1
|
Wang H, Shan M, Gao Q, Wang J, Zhang R, Wang Y, Yao M, Xiao W. Efficient nepetalactone production in Saccharomyces cerevisiae via metabolic engineering and bioprocess optimization. BIORESOURCE TECHNOLOGY 2025; 428:132440. [PMID: 40158864 DOI: 10.1016/j.biortech.2025.132440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Nepetalactone, a natural insect repellent comparable to N,N-diethyl-meta-toluamide (DEET), is challenging to produce through plant extraction or chemical synthesis. This study achieved the de novo synthesis of nepetalactone in Saccharomyces cerevisiae without expensive precursors or inducers. Initially, the metabolic pathway for nepetalactone synthesis was successfully established in Saccharomyces cerevisiae. A metabolic pathway was established using strategies such as iridoid synthase (ISY) source screening, enzyme fusion, and cofactor regeneration to optimize nepetalactone production. Bioprocess optimization through chromosomal integration and two-phase fermentation prevented its conversion to dihydronepetalactone, resulting in a high-yield strain, NTE21, with a titer of 2.5 g/L. A record titer of 4.5 g/L was achieved in 5.0 L fed-batch fermentation via continuous batch feeding. This study documents the potential of microbial platforms for the sustainable, cost-effective, and scalable production of nepetalactone, paving the way for its commercial application as a natural insect repellent.
Collapse
Affiliation(s)
- Herong Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Mengying Shan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Qi Gao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Jia Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Ruixuan Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; School of Life Sciences, Faculty of Medicine, Tianjin University, China; Frontier Research Institute for Synthetic Biology, Tianjin University, China; Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China.
| |
Collapse
|
2
|
Feng T, Cai W, Sun W, Yu S, Cao J, Sun M, Wang H, Yu C, Kang W, Yao L. Co-cultivation effects of Lactobacillus plantarum and Pichia pastoris on the key aroma components and non-volatile metabolites in fermented jujube juice. RSC Adv 2025; 15:10653-10662. [PMID: 40196838 PMCID: PMC11973478 DOI: 10.1039/d5ra00193e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/06/2025] [Indexed: 04/09/2025] Open
Abstract
Fermented jujube products are gradually becoming popular. However, few studies have focused on the relationship between the metabolites and aroma compounds in jujube during the fermentation process. Hence, in this study, jujube was fermented with the co-culture of Lactobacillus plantarum and Pichia pastoris, and the key volatile organic components (VOCs) and non-volatile organic components (nVOCs) in the fermented jujube juice (FJJ) were studied to determine the possible aromatic production pathway during microbial metabolism and propose the possibility of regulating flavor during fermentation. Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was employed to analyze and compare the VOCs in the jujube juice before and after fermentation, which showed that the fermented aroma had increased floral, winy and sour notes. Specifically, 13 key aroma compounds were found using the aroma extract dilution analysis (AEDA) and aroma recombination/omission model. Additionally, 32 differential nVOC metabolites, mainly involved in amino acid and nucleotide metabolism pathways, were screened in FJJ using liquid chromatography-tandem mass spectrometry (LC-MS/MS) combined with multivariate statistical analysis. After correlation analysis, 14 nVOCs were significantly correlated with 8 key aroma compounds. This study indicates that the combination of Lactobacillus plantarum and Pichia pastoris may supply a new mixed fermentation agent towards fermented jujube products and provides reference values for flavor regulation in the co-fermentation of jujube juice.
Collapse
Affiliation(s)
- Tao Feng
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 China
| | - Weitong Cai
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 China
| | - Wei Sun
- Hunan Wuzizui Industrial Group Co., Ltd Xiangtan 411228 China
| | - Shixing Yu
- Hunan Wuzizui Industrial Group Co., Ltd Xiangtan 411228 China
| | - Jianhua Cao
- Hunan Wuzizui Industrial Group Co., Ltd Xiangtan 411228 China
| | - Min Sun
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 China
| | - Huatian Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 China
| | - Chuang Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 China
| | - Wencui Kang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 China
| | - Lingyun Yao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
3
|
Xiong T, Gao Q, Liu W, Li W, Fan G. Biosynthesis of 2-phenylethanol from styrene using engineered Escherichia coli whole cells. Enzyme Microb Technol 2025; 184:110582. [PMID: 39798251 DOI: 10.1016/j.enzmictec.2025.110582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
2-Phenylethanol, an aromatic alcohol with a rose scent, is widely used in the cosmetics, food, and pharmaceutical industries. We designed an efficient multi-enzyme cascade pathway for production of 2-phenylethanol from styrene as the substrate. Initially, 2-phenylethanol was produced by overexpression of styrene monooxygenase A (styA), styrene monooxygenase B (styB), styrene oxide isomerase (SOI), alcohol dehydrogenase (yahK), and glucose dehydrogenase (gdh) in Escherichia coli to give 6.28 mM 2-phenylethanol. Subsequently, plasmids with different copy numbers were employed to balance the expression of pathway enzymes to produce 10.28 mM 2-phenylethanol, resulting in a 63.7 % increase in the final yield. Furthermore, the pH and temperature of the whole-cell conversion reaction were optimized, the optimum pH and temperature are 7.5 and 35℃, respectively. Finally, whole-cell conversion experiment was conducted, and the production of 2-phenylethanol reached 48.17 mM within 10 h. This study provides a theoretical and practical foundation for production of 2-phenylethanol.
Collapse
Affiliation(s)
- Tianzhen Xiong
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan 464000, China; Henan Key Laboratory of Tea Plant Biology, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan 464000, China.
| | - Qiuyue Gao
- College of Social Science, Xinyang University, 7th New Avenue West, Xinyang, Henan 464000, China
| | - Wei Liu
- Institute of Agricultural Quality Standards and Testing Technology, Jilin Academy of Agricultural Sciences, Changchun, Jilin 130000, China
| | - Wei Li
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Guangyan Fan
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
4
|
Peng Q, Zheng H, Li J, Li S, Huang J, Xu Y, Xie G. Impact of Bacillus subtilis on Chinese yellow rice wine (Huangjiu) fermentation: Method variations and flavor analysis. Food Chem 2024; 460:140658. [PMID: 39126949 DOI: 10.1016/j.foodchem.2024.140658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
This investigation explores the impact of various fermentation techniques and the inoculation of Bacillus subtilis spores on the physicochemical properties and principal flavor profiles of Huangjiu. Employing sensory analysis, headspace solid-phase microextraction, gas chromatography-tandem mass spectrometry (HS-SPME-GC-MS), and orthogonal partial least squares discriminant analysis (OPLS-DA), we observed that these variables significantly alter the physicochemical attributes of Huangjiu. Our analysis, integrating volatile organic compounds (VOCs) with odor activity values (OAV), revealed that while B. subtilis inoculation modifies the concentrations of key flavor compounds, it does not affect their types. Notably, the inoculation enhances the concentrations of 13 primary flavor compounds, thereby enriching floral and fruity notes while reducing higher alcohol levels. These findings contribute valuable insights into the flavor formation mechanisms of Huangjiu and guide the optimization of fermentation processes.
Collapse
Affiliation(s)
- Qi Peng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Huajun Zheng
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jiachen Li
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Shanshan Li
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Jiaxin Huang
- National Engineering Research Center for Chinese CRW (branch center), School of Life and Environmental Sciences, Shaoxing University, 900 Chengnan Road, Shaoxing 312000, China
| | - Yuezheng Xu
- Zhejiang Guyuelongshan Shaoxing Wine Co.,Ltd., Shaoxing 312000, China
| | - Guangfa Xie
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China..
| |
Collapse
|
5
|
Sun L, Gao Y, Sun R, Liu L, Lin L, Zhang C. Metabolic and tolerance engineering of Komagataella phaffii for 2-phenylethanol production through genome-wide scanning. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:107. [PMID: 39039584 PMCID: PMC11265028 DOI: 10.1186/s13068-024-02536-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/18/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND 2-Phenylethanol (2-PE) is one of the most widely used spices. Recently, 2-PE has also been considered a potential aviation fuel booster. However, the lack of scientific understanding of the 2-PE biosynthetic pathway and the cellular response to 2-PE cytotoxicity are the most important obstacles to the efficient biosynthesis of 2-PE. RESULTS Here, metabolic engineering and tolerance engineering strategies were used to improve the production of 2-PE in Komagataella phaffii. First, the endogenous genes encoding the amino acid permease GAP1, aminotransferase AAT2, phenylpyruvate decarboxylase KDC2, and aldehyde dehydrogenase ALD4 involved in the Ehrlich pathway and the 2-PE stress response gene NIT1 in K. phaffii were screened and characterized via comparative transcriptome analysis. Subsequently, metabolic engineering was employed to gradually reconstruct the 2-PE biosynthetic pathway, and the engineered strain S43 was obtained, which produced 2.98 g/L 2-PE in shake flask. Furthermore, transcriptional profiling analyses were utilized to screen for novel potential tolerance elements. Our results demonstrated that cells with knockout of the PDR12 and C4R2I5 genes exhibited a significant increase in 2-PE tolerance. To confirm the practical applications of these results, deletion of the PDR12 and C4R2I5 genes in the hyper 2-PE producing strain S43 dramatically increased the production of 2-PE by 18.12%, and the production was 3.54 g/L. CONCLUSION This is the highest production of 2-PE produced by K. phaffii via L-phenylalanine conversion. These identified K. phaffii endogenous elements are highly conserved in other yeast species, suggesting that manipulation of these homologues might be a useful strategy for improving aromatic alcohol production. These results also enrich the understanding of aromatic compound biosynthetic pathways and 2-PE tolerance, and provide new elements and strategies for the synthesis of aromatic compounds by microbial cell factories.
Collapse
Affiliation(s)
- Lijing Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ying Gao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Renjie Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Ling Liu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China
| | - Liangcai Lin
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| | - Cuiying Zhang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
6
|
Chen X, Song C, Zhao J, Xiong Z, Peng L, Zou L, Liu B, Li Q. Effect of a New Fermentation Strain Combination on the Fermentation Process and Quality of Highland Barley Yellow Wine. Foods 2024; 13:2193. [PMID: 39063277 PMCID: PMC11276116 DOI: 10.3390/foods13142193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Yellow wine fermented from highland barley is an alcoholic beverage with high nutritional value. However, the industrialization of barley yellow wine has been constrained to a certain extent due to the lack of a systematic starter culture. Therefore, the present study aims to simulate barley yellow wine fermentation using a starter culture consisting of Rhizopus arrhizus, Saccharomyces cerevisiae, Pichia kudriavzevii, and Lacticaseibacillus rhamnosus. In this study, changes in enzyme activity, fermentation characteristics, volatile substance production, and amino acid content during the fermentation of highland barley yellow wine brewed with different starter cultures were evaluated. The results of this study show that regulating the proportion of mixed starter bacteria can effectively control the various stages of the fermentation process and improve the organoleptic characteristics and quality of yellow wine to varying degrees. Additionally, we found that the addition of probiotics could effectively improve the palatability of yellow wine. To the best of our knowledge, we have validated for the first time the use of the above multispecies starter culture, consisting of R. arrhizus, S. cerevisiae, P. kudriavzevii, and L. rhamnosus, in the production of highland barley yellow wine. The obtained findings provided reference data for optimizing highland barley yellow wine fermentation.
