1
|
Li B, Edick AM, Fox MK, Doelman J, Burgos SA, Cant JP. Effects of lysine and methionine on mRNA expression of candidate transcription factors by primary bovine mammary epithelial cells. PLoS One 2024; 19:e0305440. [PMID: 39705261 DOI: 10.1371/journal.pone.0305440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/22/2024] [Indexed: 12/22/2024] Open
Abstract
It has been established that essential amino acids (EAA) regulate protein synthesis in mammary epithelial cells by rapidly altering the phosphorylation state of translation factors. However, the long-term transcriptional response to EAA supply has been investigated much less. Eight transcription factors were selected as candidate mediators of EAA effects on mammary cell function via the amino acid response (ATF4, ATF6), mitogen-activated protein kinase (JUN, FOS, EGR1), and mechanistic target of rapamycin complex 1 (MYC, HIF1A, SREBF1). The objective was to determine if and when expression of these candidate genes was affected in primary cultures of bovine mammary epithelial cells more than 24 h after imposing an EAA deficiency, and to evaluate effects of EAA deficiency on protein synthesis, endoplasmic reticulum size, cell proliferation, and lipogenesis. Differentiated cells were cultured in 1 of 3 treatment media representing normal physiological concentrations of all amino acids (CTL), low lysine (LK), or low methionine (LM) for 24, 40, 48, or 60 h. Both LK and LM suppressed protein synthesis and activated ATF4 expression, indicating the classic amino acid response pathway had been triggered. However, there was no effect of LK or LM on endoplasmic reticulum size, possibly related to elevated ATF6 expression on LM. Expression of early response genes JUN, FOS, EGR1 and MYC was not elevated by EAA deficiency but LM decreased EGR1 expression. LM also increased expression of HIF1A. The EGR1 and HIF1A expression results are consistent with the decrease in cell proliferation rate observed. Variable responses in SREBF1 expression to LK and LM at different timepoints may have contributed to a lack of effect on lipogenesis rates. These findings indicate that EAA deficiency may inhibit mammary protein synthesis and cell proliferation through transcription factors.
Collapse
Affiliation(s)
- Boning Li
- Department of Animal Biosciences, University of Guelph, Ontario, Canada
| | - Ashlin M Edick
- Faculty of Agriculture and Environmental Science, Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Madison K Fox
- Department of Animal Biosciences, University of Guelph, Ontario, Canada
| | - John Doelman
- Trouw Nutrition R&D, Amersfoort, The Netherlands
| | - Sergio A Burgos
- Faculty of Agriculture and Environmental Science, Department of Animal Science, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - John P Cant
- Department of Animal Biosciences, University of Guelph, Ontario, Canada
| |
Collapse
|
2
|
Park SY, Song J, Choi DH, Park U, Cho H, Hong BH, Silberberg YR, Lee DY. Exploring metabolic effects of dipeptide feed media on CHO cell cultures by in silico model-guided flux analysis. Appl Microbiol Biotechnol 2024; 108:123. [PMID: 38229404 PMCID: PMC10791731 DOI: 10.1007/s00253-023-12997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/18/2024]
Abstract
There is a growing interest in perfusion or continuous processes to achieve higher productivity of biopharmaceuticals in mammalian cell culture, specifically Chinese hamster ovary (CHO) cells, towards advanced biomanufacturing. These intensified bioprocesses highly require concentrated feed media in order to counteract their dilution effects. However, designing such condensed media formulation poses several challenges, particularly regarding the stability and solubility of specific amino acids. To address the difficulty and complexity in relevant media development, the biopharmaceutical industry has recently suggested forming dipeptides by combining one from problematic amino acids with selected pairs to compensate for limitations. In this study, we combined one of the lead amino acids, L-tyrosine, which is known for its poor solubility in water due to its aromatic ring and hydroxyl group, with glycine as the partner, thus forming glycyl-L-tyrosine (GY) dipeptide. Subsequently, we investigated the utilization of GY dipeptide during fed-batch cultures of IgG-producing CHO cells, by changing its concentrations (0.125 × , 0.25 × , 0.5 × , 1.0 × , and 2.0 ×). Multivariate statistical analysis of culture profiles was then conducted to identify and correlate the most significant nutrients with the production, followed by in silico model-guided analysis to systematically evaluate their effects on the culture performance, and elucidate metabolic states and cellular behaviors. As such, it allowed us to explain how the cells can more efficiently utilize GY dipeptide with respect to the balance of cofactor regeneration and energy distribution for the required biomass and protein synthesis. For example, our analysis results uncovered specific amino acids (Asn and Gln) and the 0.5 × GY dipeptide in the feed medium synergistically alleviated the metabolic bottleneck, resulting in enhanced IgG titer and productivity. In the validation experiments, we tested and observed that lower levels of Asn and Gln led to decreased secretion of toxic metabolites, enhanced longevity, and elevated specific cell growth and titer. KEY POINTS: • Explored the optimal Tyr dipeptide for the enhanced CHO cell culture performance • Systematically analyzed effects of dipeptide media by model-guided approach • Uncovered synergistic metabolic utilization of amino acids with dipeptide.
Collapse
Affiliation(s)
- Seo-Young Park
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, South Korea
| | - Jinsung Song
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, South Korea
| | - Dong-Hyuk Choi
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, South Korea
| | - Uiseon Park
- Ajinomoto CELLiST Korea Co., Inc., 70 Songdogwahak-Ro, Yeonsu-Gu, Incheon, South Korea
| | - Hyeran Cho
- Ajinomoto CELLiST Korea Co., Inc., 70 Songdogwahak-Ro, Yeonsu-Gu, Incheon, South Korea
| | - Bee Hak Hong
- Ajinomoto CELLiST Korea Co., Inc., 70 Songdogwahak-Ro, Yeonsu-Gu, Incheon, South Korea
| | - Yaron R Silberberg
- Ajinomoto CELLiST Korea Co., Inc., 70 Songdogwahak-Ro, Yeonsu-Gu, Incheon, South Korea
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-Ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, South Korea.
