementation of cost-effective solutions to circumvent the need to supply costly nicotinamide coenzymes as reducing equivalents. Chemical syntheses harnessing the power of the flavoprotein ene reductases will likely increase the range and/or optical purity of available fine chemicals and pharmaceuticals due to their ability to catalyze asymmetric bioreductions. This review will outline current progress in the design of alternative routes to ene reductase flavin activation, most notably within the Old Yellow Enzyme family. A variety of chemical, enzymatic, electrochemical and photocatalytic routes have been employed, designed to eliminate the need for nicotinamide coenzymes or provide cost-effective alternatives to efficient recycling. Photochemical approaches have also enabled novel mechanistic routes of ene reductases to become available, opening up the possibility of accessing a wider range of non-natural chemical diversity.
Collapse
|
9
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
10
|
Abstract
The enzymatic system of vegetables is well known as an efficient biocatalyst in the stereoselective reduction of ketones. Therefore, we decided to use the comminuted material of several plants including five vegetables (Apium graveolens L., Beta vulgaris L., Daucus carota L., Petroselinum crispum L., and Solanum tuberosum L.) and three fruits (Malus pumila L. “Golden” and “Kortland” as well as Pyrus communis L. “Konferencja”) to obtain enantiomerically pure carveol, which is commercially unavailable. Unexpectedly, all of the used biocatalysts not only reduced the carbonyl group of (4R)-(–)-carvone and (4S)-(+)-carvone, but also reduced the double bond in the cyclohexene ring. The results revealed that (4R)-(–)-carvone was transformed into (1R, 4R)- and (1S, 4R)-dihydrocarvones, and (1R,2R,4R)-dihydrocarveol. Although the enzymatic system of the potato transformed the substrate almost completely, the %de was not the highest. Potato yielded 92%; however, when carrot was used as the biocatalyst, it was possible to obtain 17% of (1R, 4R)-(+)-dihydrocarvone with 100% diastereomeric excess. In turn, the (4S)-(+)-carvone was transformed, using the biocatalysts, into (1R, 4S)- and (1S, 4S)-dihydrocarvones and dihydrocarveols. Complete substrate conversion was observed in biotransformation when potato was used. In the experiments using apple, (1R, 4S)-dihydrocarvone with 100% diastereomeric excess was obtained. Using NMR spectroscopy, we confirmed both diastereoisomers of 4(R)-1,2-dihydrocarveols, which were unseparated in the GC condition. Finally, we proved the high usefulness of vegetables for the biotransformation of both enantiomers of carvone as well as dihydrocarvone.
Collapse
|
11
|
Hadi T, Dı́az-Rodrı́guez A, Khan D, Morrison JP, Kaplan JM, Gallagher KT, Schober M, Webb MR, Brown KK, Fuerst D, Snajdrova R, Roiban GD. Identification and Implementation of Biocatalytic Transformations in Route Discovery: Synthesis of Chiral 1,3-Substituted Cyclohexanone Building Blocks. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Timin Hadi
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Alba Dı́az-Rodrı́guez
- API Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Diluar Khan
- API Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - James P. Morrison
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Justin M. Kaplan
- API Chemistry, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Kathleen T. Gallagher
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Markus Schober
- Advanced Manufacturing Technologies, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Michael R. Webb
- API Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Kristin K. Brown
- Molecular Design, Computational and Modeling Sciences, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Douglas Fuerst
- Advanced Manufacturing Technologies, GlaxoSmithKline, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, United States
| | - Radka Snajdrova
- API Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Gheorghe-Doru Roiban
- Advanced Manufacturing Technologies, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| |
Collapse
|
12
|
Ni Y, Hollmann F. Artificial Photosynthesis: Hybrid Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 158:137-158. [PMID: 26987806 DOI: 10.1007/10_2015_5010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oxidoreductases are promising catalysts for organic synthesis. To sustain their catalytic cycles they require efficient supply with redox equivalents. Today classical biomimetic approaches utilizing natural electron supply chains prevail but artificial regeneration approaches bear the promise of simpler and more robust reaction schemes. Utilizing visible light can accelerate such artificial electron transport chains and even enable thermodynamically unfeasible reactions such as the use of water as reductant.This contribution critically summarizes the current state of the art in photoredoxbiocatalysis (i.e. light-driven biocatalytic oxidation and reduction reactions).
