1
|
Mandral J, Roques S, Dumez JN, Giraudeau P, Farjon J. Evaluation of pure shift NMR methods for the analysis of complex metabolite mixtures with a benchtop NMR spectrometer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:3171-3182. [PMID: 40202430 DOI: 10.1039/d5ay00006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Compact, low-cost and cryogen-free benchtop nuclear magnetic resonance (NMR) spectrometers have become an attractive option for analysing complex biological mixtures. The implementation of spectral simplification methods such as pure shift spectroscopy is particularly important to circumvent the ubiquitous peak overlaps that occur due to the limited resolution of compact instruments. Pure shift (PS) strategies consist of eliminating the signal multiplicity induced by the homonuclear J-couplings observed in 1D 1H NMR spectra, thereby simplifying the spectral information. This paper provides an analytical evaluation of optimised pure shift spectroscopy pulse sequences for the analysis of metabolite mixtures on a recent benchtop NMR spectrometer. Six PS pulse sequences were carefully evaluated, based on three families of PS techniques: 1D projections of 2D J-resolved spectra, Zangger-Sterk (ZS) and PSYCHE. The methods were evaluated in terms of resolution, sensitivity, spectral purity and repeatability. Among the strategies we explored, 1D projections of 2D J-resolved double-echo (J-RES DE) spectra, combined with an improved processing strategy, appeared to offer the best compromise based on these analytical criteria. The potential of this method was illustrated on a complex sample from the food industry and enabled key metabolites to be detected with improved resolution and sensitivity, showing that PS NMR could be used for a rapid (22 minutes) profiling of complex metabolite mixtures on a benchtop NMR spectrometer.
Collapse
Affiliation(s)
- Joris Mandral
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes, F-44000, France.
| | - Simon Roques
- INRA, Univ Pau & Pays Adour, E2S UPPA, UMR 1419, Nutrition Métabolisme, Aquaculture, Saint Pée sur Nivelle, 64310, France
| | | | | | - Jonathan Farjon
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes, F-44000, France.
| |
Collapse
|
2
|
Mahler L, Tasdemir E, Nickisch‐Hartfiel A, Mayer C, Jaeger M. Monitoring of the Biotechnological Production of Dihydroxyacetone Using a Low-Field 1H NMR Spectrometer. Biotechnol Bioeng 2025; 122:561-569. [PMID: 39658966 PMCID: PMC11808440 DOI: 10.1002/bit.28901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/19/2024] [Accepted: 11/24/2024] [Indexed: 12/12/2024]
Abstract
The concept of sustainable production necessitates the utilization of waste and by-products as raw materials, the implementation of biotechnological processes, and the introduction of automated real-time monitoring for efficient use of resources. One example is the biocatalyzed conversion of the reusable by-product glycerin by acetic acid bacteria to dihydroxyacetone (DHA), which is of great importance to the cosmetic industry. The application of compact spectrometers enables the rapid measurement of samples while simultaneously reducing the consumption of resources and energy. Yet, this approach requires comprehensive data preprocessing and, on occasion, multivariate data analysis. For the process monitoring of the production of DHA, a low-field 1H nuclear magnetic resonance (NMR) spectrometer was implemented in on-line mode. Small-volume samples were taken from a bypass and transferred to the spectrometer by an autosampler. Complete analysis within minutes allowed real-time process control. To this purpose, reliable automated spectral preprocessing preceded the creation of a univariate model. The model enabled the acquisition of process knowledge from chemical kinetics and facilitated the tracking of both substrate and product concentrations, requiring independent calibration. As a second multivariate approach, principal component analysis was utilized to monitor the process in a semi-quantitative manner without the necessity for calibration. The results of this study are beneficial for real-time monitoring applications with the objective of exerting control over the process in question while minimizing expenditure.