| |
Collapse
|
3
|
Pang KT, Hong YF, Shozui F, Furomitsu S, Myint M, Ho YS, Silberberg YR, Walsh I, Lakshmanan M. Genome-Scale Modeling of CHO Cells Unravel the Critical Role of Asparagine in Cell Culture Feed Media. Biotechnol J 2024; 19:e202400072. [PMID: 39513375 DOI: 10.1002/biot.202400072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Amino acids, including asparagine, aspartate, glutamine, and glutamate, play important roles in purine and pyrimidine biosynthesis as well as serve as anaplerotic sources fueling the tricarboxylic acid (TCA) cycle for mitochondrial energy generation. Despite extensive studies on glutamine and glutamate in CHO cell cultures, the roles of asparagine and aspartate, especially in feed media, remain underexplored. In this study, we utilized a CHO genome scale model to first deeply characterize the intracellular metabolic states of CHO cells cultured in different combinations of basal and feed media to understand the traits of asparagine/aspartate-dependent and glutamate-dependent feeds. Subsequently, we identified the critical role of asparagine and aspartate in the feed media as anaplerotic sources and conducted in silico simulations to ascertain their optimal ratios to improve cell culture performance. Finally, based on the model simulations, we reformulated the feed media by tailoring the concentrations of asparagine and aspartate. Our experimental data reveal a CHO cell preference for asparagine compared with aspartate, and thus maintaining an optimal ratio of these amino acids is a key factor for achieving optimal CHO cell culture performance in biopharmaceutical production.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Yi Fan Hong
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Fumi Shozui
- Biopharma Media Group, Material Development Section, Material & Technology Solution Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki-shi, Japan
| | - Shunpei Furomitsu
- Biopharma Media Group, Material Development Section, Material & Technology Solution Labs, Research Institute for Bioscience Products & Fine Chemicals, Ajinomoto Co., Inc, Kawasaki-shi, Japan
| | - Matthew Myint
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Yaron R Silberberg
- CELList Solution Center (CSC), Songdo AT Center, Incheon, Republic of Korea
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Centros, Singapore
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- Centre for Integrative Biology and Systems medicinE (IBSE), Indian Institute of Technology Madras, Chennai, India
- Robert Bosch Centre for Data Science and AI (RBCDSAI), Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
4
|
Cheng J, Zhang Y, Tian Y, Cao L, Liu X, Miao S, Zhao L, Ye Q, Zhou Y, Tan WS. Development of a novel tyrosine-based selection system for generation of recombinant Chinese hamster ovary cells. J Biosci Bioeng 2024; 137:221-229. [PMID: 38220502 DOI: 10.1016/j.jbiosc.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/16/2024]
Abstract
Efficiently expanding Chinese hamster ovary (CHO) cells, which serve as the primary host cells for recombinant protein production, have gained increasing industrial significance. A significant hurdle in stable cell line development is the low efficiency of the target gene integrated into the host genome, implying the necessity for an effective screening and selection procedure to separate these stable cells. In this study, the genes of phenylalanine hydroxylase (PAH) and pterin 4 alpha carbinolamine dehydratase 1 (PCBD1), which are key enzymes in the tyrosine synthesis pathway, were utilized as selection markers and transduced into host cells together with the target genes. This research investigated the enrichment effect of this system and advanced further in understanding its benefits for cell line development and rCHO cell culture. A novel tyrosine-based selection system that only used PCBD1 as a selection marker was designed to promote the enrichment effect. Post 9 days of starvation, positive transductants in the cell pool approached 100%. Applied the novel tyrosine-based selection system, rCHO cells expressing E2 protein were generated and named CHO TS cells. It could continue to grow, and the yield of E2 achieved 95.95 mg/L in a tyrosine-free and chemically-defined (CD) medium. Herein, we introduced an alternative to antibiotic-based selections for the establishment of CHO cell lines and provided useful insights for the design and development of CD medium.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanmin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Tian
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Cao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuping Liu
- Shanghai BioEngine Sci-Tech Co., Ltd, Shanghai 201203, China
| | - Shiwei Miao
- Hangzhou Sumgen Biotech Co., Ltd., Hangzhou 310051, China
| | - Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yan Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Song Tan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Chitwood DG, Uy L, Fu W, Klaubert SR, Harcum SW, Saski CA. Dynamics of Amino Acid Metabolism, Gene Expression, and Circulomics in a Recombinant Chinese Hamster Ovary Cell Line Adapted to Moderate and High Levels of Extracellular Lactate. Genes (Basel) 2023; 14:1576. [PMID: 37628627 PMCID: PMC10454118 DOI: 10.3390/genes14081576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
The accumulation of metabolic wastes in cell cultures can diminish product quality, reduce productivity, and trigger apoptosis. The limitation or removal of unintended waste products from Chinese hamster ovary (CHO) cell cultures has been attempted through multiple process and genetic engineering avenues with varied levels of success. One study demonstrated a simple method to reduce lactate and ammonia production in CHO cells with adaptation to extracellular lactate; however, the mechanism behind adaptation was not certain. To address this profound gap, this study characterizes the phenotype of a recombinant CHO K-1 cell line that was gradually adapted to moderate and high levels of extracellular lactate and examines the genomic content and role of extrachromosomal circular DNA (eccDNA) and gene expression on the adaptation process. More than 500 genes were observed on eccDNAs. Notably, more than 1000 genes were observed to be differentially expressed at different levels of lactate adaptation, while only 137 genes were found to be differentially expressed between unadapted cells and cells adapted to grow in high levels of lactate; this suggests stochastic switching as a potential stress adaptation mechanism in CHO cells. Further, these data suggest alanine biosynthesis as a potential stress-mitigation mechanism for excess lactate in CHO cells.
Collapse
Affiliation(s)
- Dylan G. Chitwood
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (D.G.C.); (L.U.); (S.W.H.)
| | - Lisa Uy
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (D.G.C.); (L.U.); (S.W.H.)
| | - Wanfang Fu
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Stephanie R. Klaubert
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA;
| | - Sarah W. Harcum
- Department of Bioengineering, Clemson University, Clemson, SC 29634, USA; (D.G.C.); (L.U.); (S.W.H.)
- Department of Chemical & Biomolecular Engineering, Clemson University, Clemson, SC 29634, USA;
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| |
Collapse
|
6
|
Papež M, Jiménez Lancho V, Eisenhut P, Motheramgari K, Borth N. SLAM-seq reveals early transcriptomic response mechanisms upon glutamine deprivation in Chinese hamster ovary cells. Biotechnol Bioeng 2023; 120:970-986. [PMID: 36575109 DOI: 10.1002/bit.28320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Mammalian cells frequently encounter subtle perturbations during recombinant protein production. Identifying the genetic factors that govern the cellular stress response can facilitate targeted genetic engineering to obtain production cell lines that demonstrate a higher stress tolerance. To simulate nutrient stress, Chinese hamster ovary (CHO) cells were transferred into a glutamine(Q)-free medium and transcriptional dynamics using thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM-seq) along with standard RNA-seq of stressed and unstressed cells were investigated. The SLAM-seq method allows differentiation between actively transcribed, nascent mRNA, and total (previously present) mRNA in the sample, adding an additional, time-resolved layer to classic RNA-sequencing. The cells tackle amino acid (AA) limitation by inducing the integrated stress response (ISR) signaling pathway, reflected in Atf4 overexpression in the early hours post Q deprivation, leading to subsequent activation of its targets, Asns, Atf3, Ddit3, Eif4ebp1, Gpt2, Herpud1, Slc7a1, Slc7a11, Slc38a2, Trib3, and Vegfa. The GCN2-eIF2α-ATF4 pathway is confirmed by a significant halt in transcription of translation-related genes at 24 h post Q deprivation. The downregulation of lipid synthesis indicates the inhibition of the mTOR pathway, further confirmed by overexpression of Sesn2. Furthermore, SLAM-seq detects short-lived transcription factors, such as Egr1, that would have been missed in standard experimental designs with RNA-seq. Our results describe the successful establishment of SLAM-seq in CHO cells and therefore facilitate its future use in other scenarios where dynamic transcriptome profiling in CHO cells is essential.