Collapse
Affiliation(s)
- Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Chuan Song
- Luzhou Laojiao Co., Ltd., Luzhou 646000, China;
- National Engineering Research Center of Solid-State Brewing, Luzhou 646000, China
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| | - Jian Zhao
- School of Life Sciences, Sichuan University, Chengdu 610041, China;
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.C.); (Z.X.); (L.P.); (L.Z.)
- Postdoctoral Research Station of Luzhou Laojiao Company, Luzhou 646000, China
| |
Collapse
|
7
|
Li P, Song W, Wang Y, Li X, Wu S, Li B, Zhang C. Effects of Heterologous Expression of Genes Related L-Malic acid Metabolism in Saccharomyces uvarum on Flavor Substances Production in Wine. Foods 2024; 13:2038. [PMID: 38998544 PMCID: PMC11241653 DOI: 10.3390/foods13132038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/16/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
During malolactic fermentation (MLF) of vinification, the harsh L-malic acid undergoes transformation into the milder L-lactic acid, and via decarboxylation reactions it is catalyzed by malolactic enzymes in LAB. The use of bacterial malolactic starter cultures, which usually present challenges in the industry as the suboptimal conditions after alcoholic fermentation (AF), including nutrient limitations, low temperatures, acidic pH levels, elevated alcohol, and sulfur dioxide concentrations after AF, lead to "stuck" or "sluggish" MLF and spoilage of wines. Saccharomyces uvarum has interesting oenological properties and provides a stronger aromatic intensity than Saccharomyces cerevisiae in AF. In the study, the biological pathways of deacidification were constructed in S. uvarum, which made the S. uvarum carry out the AF and MLF simultaneously, as different genes encoding malolactic enzyme (mleS or mleA), malic enzyme (MAE2), and malate permease (melP or MAE1) from Schizosaccharomyces pombe, Lactococcus lactis, Oenococcus oeni, and Lactobacillus plantarum were heterologously expressed. For further inquiry, the effect of L-malic acid metabolism on the flavor balance in wine, the related flavor substances, higher alcohols, and esters production, were detected. Of all the recombinants, the strains WYm1SN with coexpression of malate permease gene MAE1 from S. pombe and malolactic enzyme gene mleS from L. lactis and WYm1m2 with coexpression of gene MAE1 and malate permease gene MAE2 from S. pombe could reduce the L-malic acid contents to about 1 g/L, and in which the mutant WYm1SN exhibited the best effect on the flavor quality improvement.
Collapse
Affiliation(s)
- Ping Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Wenjun Song
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Yumeng Wang
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Xin Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Shankai Wu
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Bingjuan Li
- College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China
| | - Cuiying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
8
|
Tong Q, Yang L, Zhang J, Zhang Y, Jiang Y, Liu X, Deng Y. Comprehensive investigations of 2-phenylethanol production by the filamentous fungus Annulohypoxylon stygium. Appl Microbiol Biotechnol 2024; 108:374. [PMID: 38878128 PMCID: PMC11180157 DOI: 10.1007/s00253-024-13226-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/19/2024]
Abstract
2-Phenylethanol (2-PE) is an aromatic compound with a rose-like fragrance that is widely used in food and other industries. Yeasts have been implicated in the biosynthesis of 2-PE; however, few studies have reported the involvement of filamentous fungi. In this study, 2-PE was detected in Annulohypoxylon stygium mycelia grown in both potato dextrose broth (PDB) and sawdust medium. Among the 27 A. stygium strains investigated in this study, the strain "Jinjiling" (strain S20) showed the highest production of 2-PE. Under optimal culture conditions, the concentration of 2-PE was 2.33 g/L. Each of the key genes in Saccharomyces cerevisiae shikimate and Ehrlich pathways was found to have homologous genes in A. stygium. Upon the addition of L-phenylalanine to the medium, there was an upregulation of all key genes in the Ehrlich pathway of A. stygium, which was consistent with that of S. cerevisiae. A. stygium as an associated fungus provides nutrition for the growth of Tremella fuciformis and most spent composts of T. fuciformis contain pure A. stygium mycelium. Our study on the high-efficiency biosynthesis of 2-PE in A. stygium offers a sustainable solution by utilizing the spent compost of T. fuciformis and provides an alternative option for the production of natural 2-PE. KEY POINTS: • Annulohypoxylon stygium can produce high concentration of 2-phenylethanol. • The pathways of 2-PE biosynthesis in Annulohypoxylon stygium were analyzed. • Spent compost of Tremella fuciformis is a potential source for 2-phenylethanol.
Collapse
Affiliation(s)
- Qianwen Tong
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lizhi Yang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jinxiang Zhang
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yue Zhang
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuji Jiang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xinrui Liu
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Youjin Deng
- Mycological Research Center, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
9
|
Yang C, Ren Y, Ge L, Xu W, Hang H, Mohsin A, Tian X, Chu J, Zhuang Y. Unveiling the mechanism of efficient β-phenylethyl alcohol conversion in wild-type Saccharomyces cerevisiae WY319 through multi-omics analysis. Biotechnol J 2024; 19:e2300740. [PMID: 38581087 DOI: 10.1002/biot.202300740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/15/2024] [Indexed: 04/08/2024]
Abstract
β-Phenylethanol (2-PE), as an important flavor component in wine, is widely used in the fields of flavor chemistry and food health. 2-PE can be sustainably produced through Saccharomyces cerevisiae. Although significant progress has been made in obtaining high-yield strains, as well as improving the synthesis pathways of 2-PE, there still lies a gap between these two fields to unpin. In this study, the macroscopic metabolic characteristics of high-yield and low-yield 2-PE strains were systematically compared and analyzed. The results indicated that the production potential of the high-yield strain might be contributed to the enhancement of respiratory metabolism and the high tolerance to 2-PE. Furthermore, this hypothesis was confirmed through comparative genomics. Meanwhile, transcriptome analysis at key specific growth rates revealed that the collective upregulation of mitochondrial functional gene clusters plays a more prominent role in the production process of 2-PE. Finally, findings from untargeted metabolomics suggested that by enhancing respiratory metabolism and reducing the Crabtree effect, the accumulation of metabolites resisting high 2-PE stress was observed, such as intracellular amino acids and purines. Hence, this strategy provided a richer supply of precursors and cofactors, effectively promoting the synthesis of 2-PE. In short, this study provides a bridge for studying the metabolic mechanism of high-yield 2-PE strains with the subsequent targeted strengthening of relevant synthetic pathways. It also provides insights for the synthesis of nonalcoholic products in S. cerevisiae.
Collapse
Affiliation(s)
- Chenghan Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yilin Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Lihao Ge
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Wenting Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Haifeng Hang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xiwei Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Ju Chu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Yingping Zhuang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Kumokita R, Bamba T, Yasueda H, Tsukida A, Nakagawa K, Kitagawa T, Yoshioka T, Matsuyama H, Yamamoto Y, Maruyama S, Hayashi T, Kondo A, Hasunuma T. High-level phenol bioproduction by engineered Pichia pastoris in glycerol fed-batch fermentation using an efficient pertraction system. BIORESOURCE TECHNOLOGY 2024; 393:130144. [PMID: 38042432 DOI: 10.1016/j.biortech.2023.130144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/04/2023]
Abstract
This study aimed to establish a high-level phenol bioproduction system from glycerol through metabolic engineering of the yeast Pichia pastoris (Komagataella phaffii). Introducing tyrosine phenol-lyase to P. pastoris led to a production of 59 mg/L of phenol in flask culture. By employing a strain of P. pastoris that overproduces tyrosine-a precursor to phenol-we achieved a phenol production of 1052 mg/L in glycerol fed-batch fermentation. However, phenol concentrations exceeding 1000 mg/L inhibited P. pastoris growth. A phenol pertraction system utilizing a hollow fiber membrane contactor and tributyrin as the organic solvent was developed to reduce phenol concentration in the culture medium. Integrating this system with glycerol fed-batch fermentation resulted in a 214 % increase in phenol titer (3304 mg/L) compared to glycerol fed-batch fermentation alone. These approaches offer a significant framework for the microbial production of chemicals and materials that are highly toxic to microorganisms.
Collapse
Affiliation(s)
- Ryota Kumokita
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Takahiro Bamba
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hisashi Yasueda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research and Development Center for Precision Medicine, University of Tsukuba, 1-2 Kasuga, Tsukuba, 305-8550, Japan
| | - Ayato Tsukida
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Keizo Nakagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | - Tooru Kitagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Yasuhito Yamamoto
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Satoshi Maruyama
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Takahiro Hayashi
- Biotechnology Laboratory, Science and Innovation Center, Mitsubishi Chemical Corporation, 1000 Kamoshida, Aoba, Yokohama, 227-8502, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro, Tsurumi, Yokohama, 230-0045, Japan.
| |
Collapse
|
11
|
Chen L, Li K, Chen H, Li Z. Reviewing the Source, Physiological Characteristics, and Aroma Production Mechanisms of Aroma-Producing Yeasts. Foods 2023; 12:3501. [PMID: 37761210 PMCID: PMC10529235 DOI: 10.3390/foods12183501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Flavor is an essential element of food quality. Flavor can be improved by adding flavoring substances or via microbial fermentation to impart aroma. Aroma-producing yeasts are a group of microorganisms that can produce aroma compounds, providing a strong aroma to foods and thus playing a great role in the modern fermentation industry. The physiological characteristics of aroma-producing yeast, including alcohol tolerance, acid tolerance, and salt tolerance, are introduced in this article, beginning with their origins and biological properties. The main mechanism of aroma-producing yeast is then analyzed based on its physiological roles in the fermentation process. Functional enzymes such as proteases, lipases, and glycosidase are released by yeast during the fermentation process. Sugars, fats, and proteins in the environment can be degraded by these enzymes via pathways such as glycolysis, methoxylation, the Ehrlich pathway, and esterification, resulting in the production of various aromatic esters (such as ethyl acetate and ethyl caproate), alcohols (such as phenethyl alcohol), and terpenes (such as monoterpenes, sesquiterpenes, and squalene). Furthermore, yeast cells can serve as cell synthesis factories, wherein specific synthesis pathways can be introduced into cells using synthetic biology techniques to achieve high-throughput production. In addition, the applications of aroma yeast in the food, pharmaceutical, and cosmetic industries are summarized, and the future development trends of aroma yeasts are discussed to provide a theoretical basis for their application in the food fermentation industry.