Collapse
Affiliation(s)
- Lukas Mahler
- Department of Physical ChemistryUniversity Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
- Department of Chemistry and ILOCNiederrhein University of Applied SciencesKrefeldNorth Rhine‐WestphaliaGermany
| | - Ebru Tasdemir
- Department of Chemistry and ILOCNiederrhein University of Applied SciencesKrefeldNorth Rhine‐WestphaliaGermany
| | - Anna Nickisch‐Hartfiel
- Department of Chemistry and ILOCNiederrhein University of Applied SciencesKrefeldNorth Rhine‐WestphaliaGermany
| | - Christian Mayer
- Department of Physical ChemistryUniversity Duisburg‐EssenEssenNorth Rhine‐WestphaliaGermany
| | - Martin Jaeger
- Department of Chemistry and ILOCNiederrhein University of Applied SciencesKrefeldNorth Rhine‐WestphaliaGermany
| |
Collapse
|
3
|
Phuong J, Salgado B, Heiß J, Steimers E, Nickolaus P, Keller L, Fischer U, von Harbou E, Holland DJ, Jirasek F, Hasse H, Münnemann K. Real-time monitoring of fermentation processes in wine production with benchtop 1H NMR spectroscopy. Food Res Int 2025; 203:115741. [PMID: 40022312 DOI: 10.1016/j.foodres.2025.115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 03/03/2025]
Abstract
The flexibility, affordability and ease of use of benchtop 1H NMR spectroscopy makes it potentially very interesting for assessing the quality of wine types and monitoring the fermentation process. However, the low spectral resolution of benchtop 1H NMR spectroscopy and the complexity of the mixtures hinder the direct quantification of important wine parameters and, thus, prevent its widespread use as an analytical tool in wineries. We show here that these problems can be solved using model-based data processing. In a first step, the accuracy of the new approach was evaluated by analyzing gravimetrically prepared test mixtures representing different fermentation stages. Good agreement was found, demonstrating the reliability of the new method. In a second step, benchtop 1H NMR spectroscopy combined with model-based data processing was used for the real-time monitoring of real fermentation media. Wine fermentation processes with different feed strategies (batch and fed-batch) were investigated and compared and the evolution of important wine constituents as well as effects caused by the different feeding strategies were monitored, demonstrating the applicability of the new approach also in demanding applications. This opens the way to using benchtop NMR spectroscopy for optimization and decision making in wine production.
Collapse
Affiliation(s)
- Johnnie Phuong
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany; Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663, Kaiserslautern, Germany
| | - Billy Salgado
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany; Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663, Kaiserslautern, Germany
| | - Jana Heiß
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany
| | - Ellen Steimers
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany
| | - Patrick Nickolaus
- Institute of Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Lena Keller
- Weincampus Neustadt, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany; Department of Applied Logistics and Polymer Sciences, University of Applied Sciences Kaiserslautern, Carl-Schurz-Sraße 10-16, 66953, Pirmasens, Germany
| | - Ulrich Fischer
- Institute of Viticulture and Oenology, DLR Rheinpfalz, Breitenweg 71, 67435 Neustadt an der Weinstraße, Germany
| | - Erik von Harbou
- Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663, Kaiserslautern, Germany; Laboratory of Reaction and Fluid Process Engineering (LRF), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 44, 67663, Kaiserslautern, Germany
| | - Daniel J Holland
- Department of Chemical and Process Engineering, University of Canterbury, Private Bag 4800, 8140 Christchurch, New Zealand
| | - Fabian Jirasek
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany; Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663, Kaiserslautern, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany; Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663, Kaiserslautern, Germany
| | - Kerstin Münnemann
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Erwin-Schrödinger-Straße 44, 67663 Kaiserslautern, Germany; Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Gottlieb-Daimler-Straße 76, 67663, Kaiserslautern, Germany.
| |
Collapse
|
4
|
Gaensbauer H, Park DH, Bevacqua A, Han J. Contact-Free Online Monitoring of Bioreactor Cell Cultures with Magnetic Resonance Relaxometry. Anal Chem 2024; 96:19466-19472. [PMID: 39602347 DOI: 10.1021/acs.analchem.4c04042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Frequent, low-latency measurements of bioreactor culture growth are critical for achieving maximum culture efficiency and productivity. Typical cell density and viability measurements are made by manually removing a sample from the culture, but this approach is both slow and unsuitable for small culture volumes, which cannot support frequent destructive sampling. In this work, automated magnetic resonance relaxometry measurements of a sealed bioreactor system are used to estimate the cell density and provide qualitative information about the culture in near real-time. The system detects variations in cell density in minutes, enabling rapid intervention that would be impossible with the once-daily measurements taken by a traditional sampling-based culture analysis system.