Collapse
Affiliation(s)
- Maja Papež
- Austrian Centre of Industrial Biotechnology (acib GmbH), Graz, Austria
| | | | - Peter Eisenhut
- Austrian Centre of Industrial Biotechnology (acib GmbH), Graz, Austria
| | | | - Nicole Borth
- Austrian Centre of Industrial Biotechnology (acib GmbH), Graz, Austria
- University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| |
Collapse
|
7
|
Rapid Identification of Chinese Hamster Ovary Cell Apoptosis and Its Potential Role in Process Robustness Assessment. Bioengineering (Basel) 2023; 10:bioengineering10030357. [PMID: 36978748 PMCID: PMC10045091 DOI: 10.3390/bioengineering10030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/27/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Currently, the assessment of process robustness is often time-consuming, labor-intensive, and material-intensive using process characterization studies. Therefore, a simple and time-saving method is highly needed for the biopharmaceutical industry. Apoptosis is responsible for 80% of Chinese hamster ovary (CHO) cell deaths and affects the robustness of the cell culture process. This study’s results showed that a more robust process can support cells to tolerate apoptosis for a longer time, suggesting that the robustness of the process could be judged by the ability of cells to resist apoptosis. Therefore, it is necessary to establish a rapid method to detect the apoptosis of CHO cells. In trying to establish a new method for detecting apoptosis in large-scale cell cultures, glucose withdrawal was studied, and the results showed that CHO cells began to apoptose after glucose was consumed. Then, the concentration of extracellular potassium increased, and a prolongation of apoptosis time was observed. Further study results showed that the process with poor robustness was associated with a higher proportion of apoptosis and extracellular potassium concentration, so potassium could be used as a biochemical index of apoptosis. The strategy we present may be used to expedite the assessment of process robustness to obtain a robust cell culture process for other biologics.
Collapse
|
8
|
Rawat J, Bhambri A, Pandey U, Banerjee S, Pillai B, Gadgil M. Amino acid abundance and composition in cell culture medium affects trace metal tolerance and cholesterol synthesis. Biotechnol Prog 2023; 39:e3298. [PMID: 36053936 DOI: 10.1002/btpr.3298] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 11/05/2022]
Abstract
Amino acid compositions of cell culture media are empirically designed to enhance cell growth and productivity and vary both across media formulations and over the course of culture due to imbalance in supply and consumption. The interconnected nature of the amino acid transporters and metabolism suggests that changes in amino acid composition can affect cell physiology. In this study, we explore the effect of a step change in amino acid composition from a DMEM: F12-based medium to a formulation varying in relative abundances of all amino acids, evaluated at two amino acid concentrations (lean LAA vs. rich HAA). Cell growth was inhibited in LAA but not HAA. In addition to the expected effects on expression of the cell cycle, amino acid response and mTOR pathway genes in LAA, we observed an unanticipated effect on zinc uptake and efflux genes. This was accompanied by a lower tolerance to zinc supplementation in LAA but not in the other formulations. Histidine was sufficient but not necessary to prevent such zinc toxicity. Additionally, an unanticipated downregulation of genes in the cholesterol synthesis pathway was observed in HAA, accompanied by an increase in cellular cholesterol content, which may depend on the relative abundances of glutamine and other amino acids. This study shows that changes in the amino acid composition without any evident effect on growth may have profound effects on metabolism. Such analyses can help rationalize the designing of medium and feed formulations for bioprocess applications beyond replenishment of consumed components.
Collapse
Affiliation(s)
- Jyoti Rawat
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, India
| | - Aksheev Bhambri
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, India.,Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Ujjiti Pandey
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, India
| | - Sanchita Banerjee
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, India
| | - Beena Pillai
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
| | - Mugdha Gadgil
- Chemical Engineering and Process Development, CSIR-National Chemical Laboratory, Pune, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-National Chemical Laboratory Campus, Ghaziabad, India
| |
Collapse
|
9
|
Li ZM, Fan ZL, Wang XY, Wang TY. Factors Affecting the Expression of Recombinant Protein and Improvement Strategies in Chinese Hamster Ovary Cells. Front Bioeng Biotechnol 2022; 10:880155. [PMID: 35860329 PMCID: PMC9289362 DOI: 10.3389/fbioe.2022.880155] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/01/2022] [Indexed: 01/20/2023] Open
Abstract
Recombinant therapeutic proteins (RTPs) are important parts of biopharmaceuticals. Chinese hamster ovary cells (CHO) have become the main cell hosts for the production of most RTPs approved for marketing because of their high-density suspension growth characteristics, and similar human post-translational modification patterns et al. In recent years, many studies have been performed on CHO cell expression systems, and the yields and quality of recombinant protein expression have been greatly improved. However, the expression levels of some proteins are still low or even difficult-to express in CHO cells. It is urgent further to increase the yields and to express successfully the “difficult-to express” protein in CHO cells. The process of recombinant protein expression of is a complex, involving multiple steps such as transcription, translation, folding processing and secretion. In addition, the inherent characteristics of molecular will also affect the production of protein. Here, we reviewed the factors affecting the expression of recombinant protein and improvement strategies in CHO cells.
Collapse
Affiliation(s)
- Zheng-Mei Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Zhen-Lin Fan
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plain, Xinxiang Medical University, Xinxiang, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tian-Yun Wang,
| |
Collapse
|
10
|
Salim T, Chauhan G, Templeton N, Ling WLW. Using MVDA with stoichiometric balances to optimize amino acid concentrations in chemically defined CHO cell culture medium for improved culture performance. Biotechnol Bioeng 2021; 119:452-469. [PMID: 34811720 DOI: 10.1002/bit.27998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 11/07/2022]
Abstract
Chemically defined (CD) media are routinely used in the production of biologics in Chinese hamster ovary (CHO) cell culture and provide enhanced raw material control. Nutrient optimized CD media is an important path to increase cell growth and monoclonal antibody (mAb) productivity in recombinant CHO cell lines. However, nutrient optimization efforts for CD media typically rely on multifactorial and experimental design of experiment approaches or complex mathematical models of cellular metabolism or gene expression systems. Moreover, the majority of these efforts are aimed at amino acids since they constitute essential nutrients in CD media as they directly contribute to biomass and protein production. In this study, we demonstrate the utilization of multivariate data analytics (MVDA) coupled with amino acid stoichiometric balances (SBs) to increased cell growth and mAb productivity in efforts to support CD media development efforts. SBs measure the difference between theoretical demand of amino acids and the empirically measured fluxes to identify various catabolic or anabolic states of the cell. When coupled with MVDA, the statistical models were not only able to highlight key amino acids toward cell growth or productivity, but also provided direction on metabolic favorability of the amino acid. Experimental validation of our approach resulted in a 55% increase in total cell growth and about an 80% increase in total mAb productivity. Increased specific consumption of stoichiometrically balanced amino acids and decreased specific consumption of glucose was also observed in optimized CD media suggesting favorable consumption of desired nutrients and a potential for energy redistribution toward increased cellular growth and mAb productivity.