Collapse
Affiliation(s)
- Li Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Ke Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| | - Huitai Chen
- Hunan Guoyuan Liquor Industry Co., Ltd., Yueyang 414000, China;
| | - Zongjun Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China; (L.C.); (K.L.)
| |
Collapse
|
12
|
A highly efficient transcriptome-based biosynthesis of non-ethanol chemicals in Crabtree negative Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:37. [PMID: 36870984 PMCID: PMC9985264 DOI: 10.1186/s13068-023-02276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/04/2023] [Indexed: 03/06/2023]
Abstract
BACKGROUND Owing to the Crabtree effect, Saccharomyces cerevisiae produces a large amount of ethanol in the presence of oxygen and excess glucose, leading to a loss of carbon for the biosynthesis of non-ethanol chemicals. In the present study, the potential of a newly constructed Crabtree negative S. cerevisiae, as a chassis cell, was explored for the biosynthesis of various non-ethanol compounds. RESULTS To understand the metabolic characteristics of Crabtree negative S. cerevisiae sZJD-28, its transcriptional profile was compared with that of Crabtree positive S. cerevisiae CEN.PK113-11C. The reporter GO term analysis showed that, in sZJD-28, genes associated with translational processes were down-regulated, while those related to carbon metabolism were significantly up-regulated. To verify a potential increase in carbon metabolism for the Crabtree negative strain, the production of non-ethanol chemicals, derived from different metabolic nodes, was then undertaken for both sZJD-28 and CEN.PK113-11C. At the pyruvate node, production of 2,3-butanediol and lactate in sZJD-28-based strains was remarkably higher than that of CEN.PK113-11C-based ones, representing 16.8- and 1.65-fold increase in titer, as well as 4.5-fold and 0.65-fold increase in specific titer (mg/L/OD), respectively. Similarly, for shikimate derived p-coumaric acid, the titer of sZJD-28-based strain was 0.68-fold higher than for CEN.PK113-11C-based one, with a 0.98-fold increase in specific titer. While farnesene and lycopene, two acetoacetyl-CoA derivatives, showed 0.21- and 1.88-fold increases in titer, respectively. From malonyl-CoA, the titer of 3-hydroxypropionate and fatty acids in sZJD-28-based strains were 0.19- and 0.76-fold higher than that of CEN.PK113-11C-based ones, respectively. In fact, yields of products also improved by the same fold due to the absence of residual glucose. Fed-batch fermentation further showed that the titer of free fatty acids in sZJD-28-based strain 28-FFA-E reached 6295.6 mg/L with a highest reported specific titer of 247.7 mg/L/OD in S. cerevisiae. CONCLUSIONS Compared with CEN.PK113-11C, the Crabtree negative sZJD-28 strain displayed a significantly different transcriptional profile and obvious advantages in the biosynthesis of non-ethanol chemicals due to redirected carbon and energy sources towards metabolite biosynthesis. The findings, therefore, suggest that a Crabtree negative S. cerevisiae strain could be a promising chassis cell for the biosynthesis of various chemicals.
Collapse
|
13
|
Holyavkin C, Turanlı-Yıldız B, Yılmaz Ü, Alkım C, Arslan M, Topaloğlu A, Kısakesen Hİ, de Billerbeck G, François JM, Çakar ZP. Genomic, transcriptomic, and metabolic characterization of 2-Phenylethanol-resistant Saccharomyces cerevisiae obtained by evolutionary engineering. Front Microbiol 2023; 14:1148065. [PMID: 37113225 PMCID: PMC10127108 DOI: 10.3389/fmicb.2023.1148065] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
2-Phenylethanol is an aromatic compound commonly used in the food, cosmetic, and pharmaceutical industries. Due to increasing demand for natural products by consumers, the production of this flavor by microbial fermentation is gaining interest, as a sustainable alternative to chemical synthesis or expensive plant extraction, both processes relying on the use of fossil resources. However, the drawback of the fermentation process is the high toxicity of 2-phenylethanol to the producing microorganism. The aim of this study was to obtain a 2-phenylethanol-resistant Saccharomyces cerevisiae strain by in vivo evolutionary engineering and characterize the adapted yeast at the genomic, transcriptomic and metabolic levels. For this purpose, the tolerance to 2-phenylethanol was developed by gradually increasing the concentration of this flavor compound through successive batch cultivations, leading to an adapted strain that could tolerate 3.4 g/L of 2-phenylethanol, which was about 3-times better than the reference strain. Genome sequencing of the adapted strain identified point mutations in several genes, notably in HOG1 that encodes the Mitogen-Activated Kinase of the high-osmolarity signaling pathway. As this mutation is localized in the phosphorylation lip of this protein, it likely resulted in a hyperactive protein kinase. Transcriptomic analysis of the adapted strain supported this suggestion by revealing a large set of upregulated stress-responsive genes that could be explained in great part by HOG1-dependent activation of the Msn2/Msn4 transcription factor. Another relevant mutation was found in PDE2 encoding the low affinity cAMP phosphodiesterase, the missense mutation of which may lead to hyperactivation of this enzyme and thereby enhance the stressful state of the 2-phenylethanol adapted strain. In addition, the mutation in CRH1 that encodes a chitin transglycosylase implicated in cell wall remodeling could account for the increased resistance of the adapted strain to the cell wall-degrading enzyme lyticase. Finally, the potent upregulation of ALD3 and ALD4 encoding NAD+ -dependent aldehyde dehydrogenase together with the observed phenylacetate resistance of the evolved strain suggest a resistance mechanism involving conversion of 2-phenylethanol into phenylacetaldehyde and phenylacetate implicating these dehydrogenases.
Collapse
Affiliation(s)
- Can Holyavkin
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Burcu Turanlı-Yıldız
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Ülkü Yılmaz
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Ceren Alkım
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Mevlüt Arslan
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Alican Topaloğlu
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | - Halil İbrahim Kısakesen
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
| | | | - Jean Marie François
- Toulouse Biotechnology Institute (TBI), CNRS, INRA, INSA, Université de Toulouse, Toulouse, France
- *Correspondence: Jean Marie François,
| | - Z. Petek Çakar
- Department of Molecular Biology & Genetics, Faculty of Science & Letters, Istanbul Technical University, Istanbul, Turkey
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul, Turkey
- Z. Petek Çakar,
| |
Collapse
|
14
|
Ghamry M, Zhao W, Li L. Impact of Lactobacillus apis on the antioxidant activity, phytic acid degradation, nutraceutical value and flavor properties of fermented wheat bran, compared to Saccharomyces cerevisiae and Lactobacillus plantarum. Food Res Int 2023; 163:112142. [PMID: 36596097 DOI: 10.1016/j.foodres.2022.112142] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 11/21/2022]
Abstract
This study aimed to use a novel Lactobacillus strain (L. apis) isolated from the bee gut to develop a wheat bran (WB) deep-processing technology. Compared to the most popular strains (S. cerevisiae and L. plantarum), we found that L. apis had a greater ability to enhance the fermented WB antioxidant activity through hydroxyl radical scavenging, metal chelating ability, reducing power, and ferric reducing antioxidant power. While L. apis and L. plantarum had similar effects on DPPH• and ABTS•+ scavenging activities. This improvement in antioxidant activity has been associated with some metabolic compounds, such as sinapic acid, hydroferulic acid, pyruvic acid, neocostose, oxalic acid, salicylic acid, and schaftoside. Furthermore, L. apis degraded 48.33% of the phytic acid in WB, higher than S. cerevisiae (26.73%) and L. plantarum (35.89%). All strains improved the volatile profile of WB, and the fermented WB by each strain displayed a unique volatile composition. L. apis increased the level of conditional amino acids and branched-chain amino acids significantly. S. cerevisiae increased γ-aminobutyric acid the most, from 230.8 mg/L in unfermented samples to 609.8 mg/L in the fermented WB. While L. apis and L. plantarum also increased the level of γ-aminobutyric acid to 384.5 mg/L and 295.04 mg/L, respectively. Finally, we found that L. apis remarkably increased the content of organic acids and water-soluble vitamins in wheat bran.
Collapse
Affiliation(s)
- Mohamed Ghamry
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Food Technology Department, Faculty of Agriculture, 13736 Moshtohor, Benha University, Egypt
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
15
|
Multi-omics study revealed the genetic basis of beer flavor quality in yeast. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Rapamycin enhanced the production of 2-phenylethanol during whole-cell bioconversion by yeast. Appl Microbiol Biotechnol 2022; 106:6471-6481. [PMID: 36098787 DOI: 10.1007/s00253-022-12169-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 11/27/2022]
Abstract
2-Phenylethanol (2-PE), a higher alcohol with a rose-like odor, has been widely utilized in food, perfume, and beverages. Saccharomyces cerevisiae is one of the most promising microorganisms for the biosynthesis of natural 2-PE. However, the growth of S. cerevisiae is generally inhibited by 2-PE, which makes its production in yeast cell factories challenging. Here, the whole-cell bioconversion was used to avert growth inhibition, leading to an increase in the concentration and productivity of 2-PE. Moreover, rapamycin (Rap) addition further improved the efficiency of 2-PE synthesis. The concentration of 2-PE (2.20 g/L) was 1.68-fold higher than that in the absence of Rap during the whole-cell bioconversion by S. cerevisiae BY4741. RT-qPCR results showed that Rap addition increased the transcription of ARO9, ARO10, ADH2, GAP1, ARO80, GLN3, and GDH2. When the GLN3 was knocked out, the transcriptional levels of the genes were dramatically decreased, and the concentration of 2-PE significantly decreased to 0.21 g/L. The results indicated that Rap enhanced the flux of the Ehrlich pathway, and Gln3 exerted a central role in the regulation of Rap. Furthermore, commercial yeast (S. cerevisiae FY202001) was selected to verify the applicability of Rap. In the presence of Rap, 3.67 g/L 2-PE was obtained by whole-cell bioconversion in flask, which was increased by 9% than that in the absence of Rap. Finally, the 2-PE titer reached 4.93 g/L by whole-cell bioconversion in a 5 L bioreactor, with a yield of 84 mol% from L-phenylalanine and a productivity of 0.103 g/L h, which was far higher than that of the currently reported in S. cerevisiae. These findings provided a new idea for the efficient synthesis of 2-PE. KEY POINTS: • Whole-cell bioconversion was used to produce 2-PE. • The regulation of the Ehrlich pathway by Rap provides a theoretical basis for developing an effective yeast cell factory to produce 2-PE. • The 2-PE productivity of 0.103 g/L h is far higher than that of the currently reported in S. cerevisiae .