Collapse
Affiliation(s)
- Hans Gaensbauer
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Critical Analytics for Manufacturing of Personalized Medicine IRG, Singapore-MIT Alliance for Research and Technology (SMART), 138602, Singapore
- Anti-Microbial Resistance IRG, Singapore-MIT Alliance for Research and Technology (SMART), 138602, Singapore
| | - Do Hyun Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander Bevacqua
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jongyoon Han
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Critical Analytics for Manufacturing of Personalized Medicine IRG, Singapore-MIT Alliance for Research and Technology (SMART), 138602, Singapore
- Anti-Microbial Resistance IRG, Singapore-MIT Alliance for Research and Technology (SMART), 138602, Singapore
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Forsberg J, Rasmussen CT, van den Berg FWJ, Engelsen SB, Aru V. Fermentation Analytical Technology (FAT): Monitoring industrial E. coli fermentations using absolute quantitative 1H NMR spectroscopy. Anal Chim Acta 2024; 1311:342722. [PMID: 38816156 DOI: 10.1016/j.aca.2024.342722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND To perform fast, reproducible, and absolute quantitative measurements in an automated manner has become of paramount importance when monitoring industrial processes, including fermentations. Due to its numerous advantages - including its inherent quantitative nature - Proton Nuclear Magnetic Resonance (1H NMR) spectroscopy provides an ideal tool for the time-resolved monitoring of fermentations. However, analytical conditions, including non-automated sample preparation and long relaxation times (T1) of some metabolites, can significantly lengthen the experimental time and make implementation in an industrial set up unfeasible. RESULTS We present a high throughput method based on Standard Operating Procedures (SOPs) and 1H NMR, which lays the foundation for what we call Fermentation Analytical Technology (FAT). Our method was developed for the accurate absolute quantification of metabolites produced during Escherichia coli industrial fermentations. The method includes: (1) a stopped flow system for non-invasive sample collection followed by sample quenching, (2) automatic robot-assisted sample preparation, (3) fast 1H NMR measurements, (4) metabolites quantification using multivariate curve resolution (MCR), and (5) metabolites absolute quantitation using a novel correction factor (k) to compensate for the short recycle delay (D1) employed in the 1H NMR measurements. The quantification performance was tested using two sample types: buffer solutions of chemical standards and real fermentation samples. Five metabolites - glucose, acetate, alanine, phenylalanine and betaine - were quantified. Absolute quantitation ranged between 0.64 and 3.40 mM in pure buffer, and 0.71-7.76 mM in real samples. SIGNIFICANCE The proposed method is generic and can be straight forward implemented to other types of fermentations, such as lactic acid, ethanol and acetic acid fermentations. It provides a high throughput automated solution for monitoring fermentation processes and for quality control through absolute quantification of key metabolites in fermentation broth. It can be easily implemented in an at-line industrial setting, facilitating the optimization of the manufacturing process towards higher yields and more efficient and sustainable use of resources.
Collapse
Affiliation(s)
- Jakob Forsberg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark; Novo Nordisk A/S, Hagedornsvej 1, 2820, Gentofte, Denmark.
| | | | - Frans W J van den Berg
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Søren Balling Engelsen
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Violetta Aru
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark.
| |
Collapse
|
6
|
Downey K, Bermel W, Soong R, Lysak DH, Ronda K, Steiner K, Costa PM, Wolff WW, Decker V, Busse F, Goerling B, Haber A, Simpson MJ, Simpson AJ. Low-field, not low quality: 1D simplification, selective detection, and heteronuclear 2D experiments for improving low-field NMR spectroscopy of environmental and biological samples. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:345-360. [PMID: 37811556 DOI: 10.1002/mrc.5401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
Understanding environmental change is challenging and requires molecular-level tools to explain the physicochemical phenomena behind complex processes. Nuclear magnetic resonance (NMR) spectroscopy is a key tool that provides information on both molecular structures and interactions but is underutilized in environmental research because standard "high-field" NMR is financially and physically inaccessible for many and can be overwhelming to those outside of disciplines that routinely use NMR. "Low-field" NMR is an accessible alternative but has reduced sensitivity and increased spectral overlap, which is especially problematic for natural, heterogeneous samples. Therefore, the goal of this study is to investigate and apply innovative experiments that could minimize these challenges and improve low-field NMR analysis of environmental and biological samples. Spectral simplification (JRES, PSYCHE, singlet-only, multiple quantum filters), selective detection (GEMSTONE, DREAMTIME), and heteronuclear (reverse and CH3/CH2/CH-only HSQCs) NMR experiments are tested on samples of increasing complexity (amino acids, spruce resin, and intact water fleas) at-high field (500 MHz) and at low-field (80 MHz). A novel experiment called Doubly Selective HSQC is also introduced, wherein 1H signals are selectively detected based on the 1H and 13C chemical shifts of 1H-13C J-coupled pairs. The most promising approaches identified are the selective techniques (namely for monitoring), and the reverse and CH3-only HSQCs. Findings ultimately demonstrate that low-field NMR holds great potential for biological and environmental research. The multitude of NMR experiments available makes NMR tailorable to nearly any research need, and low-field NMR is therefore anticipated to become a valuable and widely used analytical tool moving forward.