Collapse
Affiliation(s)
- Taha Salim
- Merck & Co. Inc., Kenilworth, New Jersey, USA
- Taha Salim, Regeneron, Tarrytown, New York, USA
| | | | | | - Wai Lam W Ling
- Merck & Co. Inc., Kenilworth, New Jersey, USA
- Wai L. W. Ling, Rocket Pharma, Cranbury, New Jersey, USA
| |
Collapse
|
11
|
Kirsch BJ, Bennun SV, Mendez A, Johnson AS, Wang H, Qiu H, Li N, Lawrence SM, Bak H, Betenbaugh MJ. Metabolic Analysis of the Asparagine and Glutamine Dynamics in an Industrial CHO Fed-Batch Process. Biotechnol Bioeng 2021; 119:807-819. [PMID: 34786689 PMCID: PMC9305493 DOI: 10.1002/bit.27993] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
Chinese hamster ovary (CHO) cell lines are grown in cultures with varying asparagine and glutamine concentrations, but further study is needed to characterize the interplay between these amino acids. By following 13C‐glucose, 13C‐glutamine, and 13C‐asparagine tracers using metabolic flux analysis (MFA), CHO cell metabolism was characterized in an industrially relevant fed‐batch process under glutamine supplemented and low glutamine conditions during early and late exponential growth. For both conditions MFA revealed glucose as the primary carbon source to the tricarboxylic acid (TCA) cycle followed by glutamine and asparagine as secondary sources. Early exponential phase CHO cells prefer glutamine over asparagine to support the TCA cycle under the glutamine supplemented condition, while asparagine was critical for TCA activity for the low glutamine condition. Overall TCA fluxes were similar for both conditions due to the trade‐offs associated with reliance on glutamine and/or asparagine. However, glutamine supplementation increased fluxes to alanine, lactate and enrichment of glutathione, N‐acetyl‐glucosamine and pyrimidine‐containing‐molecules. The late exponential phase exhibited reduced central carbon metabolism dominated by glucose, while lactate reincorporation and aspartate uptake were preferred over glutamine and asparagine. These 13C studies demonstrate that metabolic flux is process time dependent and can be modulated by varying feed composition.
Collapse
Affiliation(s)
- Brian James Kirsch
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Sandra V Bennun
- Regeneron Pharmaceuticals, Inc, Preclinical Manufacturing and Process Development Tarrytown, NY, 10591, USA
| | - Adam Mendez
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Amy S Johnson
- Regeneron Pharmaceuticals, Inc, Preclinical Manufacturing and Process Development Tarrytown, NY, 10591, USA
| | - Hongxia Wang
- Regeneron Pharmaceuticals, Inc, Analytical Chemistry Group, Tarrytown, NY, 10591, USA
| | - Haibo Qiu
- Regeneron Pharmaceuticals, Inc, Analytical Chemistry Group, Tarrytown, NY, 10591, USA
| | - Ning Li
- Regeneron Pharmaceuticals, Inc, Analytical Chemistry Group, Tarrytown, NY, 10591, USA
| | - Shawn M Lawrence
- Regeneron Pharmaceuticals, Inc, Preclinical Manufacturing and Process Development Tarrytown, NY, 10591, USA
| | - Hanne Bak
- Regeneron Pharmaceuticals, Inc, Preclinical Manufacturing and Process Development Tarrytown, NY, 10591, USA
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
12
|
Komuczki D, Dutra G, Gstöttner C, Dominguez‐Vega E, Jungbauer A, Satzer P. Media on-demand: Continuous reconstitution of a chemically defined media directly from solids. Biotechnol Bioeng 2021; 118:3382-3394. [PMID: 33656168 PMCID: PMC8451748 DOI: 10.1002/bit.27738] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/26/2021] [Accepted: 02/19/2021] [Indexed: 12/15/2022]
Abstract
Chemically defined media are reconstituted batchwise and stored in hold tanks until use. To avoid large hold tanks and batchwise production of media, we developed continuous on-demand reconstitutions directly from solids consisting of a hopper and a screw conveyor capable of feeding dry powdered media with the required precision ±5% at low dosing rates of 0.171 g min-1 . A commercially available dry powdered cell culture medium was continuously fed over a duration of 12 h into a mixer which was connected to a UV-cell for monitoring and the media were compared to a batchwise production. A comparable amino acid, carbohydrate, and osmolality profile to a batchwise reconstitution could be obtained. Cell cultivation showed comparable performance of batch and continuous reconstitution for two CHO cell lines producing the antibodies adalimumab and trastuzumab on a small and benchtop scale. In-depth analysis of the produced antibodies showed the same glycosylation pattern, other posttranslational profiles such as methionine oxidation and deamidation compared to batchwise reconstitution. Therefore, we conclude a continuous reconstitution of the medium results in the same quality of the product. A continuous on-demand media reconstitution will impact the supply chain and significantly reduce the floor space necessary for preparation and storage.
Collapse
Affiliation(s)
- Daniel Komuczki
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
| | - Gregory Dutra
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
| | - Christoph Gstöttner
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenNetherlands
| | - Elena Dominguez‐Vega
- Center for Proteomics and MetabolomicsLeiden University Medical CenterLeidenNetherlands
| | - Alois Jungbauer
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| | - Peter Satzer
- Department of Biotechnology, Institute of Bioprocess Science and EngineeringUniversity of Natural Resources and Life SciencesViennaAustria
- Austrian Centre of Industrial BiotechnologyViennaAustria
| |
Collapse
|
13
|
Schulze M, Lemke J, Pollard D, Wijffels RH, Matuszczyk J, Martens DE. Automation of high CHO cell density seed intensification via online control of the cell specific perfusion rate and its impact on the N-stage inoculum quality. J Biotechnol 2021; 335:65-75. [PMID: 34090946 DOI: 10.1016/j.jbiotec.2021.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/12/2022]
Abstract
Current CHO cell production processes require an optimized space-time-yield. Process intensification can support achieving this by enhancing the productivity and improving facility utilization. The use of perfusion at the last stage of the seed train (N-1) for high cell density inoculation of the fed-batch N-stage production culture is a relatively new approach with few industry applicable examples. Within this work, the impact of the cell-specific perfusion rate (CSPR) of the N-1 perfusion and the relevance of its control for the quality of generated inoculation cells was evaluated using an automated perfusion rate (PR) control based on online biomass measurements. Precise correlations (R² = 0.99) between permittivity and viable cell counts were found up to the high densities of 100⋅106 c·mL-1. Cells from N-1 perfusion were cultivated at a high and low CSPR with 50 and 20 pL·(c·d)-1, respectively. Lowered cell growth and an increased apoptotic reaction was found as a consequence of the latter due to nutrient limitations and reduced uptake rates. Subsequently, batch cultivations (N-stage) from the different N-1 sources were inoculated to evaluate the physiological state of the inoculum. Successive responses resulting from the respective N-1 condition were uncovered. While cell growth and productivity of approaches inoculated from high CSPR and a conventional seed were comparable, low CSPR inoculation suffered significantly in terms of reduced initial cell growth and impaired viability. This study underlines the importance to determine the CSPR for the design and implementation of an N-1 perfusion process in order to achieve the desired performance at the crucial production stage.
Collapse
Affiliation(s)
- Markus Schulze
- Corporate Research, Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Göttingen, Germany; Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Johannes Lemke
- Corporate Research, Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Göttingen, Germany
| | - David Pollard
- Corporate Research, Sartorius Stedim North America, 6 Tide Street, Boston MA, 02210, United States
| | - Rene H Wijffels
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands; Biosciences and Aquaculture, Nord University, N-8049 Bodø, Norway
| | - Jens Matuszczyk
- Corporate Research, Sartorius Stedim Biotech GmbH, August-Spindler-Str. 11, 37079, Göttingen, Germany
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
14
|
Schinn SM, Morrison C, Wei W, Zhang L, Lewis NE. A genome-scale metabolic network model and machine learning predict amino acid concentrations in Chinese Hamster Ovary cell cultures. Biotechnol Bioeng 2021; 118:2118-2123. [PMID: 33580712 DOI: 10.1002/bit.27714] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/25/2020] [Accepted: 02/03/2021] [Indexed: 01/11/2023]
Abstract
The control of nutrient availability is critical to large-scale manufacturing of biotherapeutics. However, the quantification of proteinogenic amino acids is time-consuming and thus is difficult to implement for real-time in situ bioprocess control. Genome-scale metabolic models describe the metabolic conversion from media nutrients to proliferation and recombinant protein production, and therefore are a promising platform for in silico monitoring and prediction of amino acid concentrations. This potential has not been realized due to unresolved challenges: (1) the models assume an optimal and highly efficient metabolism, and therefore tend to underestimate amino acid consumption, and (2) the models assume a steady state, and therefore have a short forecast range. We address these challenges by integrating machine learning with the metabolic models. Through this we demonstrate accurate and time-course dependent prediction of individual amino acid concentration in culture medium throughout the production process. Thus, these models can be deployed to control nutrient feeding to avoid premature nutrient depletion or provide early predictions of failed bioreactor runs.