Collapse
|
17
|
Fermentative Production of Volatile Metabolites Using Brettanomyces bruxellensis from Fruit and Vegetable By-Products. FERMENTATION 2022. [DOI: 10.3390/fermentation8090457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Natural sources of flavour and aroma compounds are highly sought by the modern consumer; however, traditional sources are often low-yielding, and global supply is often outstripped by consumer demand. Fermentation is a favourable route by which natural flavours and fragrances can be produced. A non-Saccharomyces yeast, Brettanomyces bruxellensis, was investigated for its fermentative potential for the production of flavour and aroma metabolites from juice industry by-products: apple pomace, carrot pomace, and orange pomace. Submerged solid-substrate fermentations were carried out using sterile by-products without nutrient supplementation. Gas chromatography–mass spectrometry was used for volatile metabolite profiling of fermented substrates. One compound of interest, phenylethyl alcohol (rose fragrance), was extracted and quantified using GC-MS at a yield of 2.68 g/kg wet carrot pomace weight. This represents a novel, natural production strategy for phenylethyl alcohol compared to the traditional steam distillation of Rosa domascus sp. petals.
Collapse
|
18
|
Tapia SM, Pérez‐Torrado R, Adam AC, Macías LG, Barrio E, Querol A. Functional divergence in the proteins encoded by ARO80 from S. uvarum, S. kudriavzevii and S. cerevisiae explain differences in the aroma production during wine fermentation. Microb Biotechnol 2022; 15:2281-2291. [PMID: 35536034 PMCID: PMC9328738 DOI: 10.1111/1751-7915.14071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/19/2022] [Accepted: 04/24/2022] [Indexed: 11/27/2022] Open
Abstract
Phenylethanol (PE) and phenylethyl acetate (PEA) are commonly desired compounds in wine because of their rose-like aroma. The yeast S. cerevisiae produces the PE either through de novo biosynthesis by shikimate pathway followed by the Ehrlich pathway or the direct phenylalanine catabolism via Ehrlich pathway, and then converted into PEA. Previous work demonstrated that, compared to S. cerevisiae, other Saccharomyces species, such as S. kudriavzevii and S. uvarum, produce higher concentrations of PE and PEA from the precursor phenylalanine, which indicates differential activities of the biosynthetic-involved enzymes. A previous in-silico analysis suggested that the transcriptional activator Aro80p is one of the best candidates to explain these differences. An improved functional analysis identified significant radical amino acid changes in the S. uvarum and S. kudriavzevii Aro80p that could impact the expression of the catabolic genes ARO9 and ARO10, and hence, the production of PE from phenylalanine. Indeed, wine S. cerevisiae strains carrying the S. uvarum and S. kudriavzevii ARO80 alleles increased the production of both compounds in the presence of phenylalanine by increasing the expression of ARO9 and ARO10. This study provides novel insights of the unidentified Aro80p regulatory region and the potential usage of alternatives ARO80 alleles to enhance the PE and PEA concentration in wine.
Collapse
Affiliation(s)
- Sebastián M. Tapia
- Departamento de Biotecnología de los AlimentosGrupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSIC46980ValenciaSpain
| | - Roberto Pérez‐Torrado
- Departamento de Biotecnología de los AlimentosGrupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSIC46980ValenciaSpain
| | - Ana Cristina Adam
- Departamento de Biotecnología de los AlimentosGrupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSIC46980ValenciaSpain
| | - Laura G. Macías
- Departamento de Biotecnología de los AlimentosGrupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSIC46980ValenciaSpain
- Departament de GenèticaUniversitat de ValènciaValenciaSpain
| | - Eladio Barrio
- Departamento de Biotecnología de los AlimentosGrupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSIC46980ValenciaSpain
- Departament de GenèticaUniversitat de ValènciaValenciaSpain
| | - Amparo Querol
- Departamento de Biotecnología de los AlimentosGrupo de Biología de Sistemas en Levaduras de Interés BiotecnológicoInstituto de Agroquímica y Tecnología de Los Alimentos (IATA)‐CSIC46980ValenciaSpain
| |
Collapse
|
19
|
Ghamry M, Ghazal AF, Al-Maqtqri QA, Li L, Zhao W. Impact of a novel probiotic Lactobacillus strain isolated from the bee gut on GABA content, antioxidant activity, and potential cytotoxic activity against HT-29 cell line of rice bran. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:3031-3042. [PMID: 35872742 PMCID: PMC9304478 DOI: 10.1007/s13197-022-05512-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
UNLABELLED Rice bran was fermented with Lactobacillus apis, isolated from the bee gut as a novel probiotic strain, and Saccharomyces cerevisiae to investigate the relationship between its metabolites and antioxidant activity, nutraceutical value, and cytotoxic activity against the HT-29 cell line. The findings showed that L. apis improved the antioxidant activity (DPPH of 37.73%) and antioxidant capacity (ABTS of 37.62 mg Trolox/g,), as well as, hydroxyl radical-scavenging activity (91.55%) of rice bran compared to S. cerevisiae. The metabolic analysis of volatile compounds revealed an increase of alcohols and lactones in the samples fermented with S. cerevisiae. While the samples fermented with L. apis displayed an increase of ketones, esters, and thiazoles. On the other hand, L. apis and S. cerevisiae exhibited a significant ability to increase γ-aminobutyric acid during different fermentation times. Compared with non-fermented samples (18.54%), L. apis increased the cytotoxic activity of rice bran against the HT-29 cell line to 34.17%, and S. cerevisiae to 31.34%. These results suggest that the fermentation of rice bran with S. cerevisiae and L. apis provides a promising strategy to improve the antioxidant activity and nutraceuticals of rice bran, and a potential source for plant-based pharmaceutical products. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13197-022-05512-2.
Collapse
Affiliation(s)
- Mohamed Ghamry
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, 13736 Egypt
| | - Ahmed Fathy Ghazal
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Qais Ali Al-Maqtqri
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Li Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Wei Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| |
Collapse
|
20
|
Yeasts as Producers of Flavor Precursors during Cocoa Bean Fermentation and Their Relevance as Starter Cultures: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8070331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
During the fermentation of cocoa beans, the yeasts produce volatile organic compounds (VOCs). Through reactions associated with amino acid metabolism, yeasts generate important aroma precursors as acetate esters and fatty acid ethyl esters are essential in developing fruity flavors and aromas in the final product (usually chocolate). In addition, some yeasts may have pectinolytic and antifungal activity, which is desirable in the post-harvest process of cocoa. The main yeast species in cocoa fermentation are Saccharomyces cerevisiae, Pichia kudriavzevii, and Hanseniaspora opuntiae. These produce higher alcohols and acetyl-CoA to make acetate–esters, compounds that produce floral and fruity notes. However, there are still controversies in scientific reports because some mention that there are no significant differences in the sensory characteristics of the final product. Others mention that the fermentation of cocoa by yeast has a significant influence on improving the sensory attributes of the final product. However, using yeasts as starter cultures for cocoa bean fermentation is recommended to homogenize sensory attributes such as notes and flavors in chocolate.
Collapse
|
21
|
Liang B, Sun G, Zhang X, Nie Q, Zhao Y, Yang J. Recent Advances, Challenges and Metabolic Engineering Strategies in the Biosynthesis of 3-Hydroxypropionic Acid. Biotechnol Bioeng 2022; 119:2639-2668. [PMID: 35781640 DOI: 10.1002/bit.28170] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022]
Abstract
As an attractive and valuable platform chemical, 3-hydroxypropionic acid (3-HP) can be used to produce a variety of industrially important commodity chemicals and biodegradable polymers. Moreover, the biosynthesis of 3-HP has drawn much attention in recent years due to its sustainability and environmental friendliness. Here, we focus on recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3-HP. While glucose and glycerol are major carbon sources for its production of 3-HP via microbial fermentation, other carbon sources have also been explored. To increase yield and titer, synthetic biology and metabolic engineering strategies have been explored, including modifying pathway enzymes, eliminating flux blockages due to byproduct synthesis, eliminating toxic byproducts, and optimizing via genome-scale models. This review also provides insights on future directions for 3-HP biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guannan Sun
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingjuan Nie
- Foreign Languages School, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
22
|
Guo D, Wu S, Fu X, Pan H. De Novo Biosynthesis of Methyl Cinnamate in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7736-7741. [PMID: 35709502 DOI: 10.1021/acs.jafc.2c02638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Methyl cinnamate with a fruity balsamic odor is an important fragrance ingredient in perfumes and cosmetics. Chemical processes are currently the only means of producing methyl cinnamate. But consumers prefer natural flavors. Therefore, it is necessary to design and develop microbial cell factories for the production of methyl cinnamate. In this study, we established for the first time a biosynthetic pathway in engineered Escherichia coli for production of methyl cinnamate from glucose. We further increased the methyl cinnamate production to 302 mg/L by increasing the availability of the metabolic precursors. Finally, the titer was increased to 458 mg/L in a two-phase culture system.