Collapse
Affiliation(s)
- Yan Ni
- Delft University of Technology, Delft, The Netherlands
| | | |
Collapse
|
13
|
Old Yellow Enzyme-Catalysed Asymmetric Hydrogenation: Linking Family Roots with Improved Catalysis. Catalysts 2017. [DOI: 10.3390/catal7050130] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Busto E, Simon RC, Richter N, Kroutil W. One-Pot, Two-Module Three-Step Cascade To Transform Phenol Derivatives to Enantiomerically Pure (R)- or (S)-p-Hydroxyphenyl Lactic Acids. ACS Catal 2016. [DOI: 10.1021/acscatal.6b00030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Eduardo Busto
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| | - Robert C. Simon
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| | - Nina Richter
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
- Austrian Centre of Industrial Biotechnology (ACIB), Petersgasse 14, 8010 Graz, Austria
| | - Wolfgang Kroutil
- Institute
of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, A-8010-Graz, Austria
| |
Collapse
|
15
|
Kelly PP, Lipscomb D, Quinn DJ, Lemon K, Caswell J, Spratt J, Kosjek B, Truppo M, Moody TS. Ene Reductase Enzymes for the Aromatisation of Tetralones and Cyclohexenones to Naphthols and Phenols. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201500818] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
16
|
Peers MK, Toogood HS, Heyes DJ, Mansell D, Coe BJ, Scrutton NS. Light-driven biocatalytic reduction of α,β-unsaturated compounds by ene reductases employing transition metal complexes as photosensitizers. Catal Sci Technol 2016; 6:169-177. [PMID: 27019691 PMCID: PMC4786955 DOI: 10.1039/c5cy01642h] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 10/16/2015] [Indexed: 11/25/2022]
Abstract
Efficient and cost effective nicotinamide cofactor regeneration is essential for industrial-scale bio-hydrogenations employing flavin-containing biocatalysts such as the Old Yellow Enzymes. A direct flavin regeneration system using visible light to initiate a photoredox cycle and drive biocatalysis is described, and shown to be effective in driving biocatalytic activated alkene reduction. Using Ru(ii) or Ir(iii) complexes as photosensitizers, coupled with an electron transfer mediator (methyl viologen) and sacrificial electron donor (triethanolamine) drives catalytic turnover of two Old Yellow Enzymes with multiple oxidative substrates. Therefore, there is great potential in the development of light-driven biocatalytic systems, providing an alternative to the reliance on enzyme-based cofactor regeneration systems.
Collapse
Affiliation(s)
- Martyn K Peers
- Manchester Institute of Biotechnology , Faculty of Life Sciences , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | - Helen S Toogood
- Manchester Institute of Biotechnology , Faculty of Life Sciences , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | - Derren J Heyes
- Manchester Institute of Biotechnology , Faculty of Life Sciences , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | - David Mansell
- Manchester Institute of Biotechnology , Faculty of Life Sciences , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| | - Benjamin J Coe
- School of Chemistry , University of Manchester , Oxford Road , Manchester , M13 9PL , UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology , Faculty of Life Sciences , University of Manchester , 131 Princess Street , Manchester , M1 7DN , UK .
| |
Collapse
|
17
|
Dennig A, Busto E, Kroutil W, Faber K. Biocatalytic One-Pot Synthesis of l-Tyrosine Derivatives from Monosubstituted Benzenes, Pyruvate, and Ammonia. ACS Catal 2015. [DOI: 10.1021/acscatal.5b02129] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Dennig
- Department of Chemistry,
Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse
28, A-8010 Graz, Austria
| | - Eduardo Busto
- Department of Chemistry,
Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse
28, A-8010 Graz, Austria
| | - Wolfgang Kroutil
- Department of Chemistry,
Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse
28, A-8010 Graz, Austria
| | - Kurt Faber
- Department of Chemistry,
Organic and Bioorganic Chemistry, University of Graz, Heinrichstrasse
28, A-8010 Graz, Austria
| |
Collapse
|
18
|
Turrini NG, Hall M, Faber K. Enzymatic Synthesis of Optically Active Lactones via
Asymmetric Bioreduction using Ene-Reductases from the Old Yellow Enzyme Family. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500094] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
19
|
Zhou X, Chow HL, Wu JC. Bioreduction of activated alkenes by a novel “ene”-reductase from the thermophilic strainBacillus coagulansWCP10-4. BIOCATAL BIOTRANSFOR 2014. [DOI: 10.3109/10242422.2014.974574] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
20
|
Clay D, Winkler CK, Tasnádi G, Faber K. Bioreduction and disproportionation of cyclohex-2-enone catalyzed by ene-reductase OYE-1 in 'micro-aqueous' organic solvents. Biotechnol Lett 2014; 36:1329-33. [PMID: 24563324 DOI: 10.1007/s10529-014-1494-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
Abstract
The bioreduction and disproportionation of cyclohex-2-enone catalyzed by Old Yellow Enzyme 1 was investigated in presence of organic (co)solvents. Whereas the NADH-dependent bioreduction activity strongly decreased at elevated co-solvent concentrations due to the insolubility of the nicotinamide-cofactor, the NADH-free disproportionation was significantly improved in water-immiscible organic co-solvents at 90 % (v/v) with near-quantitative conversion. This positive effect was attributed to removal of the inhibiting co-product, phenol, from the enzyme's active site. The best co-solvents show high lipophilicity (logP) and a high potential to solubilize phenol (Kphenol). As a predictive parameter, the ratio of logP/Kphenol should be preferably ≥100.