Collapse
Affiliation(s)
- Song-Min Schinn
- Department of Pediatrics, University of California, San Diego, California, USA
| | - Carly Morrison
- Pfizer, Biotherapeutics Pharmaceutical Sciences, Andover, Massachusetts, USA
| | | | - Lin Zhang
- Pfizer, Biotherapeutics Pharmaceutical Sciences, Andover, Massachusetts, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, California, USA.,Department of Bioengineering, University of California, San Diego, California, USA.,Novo Nordisk Foundation Center for Biosustainability at UC San Diego, San Diego, California, USA
| |
Collapse
|
15
|
Zhang W, Liu X, Tang H, Zhang X, Zhou Y, Fan L, Wang H, Tan WS, Zhao L. Investigation into the impact of tyrosine on the product formation and quality attributes of mAbs in rCHO cell cultures. Appl Microbiol Biotechnol 2020; 104:6953-6966. [PMID: 32577803 DOI: 10.1007/s00253-020-10744-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/04/2020] [Accepted: 06/15/2020] [Indexed: 11/26/2022]
Abstract
Tyrosine (Tyr) is crucial to the maintenance of the monoclonal antibody (mAb) titers and quality attributes in fed-batch cultures of recombinant Chinese hamster ovary (rCHO) cells. However, the relation between tyrosine and these aspects is not yet fully defined. In order to further elucidate such a relation, two groups of fed-batch experiments with high tyrosine (H-T) or low tyrosine (L-T) additions producing an IgG1 monoclonal antibody against CD20 were implemented to investigate the intracellular and extracellular effects of tyrosine on the culture performance. It was found that the scarcity of tyrosine led to the distinctive reduction in both viable cell density and antibody specific production rate, hence the sharply reduced titer, possibly related to the impaired translation efficiency caused by the substrate limitation of tyrosine. In addition, alterations to the critical quality attributes were detected in the L-T group, compared to those in the H-T condition. Notable decrease in the contents of intact antibody was found under the L-T condition because of the elevated reductive level in the supernatant. Moreover, the aggregate content in the L-T condition was also reduced, probably resulting from the accumulation of extracellular cystine. In particular, the lysine variant content noticeably increased with tyrosine limitation owing to the downregulation of two carboxypeptidases, i.e., CpB and CpH. Overall, understanding the role of tyrosine in these aspects is fundamental to the increase of product titers and control of critical quality attributes in the monoclonal antibody production of rCHO cell fed-batch cultures. KEY POINTS: • Tyrosine is essential in the maintenance of product titers and the control of product qualities in high cell density cultivations in rCHO cell. • This study revealed the bottleneck of decreased qmAbupon the deficiency of tyrosine. • The impact of tyrosine on the critical product qualities and the underlying mechanisms were also thoroughly assessed.
Collapse
Affiliation(s)
- Weijian Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Xuping Liu
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Hongping Tang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Xinran Zhang
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Yanan Zhou
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Li Fan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Haibin Wang
- Zhejiang Hisun Pharmaceutical Co., Ltd., Fuyang, Hangzhou, 311404, Zhejiang, China
| | - Wen-Song Tan
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China
| | - Liang Zhao
- The State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, P. O. Box 309#, Shanghai, 200237, China.
| |
Collapse
|
16
|
Horvat J, Narat M, Spadiut O. The effect of amino acid supplementation in an industrial Chinese Hamster Ovary process. Biotechnol Prog 2020; 36:e3001. [PMID: 32274904 DOI: 10.1002/btpr.3001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/31/2020] [Accepted: 04/03/2020] [Indexed: 11/06/2022]
Abstract
The main goal in biosimilar development is to increase Chinese Hamster Ovary (CHO) viability and productivity while maintaining product quality. Despite media and feed optimization during process development, depletion of amino acids still occurs. The aim of the work was to optimize an existing industrial fed batch process by preventing shortage of amino acids and to gather knowledge about CHO metabolism. Several process outputs were evaluated such as cell metabolism, cell viability, monoclonal antibodies (mAbs) production, and product quality. First step was to develop and supplement an enriched feed containing depleted amino acids. Abundance of serine and glucose increased lactate production resulting in low viability and low productivity. In the next step, we developed an amino acid feed without serine to avoid the metabolic boost. Supplemented amino acids improved cell viability by 9%; however, mAb production did not increase significantly. In the final step, we limited glucose concentration (<5.55 mmol/L) in the cell culture to avoid the metabolic boost while supplementing an amino acid feed including serine. Data analysis showed that we were able to (a) replace depleted amino acids and avoid metabolic boost, (b) increase viability by 12%, (c) enhance mAb production by 0.5 g/L (total by approximately 10 g), and (d) extend the overall process time of an already developed bioprocess.