Collapse
Affiliation(s)
- Daoyi Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Shaoting Wu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Xiao Fu
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| | - Hong Pan
- Key Laboratory of Organo-Pharmaceutical Chemistry, Jiangxi Province, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
23
|
The same genetic regulation strategy produces inconsistent effects in different Saccharomyces cerevisiae strains for 2-phenylethanol production. Appl Microbiol Biotechnol 2022; 106:4041-4052. [PMID: 35665835 DOI: 10.1007/s00253-022-11993-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 04/19/2022] [Accepted: 05/18/2022] [Indexed: 11/02/2022]
Abstract
A CRISPR/Cas9 system with gene editing efficiency of 100% in the industrial diploid Saccharomyces cerevisiae CWY-132 strain for 2-phenylethanol (2-PE) production was constructed. The effect of deletion of acetyltransferase gene ATF1 in the Ehrlich pathway on 2-PE synthesis was studied for the first time in S. cerevisiae. Laboratory and industrial strains were compared for the deletion effect of ATF1 and acetaldehyde dehydrogenase genes ALD2 and ALD3 involved in competing branches of the Ehrlich pathway on the 2-PE titer. The results showed that in 2-PE low-yielding haploid strain PK-2C, the ATF1∆ mutant produced 2-PE of 0.45 g/L, an increase of 114%, whereas in CWY-132, the 2-PE yield of ATF1∆ decreased significantly from 3.50 to 0.83 g/L. In PK-2C, the 2-PE yield of ALD2∆ increased from 0.21 to 1.20 g/L, whereas in CWY-132, it decreased from 3.50 to 3.02 and 2.93 g/L in ALD2∆ and ALD3∆ mutants, respectively, and to 1.65 g/L in ALD2∆ALD3∆. These results indicate that the same genetic manipulation strategy used for strains with different 2-PE yield backgrounds produces significantly different or even opposite effects. Moreover, we found that a supply of NADH or GSH increased the 2-PE production in S. cerevisiae. The correlation between the synthesis of 2-PE and ethanol was also revealed, and the tolerance of cells to 2-PE and ethanol was suggested to be a key limiting factor for further increase of 2-PE production in high-yielding strains. KEY POINTS: • Deletion of genes competing for 2-PE synthesis produces different effects in S. cerevisiae strains. • The ATF1∆, ALD2∆, or ALD3∆ increased 2-PE production in laboratory strains but not industrial strains. • The supply of NADH or GSH increased the titer of 2-PE in S. cerevisiae.
Collapse
|
24
|
Sekar BS, Li X, Li Z. Bioproduction of Natural Phenethyl Acetate, Phenylacetic Acid, Ethyl Phenylacetate, and Phenethyl Phenylacetate from Renewable Feedstock. CHEMSUSCHEM 2022; 15:e202102645. [PMID: 35068056 DOI: 10.1002/cssc.202102645] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Natural phenethyl acetate (PEA), phenylacetic acid (PAA), ethyl phenylacetate (Et-PA), and phenethyl phenylacetate (PE-PA) are highly desirable aroma chemicals, but with limited availability and high price. Here, green, sustainable, and efficient bioproduction of these chemicals as natural products from renewable feedstocks was developed. PEA and PAA were synthesized from l-phenylalanine (l-Phe) via novel six- and five-enzyme cascades, respectively. Whole-cell-based cascade biotransformation of 100 mm l-Phe in a two-phase system (aqueous/organic: 1 : 0.5 v/v) containing ethyl oleate or biodiesel as green solvent gave 13.6 g L-1 PEA (83.1 % conv.) and 11.6 g L-1 PAA (87.1 % conv.), respectively. Coupled fermentation and biotransformation approach produced 10.4 g L-1 PEA and 9.2 g L-1 PAA from glucose or glycerol, respectively. The biosynthesized PAA was converted to natural Et-PA and PE-PA by esterification using lipases with ethanol or 2-phenylethanol derived from sugar, affording 2.7 g L-1 Et-PA (83.1 % conv.) and 4.6 g L-1 PE-PA (96.3 % conv.), respectively.
Collapse
Affiliation(s)
- Balaji Sundara Sekar
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore, Singapore
| | - Xirui Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
- Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, 117456, Singapore, Singapore
| |
Collapse
|
25
|
Kang X, Zhang J, Xu Y, Zhang X, Cui F, Li H. Knocking-out ARO80 promotes the intracellular ROS accumulation through weakening MAPK pathway of Saccharomyces cerevisiae. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Wang R, Sun J, Lassabliere B, Yu B, Liu SQ. Green tea fermentation with Saccharomyces boulardii CNCM I-745 and Lactiplantibacillus plantarum 299V. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Liu S, Bai M, Zhou J, Jin Z, Xu Y, Yang Q, Zhou J, Zhang S, Mao J. Analysis of genes from Saccharomyces cerevisiae HJ01 participating in aromatic alcohols biosynthesis during huangjiu fermentation. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Bioproduction of 2-Phenylethanol through Yeast Fermentation on Synthetic Media and on Agro-Industrial Waste and By-Products: A Review. Foods 2022; 11:foods11010109. [PMID: 35010235 PMCID: PMC8750221 DOI: 10.3390/foods11010109] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Due to its pleasant rosy scent, the aromatic alcohol 2-phenylethanol (2-PE) has a huge market demand. Since this valuable compound is used in food, cosmetics and pharmaceuticals, consumers and safety regulations tend to prefer natural methods for its production rather than the synthetic ones. Natural 2-PE can be either produced through the extraction of essential oils from various flowers, including roses, hyacinths and jasmine, or through biotechnological routes. In fact, the rarity of natural 2-PE in flowers has led to the inability to satisfy the large market demand and to a high selling price. Hence, there is a need to develop a more efficient, economic, and environmentally friendly biotechnological approach as an alternative to the conventional industrial one. The most promising method is through microbial fermentation, particularly using yeasts. Numerous yeasts have the ability to produce 2-PE using l-Phe as precursor. Some agro-industrial waste and by-products have the particularity of a high nutritional value, making them suitable media for microbial growth, including the production of 2-PE through yeast fermentation. This review summarizes the biotechnological production of 2-PE through the fermentation of different yeasts on synthetic media and on various agro-industrial waste and by-products.
Collapse
|
29
|
Nishimura A, Isogai S, Murakami N, Hotta N, Kotaka A, Matsumura K, Hata Y, Ishida H, Takagi H. Isolation and analysis of a sake yeast mutant with phenylalanine accumulation. J Ind Microbiol Biotechnol 2021; 49:6426185. [PMID: 34788829 PMCID: PMC9142190 DOI: 10.1093/jimb/kuab085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022]
Abstract
Sake is a traditional Japanese alcoholic beverage brewed by the yeast Saccharomyces cerevisiae. Since the consumption and connoisseurship of sake has spread around the world, the development of new sake yeast strains to meet the demand for unique sakes has been promoted. Phenylalanine is an essential amino acid that is used to produce proteins and important signaling molecules involved in feelings of pleasure. In addition, phenylalanine is a precursor of 2-phenylethanol, a high-value aromatic alcohol with a rose-like flavor. As such, adjusting the quantitative balance between phenylalanine and 2-phenylethanol may introduce value-added qualities to sake. Here, we isolated a sake yeast mutant (strain K9-F39) with phenylalanine accumulation and found a missense mutation on the ARO80 gene encoding the His309Gln variant of the transcriptional activator Aro80p involved in the biosynthesis of 2-phenylethanol from phenylalanine. We speculated that mutation of ARO80 would decrease transcriptional activity and suppress the phenylalanine catabolism, resulting in an increase of intracellular phenylalanine. Indeed, sake brewed with strain K9-F39 contained 60% increase in phenylalanine, but only 10% less 2-phenylethanol than sake brewed with the parent strain. Use of the ARO80 mutant in sake brewing may be promising for the production of distinctive new sake varieties.
Collapse
Affiliation(s)
- Akira Nishimura
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Shota Isogai
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Naoyuki Murakami
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Natsuki Hotta
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Atsushi Kotaka
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Kengo Matsumura
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Yoji Hata
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co. Ltd., 101 Shimotoba-koyanagi-cho, Fushimi-ku, Kyoto 612-8385, Japan
| | - Hiroshi Takagi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| |
Collapse
|
30
|
Scott WT, Smid EJ, Block DE, Notebaart RA. Metabolic flux sampling predicts strain-dependent differences related to aroma production among commercial wine yeasts. Microb Cell Fact 2021; 20:204. [PMID: 34674718 PMCID: PMC8532357 DOI: 10.1186/s12934-021-01694-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metabolomics coupled with genome-scale metabolic modeling approaches have been employed recently to quantitatively analyze the physiological states of various organisms, including Saccharomyces cerevisiae. Although yeast physiology in laboratory strains is well-studied, the metabolic states under industrially relevant scenarios such as winemaking are still not sufficiently understood, especially as there is considerable variation in metabolism between commercial strains. To study the potential causes of strain-dependent variation in the production of volatile compounds during enological conditions, random flux sampling and statistical methods were used, along with experimental extracellular metabolite flux data to characterize the differences in predicted intracellular metabolic states between strains. RESULTS It was observed that four selected commercial wine yeast strains (Elixir, Opale, R2, and Uvaferm) produced variable amounts of key volatile organic compounds (VOCs). Principal component analysis was performed on extracellular metabolite data from the strains at three time points of cell cultivation (24, 58, and 144 h). Separation of the strains was observed at all three time points. Furthermore, Uvaferm at 24 h, for instance, was most associated with propanol and ethyl hexanoate. R2 was found to be associated with ethyl acetate and Opale could be associated with isobutanol while Elixir was most associated with phenylethanol and phenylethyl acetate. Constraint-based modeling (CBM) was employed using the latest genome-scale metabolic model of yeast (Yeast8) and random flux sampling was performed with experimentally derived fluxes at various stages of growth as constraints for the model. The flux sampling simulations allowed us to characterize intracellular metabolic flux states and illustrate the key parts of metabolism that likely determine the observed strain differences. Flux sampling determined that Uvaferm and Elixir are similar while R2 and Opale exhibited the highest degree of differences in the Ehrlich pathway and carbon metabolism, thereby causing strain-specific variation in VOC production. The model predictions also established the top 20 fluxes that relate to phenotypic strain variation (e.g. at 24 h). These fluxes indicated that Opale had a higher median flux for pyruvate decarboxylase reactions compared with the other strains. Conversely, R2 which was lower in all VOCs, had higher median fluxes going toward central metabolism. For Elixir and Uvaferm, the differences in metabolism were most evident in fluxes pertaining to transaminase and hexokinase associated reactions. The applied analysis of metabolic divergence unveiled strain-specific differences in yeast metabolism linked to fusel alcohol and ester production. CONCLUSIONS Overall, this approach proved useful in elucidating key reactions in amino acid, carbon, and glycerophospholipid metabolism which suggest genetic divergence in activity in metabolic subsystems among these wine strains related to the observed differences in VOC formation. The findings in this study could steer more focused research endeavors in developing or selecting optimal aroma-producing yeast stains for winemaking and other types of alcoholic fermentations.