Collapse
Affiliation(s)
- Dorina Clay
- Department of Chemistry, Organic & Bioorganic Chemistry, University of Graz, Heinrichstraße 28, 8010, Graz, Austria
| | | | | | | |
Collapse
|
21
|
Toogood HS, Scrutton NS. New developments in 'ene'-reductase catalysed biological hydrogenations. Curr Opin Chem Biol 2014; 19:107-15. [PMID: 24608082 DOI: 10.1016/j.cbpa.2014.01.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/13/2013] [Accepted: 01/30/2014] [Indexed: 01/07/2023]
Abstract
Asymmetric biocatalytic hydrogenations are important reactions performed primarily by members of the Old Yellow Enzyme family. These reactions have great potential in the chemosynthesis of a variety of industrially useful synthons due to the generation of up to two stereogenic centres. In this review, additional enzyme classes capable of asymmetric hydrogenations will be discussed, as will examples of multienzyme cascading reactions. New and improved technology that enhances the commercial viability of biotransformations are included, such as the nicotinamide coenzyme-independent reactions. This review will focus on progress in this field within the last two years, with emphasis on industrial applications of this technology.
Collapse
Affiliation(s)
- Helen S Toogood
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | - Nigel S Scrutton
- Manchester Institute of Biotechnology, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
22
|
|
23
|
Winkler CK, Clay D, Entner M, Plank M, Faber K. NAD(P)H-independent asymmetric C=C bond reduction catalyzed by ene reductases by using artificial co-substrates as the hydrogen donor. Chemistry 2014; 20:1403-9. [PMID: 24382795 PMCID: PMC4413776 DOI: 10.1002/chem.201303897] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Indexed: 11/12/2022]
Abstract
To develop a nicotinamide-independent single flavoenzyme system for the asymmetric bioreduction of C=C bonds, four types of hydrogen donor, encompassing more than 50 candidates, were investigated. Six highly potent, cheap, and commercially available co-substrates were identified that (under the optimized conditions) resulted in conversions and enantioselectivities comparable with, or even superior to, those obtained with traditional two-enzyme nicotinamide adenine dinucleotide phosphate (NAD(P)H)-recycling systems.
Collapse
Affiliation(s)
- Christoph K Winkler
- Department of Chemistry, Organic and Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) Fax: (+43) 316-380-9840
| | - Dorina Clay
- Department of Chemistry, Organic and Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) Fax: (+43) 316-380-9840
| | - Marcello Entner
- Department of Chemistry, Organic and Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) Fax: (+43) 316-380-9840
| | - Markus Plank
- Department of Chemistry, Organic and Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) Fax: (+43) 316-380-9840
| | - Kurt Faber
- Department of Chemistry, Organic and Bioorganic Chemistry, University of GrazHeinrichstrasse 28, 8010 Graz (Austria) Fax: (+43) 316-380-9840
| |
Collapse
|
24
|
Recent trends and novel concepts in cofactor-dependent biotransformations. Appl Microbiol Biotechnol 2013; 98:1517-29. [PMID: 24362856 DOI: 10.1007/s00253-013-5441-5] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 11/25/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Abstract
Cofactor-dependent enzymes catalyze a broad range of synthetically useful transformations. However, the cofactor requirement also poses economic and practical challenges for the application of these biocatalysts. For three decades, considerable research effort has been devoted to the development of reliable in situ regeneration methods for the most commonly employed cofactors, particularly NADH and NADPH. Today, researchers can choose from a plethora of options, and oxidoreductases are routinely employed even on industrial scale. Nevertheless, more efficient cofactor regeneration methods are still being developed, with the aim of achieving better atom economy, simpler reaction setups, and higher productivities. Besides, cofactor dependence has been recognized as an opportunity to confer novel reactivity upon enzymes by engineering their cofactors, and to couple (redox) biotransformations in multi-enzyme cascade systems. These novel concepts will help to further establish cofactor-dependent biotransformations as an attractive option for the synthesis of biologically active compounds, chiral building blocks, and bio-based platform molecules.
Collapse
|
25
|
Toogood HS, Knaus T, Scrutton NS. Alternative Hydride Sources for Ene-Reductases: Current Trends. ChemCatChem 2013. [DOI: 10.1002/cctc.201300911] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Helen S. Toogood
- Manchester Institute of Biotechnology, Faculty of Life Sciences; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Tanja Knaus
- Manchester Institute of Biotechnology, Faculty of Life Sciences; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology, Faculty of Life Sciences; University of Manchester; 131 Princess Street Manchester M1 7DN UK
| |
Collapse
|