Collapse
Affiliation(s)
- Jernej Horvat
- Biopharmaceuticals, Lek d.d., Novartis, Mengeš, Mengeš, Slovenia
| | - Mojca Narat
- Department of Animal Sciences, Biotechnical Faculty, Domžale, Slovenia
| | - Oliver Spadiut
- Bioprocess Engineering, Integrated Bioprocess Development, TU Wien, Vienna, Austria
| |
Collapse
|
17
|
Ghaffari N, Jardon MA, Krahn N, Butler M, Kennard M, Turner RFB, Gopaluni B, Piret JM. Effects of cysteine, asparagine, or glutamine limitations in Chinese hamster ovary cell batch and fed‐batch cultures. Biotechnol Prog 2020; 36:e2946. [DOI: 10.1002/btpr.2946] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Navid Ghaffari
- Michael Smith LaboratoriesThe University of British Columbia Vancouver British Columbia Canada
- Department of Chemical and Biological EngineeringThe University of British Columbia Vancouver British Columbia Canada
| | - Mario A. Jardon
- Michael Smith Genome Sciences CentreBC Cancer Research Centre Vancouver British Columbia Canada
| | - Natalie Krahn
- Department of MicrobiologyUniversity of Manitoba Winnipeg Manitoba Canada
| | - Michael Butler
- Department of MicrobiologyUniversity of Manitoba Winnipeg Manitoba Canada
- National Institute for Bioprocessing Research and Training Dublin Ireland
| | - Malcolm Kennard
- Michael Smith LaboratoriesThe University of British Columbia Vancouver British Columbia Canada
| | - Robin F. B. Turner
- Michael Smith LaboratoriesThe University of British Columbia Vancouver British Columbia Canada
- Department of Electrical and Computer EngineeringThe University of British Columbia Vancouver British Columbia Canada
- Department of ChemistryThe University of British Columbia Vancouver British Columbia Canada
| | - Bhushan Gopaluni
- Department of Chemical and Biological EngineeringThe University of British Columbia Vancouver British Columbia Canada
| | - James M. Piret
- Michael Smith LaboratoriesThe University of British Columbia Vancouver British Columbia Canada
- Department of Chemical and Biological EngineeringThe University of British Columbia Vancouver British Columbia Canada
| |
Collapse
|
18
|
Yamano N, Omasa T. EGCG improves recombinant protein productivity in Chinese hamster ovary cell cultures via cell proliferation control. Cytotechnology 2018; 70:1697-1706. [PMID: 30069612 PMCID: PMC6269352 DOI: 10.1007/s10616-018-0243-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/24/2018] [Indexed: 10/28/2022] Open
Abstract
Chinese hamster ovary cell lines are good manufacturing practice-certified host cells and are widely used in the field of biotechnology to produce therapeutic antibodies. Recombinant protein productivity in cells is strongly associated with cell growth. To control cell proliferation, many approaches have previously been tested including: genetic engineering, chemical additives such as cell cycle inhibitors, and temperature shift of the culture. To be widely adopted in the biopharmaceutical industry, the culture methods should be simple, uniform and safe. To this end, we examined the use a natural compound to improve the production capacity. In this study, we focused on the antioxidants, catechin polyphenols, which are found in green tea, for cell proliferation control strategies. (-)-Epigallocatechin-3-gallate (EGCG), the major catechin that induces G0/G1 cell cycle arrest, was investigated for its effect on recombinant protein production. Adding EGCG to the cell culture media resulted in slower cellular growth and longer cell longevity, which improved the specific productivity and total yield of recombinant IgG1 in batch cultures by almost 50% for an extra 2 or 3 days of culture. A lower L-glutamine consumption rate was observed in cells cultured in EGCG-containing media, which may be suggesting that there was less stress in the culture environment. Additionally, EGCG did not affect the N-glycan quality of IgG1. Our results indicated that adding EGCG only on the first day of the culture enhanced the specific productivity and total amount of recombinant protein production in batch cultures. This approach may prove to be useful for biopharmaceutical production.
Collapse
Affiliation(s)
- Noriko Yamano
- Manufacturing Technology Association of Biologics, 7-1-49, Minatojima-Minamimachi, Chuo-ku, Kobe, Hyogo, 650-0047, Japan.
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Takeshi Omasa
- Graduate School of Engineering, Osaka University, 2-1, Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
19
|
Geoghegan D, Arnall C, Hatton D, Noble-Longster J, Sellick C, Senussi T, James DC. Control of amino acid transport into Chinese hamster ovary cells. Biotechnol Bioeng 2018; 115:2908-2929. [PMID: 29987891 DOI: 10.1002/bit.26794] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/06/2018] [Accepted: 07/04/2018] [Indexed: 12/21/2022]
Abstract
Amino acid transporters (AATs) represent a key interface between the cell and its environment, critical for all cellular processes: Energy generation, redox control, and synthesis of cell and product biomass. However, very little is known about the activity of different functional classes of AATs in Chinese hamster ovary (CHO) cells, how they support cell growth and productivity, and the potential for engineering their activity and/or the composition of amino acids in growth media to improve CHO cell performance in vitro. In this study, we have comparatively characterized AAT expression in untransfected and monoclonal antibody (MAb)-producing CHO cells using transcriptome analysis by RNA-seq, and mechanistically dissected AAT function using a variety of transporter-specific chemical inhibitors, comparing their effect on cell proliferation, recombinant protein production, and amino acid transport. Of a possible 56 mammalian plasma membrane AATs, 16 AAT messenger RNAs (mRNAs) were relatively abundant across all CHO cell populations. Of these, a subset of nine AAT mRNAs were more abundant in CHO cells engineered to produce a recombinant MAb. Together, upregulated AATs provide additional supply of specific amino acids overrepresented in MAb biomass compared to CHO host cell biomass, enable transport of synthetic substrates for glutathione synthesis, facilitate transport of essential amino acids to maintain active protein synthesis, and provide amino acid substrates for coordinated antiport systems to maintain supplies of proteinogenic and essential amino acids.
Collapse
Affiliation(s)
- Darren Geoghegan
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | - Claire Arnall
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | - Joanne Noble-Longster
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| | | | | | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, UK
| |
Collapse
|
20
|
Pan X, Alsayyari AA, Dalm C, Hageman JA, Wijffels RH, Martens DE. Transcriptome Analysis of CHO Cell Size Increase During a Fed-Batch Process. Biotechnol J 2018; 14:e1800156. [PMID: 30024106 DOI: 10.1002/biot.201800156] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/11/2018] [Indexed: 12/14/2022]
Abstract
In a Chinese Hamster Ovary (CHO) cell fed-batch process, arrest of cell proliferation and an almost threefold increase in cell size occurred, which is associated with an increase in cell-specific productivity. In this study, transcriptome analysis is performed to identify the molecular mechanisms associated with this. Cell cycle analysis reveals that the cells are arrested mainly in the G0 /G1 phase. The cell cycle arrest is associated with significant up-regulation of cyclin-dependent kinases inhibitors (CDKNs) and down-regulation of cyclin-dependent kinases (CDKs) and cyclins. During the cell size increase phase, the gene expression of the upstream pathways of mechanistic target of rapamycin (mTOR), which is related to the extracellular growth factor, cytokine, and amino acid conditions, shows a strongly synchronized pattern to promote the mTOR activity. The downstream genes of mTOR also show a synchronized pattern to stimulate protein translation and lipid synthesis. The results demonstrate that cell cycle inhibition and stimulated mTOR activity at the transcriptome level are related to CHO cell size increase. The cell size increase is related to the extracellular nutrient conditions through a number of cascade pathways, indicating that by rational design of media and feeds, CHO cell size can be manipulated during culture processes, which may further improve cell growth and specific productivity.
Collapse
Affiliation(s)
- Xiao Pan
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Abdulaziz A Alsayyari
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ciska Dalm
- Upstream Process Development, Synthon Biopharmaceuticals BV, PO Box 7071, 6503 GN, Nijmegen, The Netherlands
| | - Jos A Hageman
- Biometris, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - René H Wijffels
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands.,Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University and Research, PO Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
21
|
Chen C, Le H, Follstad B, Goudar CT. A Comparative Transcriptomics Workflow for Analyzing Microarray Data From CHO Cell Cultures. Biotechnol J 2017; 13:e1700228. [PMID: 29215210 DOI: 10.1002/biot.201700228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/16/2017] [Indexed: 01/15/2023]
Abstract
Microarray-based comparative transcriptomics analysis is a powerful tool to understand therapeutic protein producing mammalian cell lines at the gene expression level. However, an integrated analysis workflow specifically designed for end-to-end analysis of microarray data for CHO cells, the most prevalent host for commercial recombinant protein production, is lacking. To address this gap, an automated data analysis workflow in R that leverages public domain analysis modules is developed to analyze microarray based gene expression data. In addition to testing the global transcriptome differences of CHO cells at different conditions, the workflow identifies differentially expressed genes and pathways with intuitive visualizations as the outputs. The utility of this automated workflow is demonstrated by comparing the transcriptomic profiles of recombinant protein expressing CHO cells with and without a temperature shift. Statistically significant differential expression at the gene, pathway, and global transcriptome levels are identified and visualized. An automated workflow like the one developed in this study will enable rapid translation of CHO culture microarray data into biologically relevant information for mechanism-driven cell line optimization and bioprocess development.