Collapse
Affiliation(s)
- William T Scott
- Department of Chemical Engineering, University of California, Davis, CA, USA.,Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - David E Block
- Department of Chemical Engineering, University of California, Davis, CA, USA.,Department of Viticulture and Enology, University of California, Davis, CA, USA
| | - Richard A Notebaart
- Food Microbiology, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
31
|
Zhu L, Xu S, Li Y, Shi G. Improvement of 2-phenylethanol production in Saccharomyces cerevisiae by evolutionary and rational metabolic engineering. PLoS One 2021; 16:e0258180. [PMID: 34665833 PMCID: PMC8525735 DOI: 10.1371/journal.pone.0258180] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 09/22/2021] [Indexed: 11/18/2022] Open
Abstract
2-Phenylethanol (2-PE) is a valuable aromatic compound with favorable flavors and good properties, resulting in its widespread application in the cosmetic, food and medical industries. In this study, a mutant strain, AD032, was first obtained by adaptive evolution under 2-PE stress. Then, a fusion protein from the Ehrlich pathway, composed of tyrB from Escherichia coli, kdcA from Lactococcus lactis and ADH2 from Saccharomyces cerevisiae, was constructed and expressed. As a result, 3.14 g/L 2-PE was achieved using L-phenylalanine as a precursor. To further increase 2-PE production, L-glutamate oxidase from Streptomyces overexpression was applied for the first time in our research to improve the supply of α-ketoglutarate in the transamination of 2-PE synthesis. Furthermore, we found that the disruption of the pyruvate decarboxylase encoding gene PDC5 caused an increase in 2-PE production, which has not yet been reported. Finally, assembly of the efficient metabolic modules and process optimization resulted in the strain RM27, which reached 4.02 g/L 2-PE production from 6.7 g/L L-phenylalanine without in situ product recovery. The strain RM27 produced 2-PE (0.8 mol/mol) with L-phenylalanine as a precursor, which was considerably high, and displayed manufacturing potential regarding food safety and process simplification aspects. This study suggests that innovative strategies regarding metabolic modularization provide improved prospects for 2-PE production in food exploitation.
Collapse
Affiliation(s)
- Linghuan Zhu
- College of Food Science and Biology, Hebei University of Science and Technology, Shijiazhuang, Hebei, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
- National Engineering Laboratory for Cereal Fermentation Technology, the Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
- * E-mail:
| |
Collapse
|
32
|
GAT1 Gene, the GATA Transcription Activator, Regulates the Production of Higher Alcohol during Wheat Beer Fermentation by Saccharomyces cerevisiae. Bioengineering (Basel) 2021; 8:bioengineering8050061. [PMID: 34066902 PMCID: PMC8151594 DOI: 10.3390/bioengineering8050061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/04/2021] [Accepted: 04/30/2021] [Indexed: 11/17/2022] Open
Abstract
Uncoordinated carbon-nitrogen ratio in raw materials will lead to excessive contents of higher alcohols in alcoholic beverages. The effect of GAT1 gene, the GATA transcription activator, on higher alcohol biosynthesis was investigated to clarify the mechanism of Saccharomyces cerevisiae regulating higher alcohol metabolism under high concentrations of free amino nitrogen (FAN). The availability of FAN by strain SDT1K with a GAT1 double-copy deletion was 28.31% lower than that of parent strain S17, and the yield of higher alcohols was 33.91% lower. The transcript levels of the downstream target genes of GAT1 and higher alcohol production in the double-copy deletion mutant suggested that a part of the effect of GAT1 deletion on higher alcohol production was the downregulation of GAP1, ARO9, and ARO10. This study shows that GATA factors can effectively regulate the metabolism of higher alcohols in S. cerevisiae and provides valuable insights into higher alcohol biosynthesis, showing great significance for the wheat beer industry.
Collapse
|
33
|
Zhu L, Wang J, Xu S, Shi G. Improved aromatic alcohol production by strengthening the shikimate pathway in Saccharomyces cerevisiae. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Dai J, Xia H, Yang C, Chen X. Sensing, Uptake and Catabolism of L-Phenylalanine During 2-Phenylethanol Biosynthesis via the Ehrlich Pathway in Saccharomyces cerevisiae. Front Microbiol 2021; 12:601963. [PMID: 33717002 PMCID: PMC7947893 DOI: 10.3389/fmicb.2021.601963] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/29/2021] [Indexed: 01/15/2023] Open
Abstract
2-Phenylethanol (2-PE) is an important flavouring ingredient with a persistent rose-like odour, and it has been widely utilized in food, perfume, beverages, and medicine. Due to the potential existence of toxic byproducts in 2-PE resulting from chemical synthesis, the demand for “natural” 2-PE through biotransformation is increasing. L-Phenylalanine (L-Phe) is used as the precursor for the biosynthesis of 2-PE through the Ehrlich pathway by Saccharomyces cerevisiae. The regulation of L-Phe metabolism in S. cerevisiae is complicated and elaborate. We reviewed current progress on the signal transduction pathways of L-Phe sensing, uptake of extracellular L-Phe and 2-PE synthesis from L-Phe through the Ehrlich pathway. Moreover, the anticipated bottlenecks and future research directions for S. cerevisiae biosynthesis of 2-PE are discussed.
Collapse
Affiliation(s)
- Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China.,ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Huili Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
35
|
Utilization of a styrene-derived pathway for 2-phenylethanol production in budding yeast. Appl Microbiol Biotechnol 2021; 105:2333-2340. [PMID: 33649922 DOI: 10.1007/s00253-021-11186-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/23/2020] [Accepted: 02/17/2021] [Indexed: 10/22/2022]
Abstract
2-Phenylethanol (2-PE) is an important flavor ingredient and is widely applied in the fields of food, cosmetics, and pharmaceuticals. Despite that Saccharomyces cerevisiae has the ability to naturally synthesize 2-PE via the Ehrlich pathway, de novo synthesis of 2-PE in high titer still remains a huge challenge. In this study, a non-native styrene degradation pathway was introduced into S. cerevisiae, which represents the first time to demonstrate the functional expression of "styrene-derived" 2-PE synthesis in yeast. Using a host strain engineered with L-phenylalanine (L-Phe) overproduction, the heterologous 2-PE pathway coupled with endogenous Ehrlich pathway produced 233 mg/L 2-PE under shake flasks. Additionally, we further engineered the permease transporters to improve the intracellular L-Phe availability, and further improved the 2-PE titer to 680 mg/L. Taken together, our work represents one of the pioneering reports to explore "styrene-derived" pathway in S. cerevisiae. The synthetic yeast described here might be used as a platform for the future development of next-generation high-yielding 2-PE yeast strains.Key Points• A styrene-derived pathway was established in yeast for 2-phenylethanol productions; membrane-associated styrene oxide isomerase was functional in yeast.• Transporter engineering to improve the L-phenylalanine importation with enhanced 2-phenylethanol productions.
Collapse
|
36
|
In Situ Product Recovery of Bio-Based Industrial Platform Chemicals: A Guideline to Solvent Selection. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7010026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In situ product recovery (ISPR), in the form of an extractive fermentation process, can increase productivity and product titers in the sustainable production of platform chemicals. To establish a guideline for the development of industrially relevant production processes for such bio-based compounds, a wide screening was performed, mapping the potential of an extensive range of solvents and solvent mixtures. Besides solvent biocompatibility with Saccharomyces cerevisiae, distribution coefficients of three organic acids (protocatechuic acid, adipic acid and para-aminobenzoic acid) and four fragrance compounds (2-phenylethanol, geraniol, trans-cinnamaldehyde and β-ionone) were determined. While for highly hydrophobic fragrance compounds, multiple pure solvents were identified that were able to extract more than 98%, reactive extraction mixtures were proven effective for more challenging compounds including organic acids and hydrophilic alcohols. For example, a reactive mixture consisting of 12.5% of the extractant CYTOP 503 in canola oil was found to be biocompatible and showed superior extraction efficiency for the challenging compounds as compared to any biocompatible single solvent. This mapping of biocompatible solvents and solvent mixtures for the extraction of various classes of industrial platform chemicals can be a tremendous step forward in the development of extractive fermentations.
Collapse
|
37
|
Dai J, Li K, Song N, Yao W, Xia H, Yang Q, Zhang X, Li X, Wang Z, Yao L, Yang S, Chen X. Zygosaccharomyces rouxii, an Aromatic Yeast Isolated From Chili Sauce, Is Able to Biosynthesize 2-Phenylethanol via the Shikimate or Ehrlich Pathways. Front Microbiol 2020; 11:597454. [PMID: 33250885 PMCID: PMC7673420 DOI: 10.3389/fmicb.2020.597454] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
We isolated an aromatic strain of yeast (M2013310) from chili sauce. Assembly, annotation, and phylogenetic analysis based on genome sequencing, identified M2013310 as an allodiploid yeast that was closely related to Zygosaccharomyces rouxii. During fermentation, M2013310, produced an aromatic alcohol with a rose-honey scent; gas chromatography tandem mass spectrometry identified this alcohol as 2-phenylethanol. The concentration of 2-phenylethanol reached 3.8 mg/L, 1.79 g/L, and 3.58 g/L, in M3 (NH4+), M3 (NH4+ + Phe), and M3 (Phe) culture media, after 72 h of fermentation, respectively. The mRNA expression levels of ARO8 encoding aromatic aminotransferases I and ARO10 encoding phenylpyruvate decarboxylase by M2013310 in M3 (Phe) were the lowest of the three different forms of media tested. These results indicated that M2013310 can synthesize 2-phenylethanol via the Shikimate or Ehrlich pathways and the production of 2-phenylethanol may be significantly improved by the over-expression of these two genes. Our research identified a promising strain of yeast (M2013310) that could be used to improve the production of 2-phenylethanol.
Collapse
Affiliation(s)
- Jun Dai
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China.,ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China.,State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Ke Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Na Song
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Wanting Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Huili Xia
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Qiao Yang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Xiaoling Zhang
- ABI Group, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, China
| | - Xin Li
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Zhi Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Lan Yao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, China
| |
Collapse
|
38
|
Effect of the Deletion of Genes Related to Amino Acid Metabolism on the Production of Higher Alcohols by Saccharomyces cerevisiae. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6802512. [PMID: 33204707 PMCID: PMC7665916 DOI: 10.1155/2020/6802512] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/27/2020] [Accepted: 10/24/2020] [Indexed: 11/17/2022]
Abstract
The higher alcohols produced by Saccharomyces cerevisiae exert remarkable influence on the taste and flavour of Chinese Baijiu. In order to study the regulation mechanism of amino acid metabolism genes on higher alcohol production, eight recombinant strains with amino acid metabolism gene deletion were constructed. The growth, fermentation performance, higher alcohol production, and expression level of genes in recombinant and original α5 strains were determined. Results displayed that the total higher alcohol concentration in α5ΔGDH1 strain decreased by 27.31% to 348.68 mg/L compared with that of α5. The total content of higher alcohols in α5ΔCAN1 and α5ΔGAT1 strains increased by 211.44% and 28.36% to 1493.96 and 615.73 mg/L, respectively, compared with that of α5. This study is the first to report that the CAN1 and GAT1 genes have great influence on the generation of higher alcohols. The results demonstrated that amino acid metabolism plays a substantial role in the metabolism of higher alcohols by S. cerevisiae. Interestingly, we also found that gene knockout downregulated the expression levels of the knocked out gene and other genes in the recombinant strain and thus affected the formation of higher alcohols by S. cerevisiae. This study provides worthy insights for comprehending the metabolic mechanism of higher alcohols in S. cerevisiae for Baijiu fermentation.