Collapse
Affiliation(s)
- Chun Chen
- Drug Substance Technologies, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Huong Le
- Drug Substance Technologies, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Brian Follstad
- Drug Substance Technologies, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | - Chetan T Goudar
- Drug Substance Technologies, Process Development, Amgen Inc., 1 Amgen Center Drive, Thousand Oaks, CA 91320, USA
| |
Collapse
|
22
|
Ulonska S, Kroll P, Fricke J, Clemens C, Voges R, Müller MM, Herwig C. Workflow for Target-Oriented Parametrization of an Enhanced Mechanistic Cell Culture Model. Biotechnol J 2017; 13:e1700395. [DOI: 10.1002/biot.201700395] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 10/19/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Sophia Ulonska
- Institute of Chemical, Environmental and Biological Engineering; TU Wien 1060 Wien Austria
| | - Paul Kroll
- Institute of Chemical, Environmental and Biological Engineering; TU Wien 1060 Wien Austria
- CD Laboratory on Mechanistic and Physiological Methods for Improved Bioprocesses; TU Wien 1060 Wien Austria
| | - Jens Fricke
- Institute of Chemical, Environmental and Biological Engineering; TU Wien 1060 Wien Austria
- CD Laboratory on Mechanistic and Physiological Methods for Improved Bioprocesses; TU Wien 1060 Wien Austria
| | | | - Raphael Voges
- Boehringer Ingelheim Pharma GmbH & Co. KG; 88400 Biberach Germany
| | - Markus M. Müller
- Boehringer Ingelheim Pharma GmbH & Co. KG; 88400 Biberach Germany
| | - Christoph Herwig
- Institute of Chemical, Environmental and Biological Engineering; TU Wien 1060 Wien Austria
- CD Laboratory on Mechanistic and Physiological Methods for Improved Bioprocesses; TU Wien 1060 Wien Austria
| |
Collapse
|
23
|
Zhao L, Fu HY, Raju R, Vishwanathan N, Hu WS. Unveiling gene trait relationship by cross-platform meta-analysis on Chinese hamster ovary cell transcriptome. Biotechnol Bioeng 2017; 114:1583-1592. [PMID: 28218403 DOI: 10.1002/bit.26272] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 01/17/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
In the past few years, transcriptome analysis has been increasingly employed to better understand the physiology of Chinese hamster ovary (CHO) cells at a global level. As more transcriptome data accumulated, meta-analysis on data sets collected from various sources can potentially provide better insights on common properties of those cells. Here, we performed meta-analysis on transcriptome data of different CHO cell lines obtained using NimbleGen or Affymetrix microarray platforms. Hierarchical clustering, non-negative matrix factorization (NMF) analysis, and principal component analysis (PCA) accordantly showed the samples were clustered into two groups: one consists of adherent cells in serum-containing medium, and the other suspension cells in serum-free medium. Genes that were differentially expressed between the two clusters were enriched in a few functional classes by Database for Annotation, Visualization, and Integrated Discovery (DAVID) of which many were common with the enriched gene sets identified by Gene Set Enrichment Analysis (GSEA), including extracellular matrix (ECM) receptor interaction, cell adhesion molecules (CAMs), and lipid related metabolism pathways. Despite the heterogeneous sources of the cell samples, the adherent and suspension growth characteristics and serum-supplementation appear to be a dominant feature in the transcriptome. The results demonstrated that meta-analysis of transcriptome could uncover features in combined data sets that individual data set might not reveal. As transcriptome data sets accumulate over time, meta-analysis will become even more revealing. Biotechnol. Bioeng. 2017;114: 1583-1592. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hsu-Yuan Fu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Ravali Raju
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Nandita Vishwanathan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
24
|
Pan X, Streefland M, Dalm C, Wijffels RH, Martens DE. Selection of chemically defined media for CHO cell fed-batch culture processes. Cytotechnology 2017; 69:39-56. [PMID: 27900626 PMCID: PMC5264622 DOI: 10.1007/s10616-016-0036-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/26/2016] [Indexed: 01/17/2023] Open
Abstract
Two CHO cell clones derived from the same parental CHOBC® cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures. Higher amino acid feeding did not always lead to higher mAb production. The two clones showed differences in cell physiology, metabolism and optimal medium-feed combinations. During the phase transitions of all cultures, cell metabolism showed a shift represented by lower specific consumption and production rates, except for the specific glucose consumption rate in cultures fed by Actifeed A/B. The BC-P clone fed by Actifeed A/B showed a threefold cell volume increase and an increase of the specific consumption rate of glucose in the stationary phase. Since feeding was based on glucose this resulted in accumulation of amino acids for this feed, while this did not occur for the poorer feed (EFA/B). The same feed also led to an increase of cell size for the BC-G clone, but to a lesser extent.
Collapse
Affiliation(s)
- Xiao Pan
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Mathieu Streefland
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ciska Dalm
- Synthon Biopharmaceuticals BV, Upstream Process Development, PO Box 7071, 6503 GN, Nijmegen, The Netherlands
| | - René H Wijffels
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
- Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
25
|
Pan X, Streefland M, Dalm C, Wijffels RH, Martens DE. Selection of chemically defined media for CHO cell fed-batch culture processes. Cytotechnology 2016. [PMID: 27900626 DOI: 10.1007/s10616‐016‐0036‐5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Two CHO cell clones derived from the same parental CHOBC® cell line and producing the same monoclonal antibody (BC-G, a low producing clone; BC-P, a high producing clone) were tested in four basal media in all possible combinations with three feeds (=12 conditions) in fed-batch cultures. Higher amino acid feeding did not always lead to higher mAb production. The two clones showed differences in cell physiology, metabolism and optimal medium-feed combinations. During the phase transitions of all cultures, cell metabolism showed a shift represented by lower specific consumption and production rates, except for the specific glucose consumption rate in cultures fed by Actifeed A/B. The BC-P clone fed by Actifeed A/B showed a threefold cell volume increase and an increase of the specific consumption rate of glucose in the stationary phase. Since feeding was based on glucose this resulted in accumulation of amino acids for this feed, while this did not occur for the poorer feed (EFA/B). The same feed also led to an increase of cell size for the BC-G clone, but to a lesser extent.
Collapse
Affiliation(s)
- Xiao Pan
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands.
| | - Mathieu Streefland
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| | - Ciska Dalm
- Synthon Biopharmaceuticals BV, Upstream Process Development, PO Box 7071, 6503 GN, Nijmegen, The Netherlands
| | - René H Wijffels
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands.,Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Dirk E Martens
- Bioprocess Engineering, Wageningen University, PO Box 16, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
26
|
Salazar A, Keusgen M, von Hagen J. Amino acids in the cultivation of mammalian cells. Amino Acids 2016; 48:1161-71. [PMID: 26832172 PMCID: PMC4833841 DOI: 10.1007/s00726-016-2181-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 01/18/2016] [Indexed: 11/29/2022]
Abstract
Amino acids are crucial for the cultivation of mammalian cells. This importance of amino acids was realized soon after the development of the first cell lines, and a solution of a mixture of amino acids has been supplied to cultured cells ever since. The importance of amino acids is further pronounced in chemically defined mammalian cell culture media, making the consideration of their biological and chemical properties necessary. Amino acids concentrations have been traditionally adjusted to their cellular consumption rates. However, since changes in the metabolic equilibrium of amino acids can be caused by changes in extracellular concentrations, metabolomics in conjunction with flux balance analysis is being used in the development of culture media. The study of amino acid transporters is also gaining importance since they control the intracellular concentrations of these molecules and are influenced by conditions in cell culture media. A better understanding of the solubility, stability, dissolution kinetics, and interactions of these molecules is needed for an exploitation of these properties in the development of dry powdered chemically defined media for mammalian cells. Due to the complexity of these mixtures however, this has proven to be challenging. Studying amino acids in mammalian cell culture media will help provide a better understanding of how mammalian cells in culture interact with their environment. It would also provide insight into the chemical behavior of these molecules in solutions of complex mixtures, which is important in the understanding of the contribution of individual amino acids to protein structure.