Collapse
|
39
|
Wang Y, Zhang Z, Lu X, Zong H, Zhuge B. Genetic engineering of an industrial yeast Candida glycerinogenes for efficient production of 2-phenylethanol. Appl Microbiol Biotechnol 2020; 104:10481-10491. [PMID: 33180170 DOI: 10.1007/s00253-020-10991-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/23/2020] [Accepted: 10/31/2020] [Indexed: 10/23/2022]
Abstract
Microbial cell factories offer an economic approach for synthesizing "natural'" aromatic flavor compounds. During their fermentation process, the inefficient synthesis pathway and product cytotoxicity are the major barriers to the high-level production. This study combined metabolic engineering and tolerance engineering strategies to maximize the valuable rose-smell 2-phenylethanol (2-PE) production in Candida glycerinogenes, a GRAS diploid industrial yeast. Firstly, 2-PE metabolic networks involved in Ehrlich pathway were stepwise rewired using metabolic engineering, including the following: (1) overexpressing L-phenylalanine permease Aap9 enhanced precursor uptake; (2) overexpressing enzymes (aminotransferase Aro9 and decarboxylase Aro10) of Ehrlich pathway increased catalytic efficiency; and (3) disrupting the formation of by-product phenylacetate catalyzed by Ald2 and Ald3 maximized the metabolic flux toward 2-PE. Then, tolerance engineering was applied by overexpression of a stress-inducible gene SLC1 in the metabolically engineered strain to further enhance 2-PE production. Combining these two approaches finally resulted in 5.0 g/L 2-PE in shake flasks, with productivity reaching 0.21 g/L/h, which were increased by 38.9% and 177% compared with those of the non-engineered strain, respectively. The 2-PE yield of this engineered strain was 0.71 g/g L-phenylalanine, corresponding to 95.9% of theoretical yield. This study provides a reference to efficiently engineering of microbial cell factories for other valuable aromatic compounds. KEY POINTS: • Metabolic engineering improved 2-PE biosynthesis. • Tolerance engineering alleviated product inhibition, contributing to 2-PE production. • The best strain produced 5.0 g/L 2-PE with 0.959 mol/mol yield and high productivity.
Collapse
Affiliation(s)
- Yuqin Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhongyuan Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xinyao Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China.
| | - Hong Zong
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Bin Zhuge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China. .,Research Centre of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, China.
| |
Collapse
|
40
|
Chrzanowski G. Saccharomyces Cerevisiae-An Interesting Producer of Bioactive Plant Polyphenolic Metabolites. Int J Mol Sci 2020; 21:ijms21197343. [PMID: 33027901 PMCID: PMC7582661 DOI: 10.3390/ijms21197343] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/20/2022] Open
Abstract
Secondary phenolic metabolites are defined as valuable natural products synthesized by different organisms that are not essential for growth and development. These compounds play an essential role in plant defense mechanisms and an important role in the pharmaceutical, cosmetics, food, and agricultural industries. Despite the vast chemical diversity of natural compounds, their content in plants is very low, and, as a consequence, this eliminates the possibility of the production of these interesting secondary metabolites from plants. Therefore, microorganisms are widely used as cell factories by industrial biotechnology, in the production of different non-native compounds. Among microorganisms commonly used in biotechnological applications, yeast are a prominent host for the diverse secondary metabolite biosynthetic pathways. Saccharomyces cerevisiae is often regarded as a better host organism for the heterologous production of phenolic compounds, particularly if the expression of different plant genes is necessary.
Collapse
Affiliation(s)
- Grzegorz Chrzanowski
- Department of Biotechnology, Institute of Biology and Biotechnology, University of Rzeszow, 35-310 Rzeszow, Poland
| |
Collapse
|
41
|
Yan W, Zhang X, Qian X, Zhou J, Dong W, Ma J, Zhang W, Xin F, Jiang M. Comprehensive investigations of 2-phenylethanol production by high 2-phenylethanol tolerating Meyerozyma sp. strain YLG18. Enzyme Microb Technol 2020; 140:109629. [DOI: 10.1016/j.enzmictec.2020.109629] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
|
42
|
Sanchez-Cruz A, Robledo N, Rosete-Enríquez M, Romero-López AA. Attraction of Adults of Cyclocephala lunulata and Cyclocephala barrerai (Coleoptera: Scarabaeoidea: Melolonthidae) towards Bacteria Volatiles Isolated from Their Genital Chambers. MOLECULES (BASEL, SWITZERLAND) 2020; 25:molecules25194430. [PMID: 32992458 PMCID: PMC7582287 DOI: 10.3390/molecules25194430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 02/01/2023]
Abstract
In the study of the chemical communication of adults of the Melolonthidae family, bacteria have been observed in the epithelium of the genital chamber; possibly, bacteria are involved in the production of sex attractants in their hosts. Therefore, it is important to identify the volatile organic compounds from bacteria (VOCsB) released by these microorganisms and study the biological activity stimulated by VOBCs in adults of Melolonthidae. In this study, bacteria were isolated from the genital chamber of Cyclocephala lunulata and Cyclocephala barrerai, from which VOCsB were extracted using static headspace solid-phase microextraction (SHS-SPME) and dynamic headspace Super Q solid-phase extraction (DHS-SPE) and analyzed using gas chromatography-mass spectrometry. The effect of VOCsB on the hosts and conspecifics was evaluated utilizing an olfactometer and electroantennography (EAG). Two species of Enterobacteria were isolated from the genital chamber of each female species, and VOCsB derived from sulfur-containing compounds, alcohols, esters, and fatty acids were identified. An attraction response was observed in olfactometry studies, and antennal responses to VOCsB were confirmed in EAG bioassays. With these results, new perspectives on the relationship between these beetles and their bacteria emerge, in addition to establishing a basis for management programs in the future.
Collapse
Affiliation(s)
- Abraham Sanchez-Cruz
- Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional. Carretera Yautepec-Jojutla, Km. 6, calle CEPROBI No. 8, Col. San Isidro, Yautepec, Morelos C.P. 62731, Mexico;
| | - Norma Robledo
- Laboratorio de Ecología Química de Insectos, Centro de Desarrollo de Productos Bióticos, Instituto Politécnico Nacional. Carretera Yautepec-Jojutla, Km. 6, calle CEPROBI No. 8, Col. San Isidro, Yautepec, Morelos C.P. 62731, Mexico;
- Correspondence: (N.R.); (A.A.R.-L.); Tel.: +52-(735)-3942020 (N.R.); +52-(735)-3941896 (N.R.); +52-(222)-2295500 (A.A.R.-L.)
| | - María Rosete-Enríquez
- Laboratorio de Macromoléculas, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Boulevard Capitán Carlos Camacho Espíritu, Edificio 112-A, Ciudad Universitaria, Col. Jardines de San Manuel, Puebla C. P. 72570, Mexico;
| | - Angel A. Romero-López
- Laboratorio de Infoquímicos y Otros compuestos Bióticos, Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla, Boulevard Capitán Carlos Camacho Espíritu, Edificio 112-A, Ciudad Universitaria, Col. Jardines de San Manuel, Puebla C. P. 72570, Mexico
- Correspondence: (N.R.); (A.A.R.-L.); Tel.: +52-(735)-3942020 (N.R.); +52-(735)-3941896 (N.R.); +52-(222)-2295500 (A.A.R.-L.)
| |
Collapse
|
43
|
Wang R, Sun J, Lassabliere B, Yu B, Liu SQ. Fermentation characteristics of four non-Saccharomyces yeasts in green tea slurry. Food Microbiol 2020; 92:103609. [PMID: 32950144 DOI: 10.1016/j.fm.2020.103609] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/20/2020] [Accepted: 07/25/2020] [Indexed: 01/19/2023]
Abstract
The fermentation characteristics of non-Saccharomyces yeasts (Pichia kluyveri FrootZen, Torulaspora delbrueckii Prelude, Williopsis saturnus var. mrakii NCYC2251 and Torulaspora delbrueckii Biodiva) were evaluated in green tea slurry fermentation. Each yeast showed different fermentation performances: strains Prelude and Biodiva utilized sucrose faster than the other two yeasts; strain NCYC2251 was the only species that metabolized xylose. Strain FrootZen increased the caffeine content significantly and strain Prelude showed the opposite trend, both at a statistical level, while theanine contents in four samples were relatively stable. Biodiva and FrootZen significantly improved polyphenols content and the oxygen radical absorbance capacity of fermented teas. Some endogenous volatiles such as ketones, lactones and aldehydes decreased to lower or undetected levels, but one of the key tea aroma compounds methyl salicylate increased by 34-fold and 100-fold in P. kluyveri and W. saturnus samples respectively. Therefore, green tea fermentation by appropriate non-Saccharomyces yeasts can enhance its antioxidant capacity and alter the aroma compound profile.
Collapse
Affiliation(s)
- Rui Wang
- Department of Food Science & Technology, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore
| | - Jingcan Sun
- Mane SEA PTE LTD, Biopolis Drive 3, 138623, Singapore
| | | | - Bin Yu
- Mane SEA PTE LTD, Biopolis Drive 3, 138623, Singapore
| | - Shao Quan Liu
- Department of Food Science & Technology, National University of Singapore, Science Drive 3, Singapore, 117543, Singapore; National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
44
|
Gu Y, Ma J, Zhu Y, Ding X, Xu P. Engineering Yarrowia lipolytica as a Chassis for De Novo Synthesis of Five Aromatic-Derived Natural Products and Chemicals. ACS Synth Biol 2020; 9:2096-2106. [PMID: 32650638 PMCID: PMC7445739 DOI: 10.1021/acssynbio.0c00185] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
Yarrowia
lipolytica is a novel microbial chassis
to upgrade renewable low-cost carbon feedstocks to high-value commodity
chemicals and natural products. In this work, we systematically characterized
and removed the rate-limiting steps of the shikimate pathway and achieved de novo synthesis of five aromatic chemicals in Y. lipolytica. We determined that eliminating amino
acids formation and engineering feedback-insensitive DAHP synthases
are critical steps to mitigate precursor competition and relieve the
feedback regulation of the shikimate pathway. Further overexpression
of heterologous phosphoketolase and deletion of pyruvate kinase provided
a sustained metabolic driving force that channels E4P (erythrose 4-phosphate)
and PEP (phosphoenolpyruvate) precursors through the shikimate pathway.
Precursor competing pathways and byproduct formation pathways were
also blocked by inactivating chromosomal genes. To demonstrate the
utility of our engineered chassis strain, three natural products,
2-phenylethanol (2-PE), p-coumaric acid, and violacein,
which were derived from phenylalanine, tyrosine, and tryptophan, respectively,
were chosen to test the chassis performance. We obtained 2426.22 ±
48.33 mg/L of 2-PE, 593.53 ± 28.75 mg/L of p-coumaric acid, 12.67 ± 2.23 mg/L of resveratrol, 366.30 ±
28.99 mg/L of violacein, and 55.12 ± 2.81 mg/L of deoxyviolacein
from glucose in a shake flask. The 2-PE production represents a 286-fold
increase over the initial strain (8.48 ± 0.50 mg/L). Specifically,
we obtained the highest 2-PE, violacein, and deoxyviolacein titer
ever reported from the de novo shikimate pathway
in yeast. These results set up a new stage of engineering Y. lipolytica as a sustainable biorefinery chassis
strain for de novo synthesis of aromatic compounds
with economic values.
Collapse
Affiliation(s)
- Yang Gu
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jingbo Ma
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| | - Yonglian Zhu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xinyu Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Peng Xu
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland, Baltimore County, Baltimore, Maryland 21250, United States
| |
Collapse
|
45
|
Liu J, Bai Y, Fan TP, Zheng X, Cai Y. Unveiling the Multipath Biosynthesis Mechanism of 2-Phenylethanol in Proteus mirabilis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7684-7690. [PMID: 32608230 DOI: 10.1021/acs.jafc.0c02918] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Proteus mirabilis could convert l-phenylalanine into 2-phenylethanol (2-PE) via the Ehrlich pathway, the amino acid deaminase pathway, and the aromatic amino acid decarboxylase pathway. The aromatic amino acid decarboxylase pathway was proved for the first time in P. mirabilis. In this pathway, l-aromatic amino acid transferase demonstrated a unique catalytic property, transforming 2-penylethylamine into phenylacetaldehyde. Eleven enzymes were supposed to involve in 2-phenylethanol synthesis. The mRNA expression levels of 11 genes were assessed over time by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in vivo. As a result, the expression of 11 genes was significantly increased, suggesting that P. mirabilis could transform l-phenylalanine into 2-phenylethanol via three pathways under aerobic conditions; nine genes were significantly overexpressed, suggesting that P. mirabilis could synthesize 2-phenylethanol via the Ehrlich pathway under anaerobic conditions. This study reveals the multipath synthetic metabolism for 2-phenylethanol in P. mirabilis and will enrich the new ideas for natural (2-PE) synthesis.
Collapse
Affiliation(s)
- Jinbin Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yajun Bai
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China
| | - Tai-Ping Fan
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1T, U.K
| | - Xiaohui Zheng
- College of Life Sciences, Northwest University, Xi'an, Shanxi 710069, China
| | - Yujie Cai
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
46
|
Efficient synthesis of 2-phenylethanol from L-phenylalanine by engineered Bacillus licheniformis using molasses as carbon source. Appl Microbiol Biotechnol 2020; 104:7507-7520. [DOI: 10.1007/s00253-020-10740-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/31/2020] [Accepted: 06/09/2020] [Indexed: 01/07/2023]
|
47
|
Gorter de Vries AR, Pronk JT, Daran JMG. Lager-brewing yeasts in the era of modern genetics. FEMS Yeast Res 2020; 19:5573808. [PMID: 31553794 PMCID: PMC6790113 DOI: 10.1093/femsyr/foz063] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 09/23/2019] [Indexed: 12/11/2022] Open
Abstract
The yeast Saccharomyces pastorianus is responsible for the annual worldwide production of almost 200 billion liters of lager-type beer. S. pastorianus is a hybrid of Saccharomyces cerevisiae and Saccharomyces eubayanus that has been studied for well over a century. Scientific interest in S. pastorianus intensified upon the discovery, in 2011, of its S. eubayanus ancestor. Moreover, advances in whole-genome sequencing and genome editing now enable deeper exploration of the complex hybrid and aneuploid genome architectures of S. pastorianus strains. These developments not only provide novel insights into the emergence and domestication of S. pastorianus but also generate new opportunities for its industrial application. This review paper combines historical, technical and socioeconomic perspectives to analyze the evolutionary origin and genetics of S. pastorianus. In addition, it provides an overview of available methods for industrial strain improvement and an outlook on future industrial application of lager-brewing yeasts. Particular attention is given to the ongoing debate on whether current S. pastorianus originates from a single or multiple hybridization events and to the potential role of genome editing in developing industrial brewing yeast strains.
Collapse
Affiliation(s)
- Arthur R Gorter de Vries
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jack T Pronk
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean-Marc G Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
48
|
Martínez-Avila O, Sánchez A, Font X, Barrena R. 2-phenylethanol (rose aroma) production potential of an isolated pichia kudriavzevii through solid-state fermentation. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
49
|
Screening of yeasts isolated from Baijiu environments for 2-phenylethanol production and optimization of production conditions. 3 Biotech 2020; 10:275. [PMID: 32537375 DOI: 10.1007/s13205-020-02267-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/18/2020] [Indexed: 02/01/2023] Open
Abstract
2-Phenylethanol (2-PE) with a pleasant rose-like odor is a valuable aroma compound used in many fields. 2-PE production by yeast is considered a promising alternative to chemical synthesis and extraction from natural materials. In this report, the strain YF1702 produced a significantly higher level of 2-PE when compared with other strains isolated from Baijiu-producing environments. According to morphological properties, physiological and biochemical characteristics, and 26S rDNA sequence analysis, strain YF1702 was identified as Pichia kudriavzevii. The optimal fermentation conditions of YF1702 for producing 2-PE were obtained by single-factor experiments, Plackett-Burman design, steepest ascent design, and response surface methodology. The optimal inoculation conditions for strain YF1702 were 50 g/L glucose, 6.0 g/L yeast extract, 10.7 g/L L-Phe, and 32 g/L Tween-60. The optimal fermentation conditions were pH 2.3, 26 °C, 210 rpm shaking, an inoculum size of 0.4% (v/v), and a loading volume of 25.5 mL/250 mL for 56 h. Under these optimal conditions 2-PE production by YF1702 was 5.09 g/L. This strain has the potential to increase the content of 2-PE in Baijiu production and enhance the aroma characteristics of Baijiu.
Collapse
|
50
|
Corona O, Planeta D, Bambina P, Giacosa S, Paissoni MA, Squadrito M, Torchio F, Río Segade S, Cinquanta L, Gerbi V, Rolle L. Influence of Different Dehydration Levels on Volatile Profiles, Phenolic Contents and Skin Hardness of Alkaline Pre-Treated Grapes cv Muscat of Alexandria ( Vitis vinifera L.). Foods 2020; 9:foods9050666. [PMID: 32455680 PMCID: PMC7278579 DOI: 10.3390/foods9050666] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022] Open
Abstract
A dehydration experiment was carried out on Vitis vinifera L. cv Muscat of Alexandria (synonym Zibibbo) following the process for the production of renowned special dessert wines produced on Pantelleria island (Sicily, Italy). Harvested berries were pre-treated in a sodium hydroxide dipping solution (45 g/L, dipped for 185 s, 25 °C) to accelerate the drying process, rinsed, and dehydrated in simulated conditions (relative humidity 30%, 30 °C temperature, air speed 0.9 m/s). Three dehydration levels were achieved, corresponding to “Passolata”, “Bionda”, and “Malaga” stages (35%, 50%, and 65% of weight loss, respectively) of the Pantelleria denomination of origin (DOC). Grape skin mechanical properties, technological parameters, phenolics, and aroma profile varied considerably during dehydration. The most important aroma compounds for their olfactory impact, such as linalool, geraniol, nerol, and citronellol, especially in glycosylated forms, significantly increased in dried grapes compared to fresh ones, even if aroma profile modification occurred. A decrease in break skin force could have induced higher release of flavonoids. The findings showed relevant changes, allowing winemakers to better select the ratio of fresh and dehydrated grapes in the function of the final desired wine.
Collapse
Affiliation(s)
- Onofrio Corona
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90128 Palermo, Italy; (D.P.); (P.B.); (M.S.); (L.C.)
- Correspondence:
| | - Diego Planeta
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90128 Palermo, Italy; (D.P.); (P.B.); (M.S.); (L.C.)
| | - Paola Bambina
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90128 Palermo, Italy; (D.P.); (P.B.); (M.S.); (L.C.)
| | - Simone Giacosa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, Italy; (S.G.); (M.A.P.); (F.T.); (S.R.S.); (V.G.); (L.R.)
| | - Maria Alessandra Paissoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, Italy; (S.G.); (M.A.P.); (F.T.); (S.R.S.); (V.G.); (L.R.)
| | - Margherita Squadrito
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90128 Palermo, Italy; (D.P.); (P.B.); (M.S.); (L.C.)
| | - Fabrizio Torchio
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, Italy; (S.G.); (M.A.P.); (F.T.); (S.R.S.); (V.G.); (L.R.)
| | - Susana Río Segade
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, Italy; (S.G.); (M.A.P.); (F.T.); (S.R.S.); (V.G.); (L.R.)
| | - Luciano Cinquanta
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, Università degli Studi di Palermo, 90128 Palermo, Italy; (D.P.); (P.B.); (M.S.); (L.C.)
| | - Vincenzo Gerbi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, Italy; (S.G.); (M.A.P.); (F.T.); (S.R.S.); (V.G.); (L.R.)
| | - Luca Rolle
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università degli Studi di Torino, 10095 Grugliasco, Italy; (S.G.); (M.A.P.); (F.T.); (S.R.S.); (V.G.); (L.R.)
| |
Collapse
|