Collapse
Affiliation(s)
- Andrew Salazar
- Institute of Pharmaceutical Chemistry, University of Marburg, 35032, Marburg, Germany.
- Biopharm Materials & Technologies R&D, Merck Lifescience, 64293, Darmstadt, Germany.
| | - Michael Keusgen
- Institute of Pharmaceutical Chemistry, University of Marburg, 35032, Marburg, Germany
| | - Jörg von Hagen
- Biopharm Materials & Technologies R&D, Merck Lifescience, 64293, Darmstadt, Germany
| |
Collapse
|
27
|
|
28
|
Gene expression measurements normalized to cell number reveal large scale differences due to cell size changes, transcriptional amplification and transcriptional repression in CHO cells. J Biotechnol 2014; 189:58-69. [PMID: 25194670 DOI: 10.1016/j.jbiotec.2014.08.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 01/20/2023]
Abstract
Conventional approaches to differential gene expression comparisons assume equal cellular RNA content among experimental conditions. We demonstrate that this assumption should not be universally applied because total RNA yield from a set number of cells varies among experimental treatments of the same Chinese Hamster Ovary (CHO) cell line and among different CHO cell lines expressing recombinant proteins. Conventional normalization strategies mask these differences in cellular RNA content and, consequently, skew biological interpretation of differential expression results. On the contrary, normalization to synthetic spike-in RNA standards added proportional to cell numbers reveals these differences and allows detection of global transcriptional amplification/repression. We apply this normalization method to assess differential gene expression in cell lines of different sizes, as well as cells treated with a cell cycle inhibitor (CCI), an mTOR inhibitor (mTORI), or subjected to high osmolarity conditions. CCI treatment of CHO cells results in a cellular volume increase and global transcriptional amplification, while mTORI treatment causes global transcriptional repression without affecting cellular volume. Similarly to CCI treatment, high osmolarity increases cell size, total RNA content and antibody expression. Furthermore, we show the importance of spike-in normalization for studies involving multiple CHO cell lines and advocate normalization to spike-in controls prior to correlating gene expression to specific productivity (qP). Overall, our data support the need for cell number specific spike-in controls for all gene expression studies where cellular RNA content differs among experimental conditions.
Collapse
|
29
|
Du Z, Treiber D, McCarter JD, Fomina-Yadlin D, Saleem RA, McCoy RE, Zhang Y, Tharmalingam T, Leith M, Follstad BD, Dell B, Grisim B, Zupke C, Heath C, Morris AE, Reddy P. Use of a small molecule cell cycle inhibitor to control cell growth and improve specific productivity and product quality of recombinant proteins in CHO cell cultures. Biotechnol Bioeng 2014; 112:141-55. [PMID: 25042542 PMCID: PMC4282109 DOI: 10.1002/bit.25332] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 06/26/2014] [Accepted: 06/30/2014] [Indexed: 12/19/2022]
Abstract
The continued need to improve therapeutic recombinant protein productivity has led to ongoing assessment of appropriate strategies in the biopharmaceutical industry to establish robust processes with optimized critical variables, that is, viable cell density (VCD) and specific productivity (product per cell, qP). Even though high VCD is a positive factor for titer, uncontrolled proliferation beyond a certain cell mass is also undesirable. To enable efficient process development to achieve consistent and predictable growth arrest while maintaining VCD, as well as improving qP, without negative impacts on product quality from clone to clone, we identified an approach that directly targets the cell cycle G1-checkpoint by selectively inhibiting the function of cyclin dependent kinases (CDK) 4/6 with a small molecule compound. Results from studies on multiple recombinant Chinese hamster ovary (CHO) cell lines demonstrate that the selective inhibitor can mediate a complete and sustained G0/G1 arrest without impacting G2/M phase. Cell proliferation is consistently and rapidly controlled in all recombinant cell lines at one concentration of this inhibitor throughout the production processes with specific productivities increased up to 110 pg/cell/day. Additionally, the product quality attributes of the mAb, with regard to high molecular weight (HMW) and glycan profile, are not negatively impacted. In fact, high mannose is decreased after treatment, which is in contrast to other established growth control methods such as reducing culture temperature. Microarray analysis showed major differences in expression of regulatory genes of the glycosylation and cell cycle signaling pathways between these different growth control methods. Overall, our observations showed that cell cycle arrest by directly targeting CDK4/6 using selective inhibitor compound can be utilized consistently and rapidly to optimize process parameters, such as cell growth, qP, and glycosylation profile in recombinant antibody production cultures.
Collapse
Affiliation(s)
- Zhimei Du
- Cell Sciences and Technology, Amgen Inc., 1201 Amgen Court West, Seattle, Washington.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Duarte TM, Carinhas N, Barreiro LC, Carrondo MJT, Alves PM, Teixeira AP. Metabolic responses of CHO cells to limitation of key amino acids. Biotechnol Bioeng 2014; 111:2095-106. [PMID: 24771076 DOI: 10.1002/bit.25266] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/25/2014] [Accepted: 04/14/2014] [Indexed: 12/14/2022]
Abstract
Chinese hamster ovary (CHO) cells are the predominant host for production of therapeutic glycoproteins. In particular, the glutamine-synthetase (GS) expression system has been widely used in the biopharmaceutical industry for efficient selection of high-yielding clones. However, much remains unclear on how metabolic wiring affects culture performance. For instance, asparagine and serine have been observed to be the largest nitrogen sources taken up by GS-CHO cells, but their roles in biosynthesis and energy generation are poorly understood. In this work, a comprehensive profiling of extracellular metabolites coupled with an analysis of intracellular label distributions after 1-(13) C-pyruvate supplementation were used to trace metabolic rearrangements in different scenarios of asparagine and serine availability. The absence of asparagine in the medium caused growth arrest, and was associated with a dramatic increase in pyruvate uptake, a higher ratio of pyruvate carboxylation to dehydrogenation and an inability for de novo asparagine synthesis. The release of ammonia and amino acids such as aspartate, glutamate, and alanine were deeply impacted. This confirms asparagine to be essential for these GS-CHO cells as the main source of intracellular nitrogen as well as having an important anaplerotic role in TCA cycle activity. In turn, serine unavailability also negatively affected culture growth while triggering its de novo synthesis, confirmed by label incorporation coming from pyruvate, and reduced glycine and formate secretion congruent with its role as a precursor in the metabolism of one-carbon units. Overall, these results unfold important insights into GS-CHO cells metabolism that lay a clearer basis for fine-tuning bioprocess optimization.
Collapse
Affiliation(s)
- Tiago M Duarte
- IBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|