Collapse
Affiliation(s)
- Katelyn Downey
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | - Ronald Soong
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Daniel H Lysak
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Kiera Ronda
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Katrina Steiner
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Peter M Costa
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - William W Wolff
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | | | | | | | | | - Myrna J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Andre J Simpson
- Environmental NMR Centre, University of Toronto Scarborough, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Phuong J, Romero Z, Hasse H, Münnemann K. Polarization transfer methods for quantitative analysis of flowing mixtures with benchtop 13C NMR spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024; 62:398-411. [PMID: 38114253 DOI: 10.1002/mrc.5417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 12/21/2023]
Abstract
Benchtop NMR spectroscopy is attractive for process monitoring; however, there are still drawbacks that often hamper its use, namely, the comparatively low spectral resolution in 1H NMR, as well as the low signal intensities and problems with the premagnetization of flowing samples in 13C NMR. We show here that all these problems can be overcome by using 1H-13C polarization transfer methods. Two ternary test mixtures (one with overlapping peaks in the 1H NMR spectrum and one with well-separated peaks, which was used as a reference) were studied with a 1 T benchtop NMR spectrometer using the polarization transfer sequence PENDANT (polarization enhancement that is nurtured during attached nucleus testing). The mixtures were analyzed quantitatively in stationary as well as in flow experiments by PENDANT enhanced 13C NMR experiments, and the results were compared with those from the gravimetric sample preparation and from standard 1H and 13C NMR spectroscopy. Furthermore, as a proxy for a process monitoring application, continuous dilution experiments were carried out, and the composition of the mixture was monitored in a flow setup by 13C NMR benchtop spectroscopy with PENDANT. The results demonstrate the high potential of polarization transfer methods for applications in quantitative process analysis with benchtop NMR instruments, in particular with flowing samples.
Collapse
Affiliation(s)
- Johnnie Phuong
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern, Germany
- Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Zeno Romero
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern, Germany
- Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern, Germany
- Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Kaiserslautern, Germany
| | - Kerstin Münnemann
- Laboratory of Engineering Thermodynamics (LTD), RPTU Kaiserslautern, Kaiserslautern, Germany
- Laboratory of Advanced Spin Engineering - Magnetic Resonance (LASE-MR), RPTU Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
8
|
Li S, Du D, Wang J, Wei Z. Application progress of intelligent flavor sensing system in the production process of fermented foods based on the flavor properties. Crit Rev Food Sci Nutr 2022; 64:3764-3793. [PMID: 36259959 DOI: 10.1080/10408398.2022.2134982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fermented foods are sensitive to the production conditions because of microbial and enzymatic activities, which requires intelligent flavor sensing system (IFSS) to monitor and optimize the production process based on the flavor properties. As the simulation system of human olfaction and gustation, IFSS has been widely used in the field of food with the characteristics of nondestructive, pollution-free, and real-time detection. This paper reviews the application of IFSS in the control of fermentation, ripening, and shelf life, and the potential in the identification of quality differences and flavor-producing microbes in fermented foods. The survey found that electronic nose (tongue) is suitable to monitor fermentation process and identify food authenticity in real time based on the changes of flavor profile. Gas chromatography-ion mobility spectrometry and nuclear magnetic resonance technology can be used to analyze the flavor metabolism of fermented foods at various production stages and explore the correlation between flavor substances and microorganisms.
Collapse
Affiliation(s)
- Siying Li
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Dongdong Du
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Jun Wang
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| | - Zhenbo Wei
- Department of Biosystems Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Theillet FX, Luchinat E. In-cell NMR: Why and how? PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2022; 132-133:1-112. [PMID: 36496255 DOI: 10.1016/j.pnmrs.2022.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 04/19/2022] [Accepted: 04/27/2022] [Indexed: 06/17/2023]
Abstract
NMR spectroscopy has been applied to cells and tissues analysis since its beginnings, as early as 1950. We have attempted to gather here in a didactic fashion the broad diversity of data and ideas that emerged from NMR investigations on living cells. Covering a large proportion of the periodic table, NMR spectroscopy permits scrutiny of a great variety of atomic nuclei in all living organisms non-invasively. It has thus provided quantitative information on cellular atoms and their chemical environment, dynamics, or interactions. We will show that NMR studies have generated valuable knowledge on a vast array of cellular molecules and events, from water, salts, metabolites, cell walls, proteins, nucleic acids, drugs and drug targets, to pH, redox equilibria and chemical reactions. The characterization of such a multitude of objects at the atomic scale has thus shaped our mental representation of cellular life at multiple levels, together with major techniques like mass-spectrometry or microscopies. NMR studies on cells has accompanied the developments of MRI and metabolomics, and various subfields have flourished, coined with appealing names: fluxomics, foodomics, MRI and MRS (i.e. imaging and localized spectroscopy of living tissues, respectively), whole-cell NMR, on-cell ligand-based NMR, systems NMR, cellular structural biology, in-cell NMR… All these have not grown separately, but rather by reinforcing each other like a braided trunk. Hence, we try here to provide an analytical account of a large ensemble of intricately linked approaches, whose integration has been and will be key to their success. We present extensive overviews, firstly on the various types of information provided by NMR in a cellular environment (the "why", oriented towards a broad readership), and secondly on the employed NMR techniques and setups (the "how", where we discuss the past, current and future methods). Each subsection is constructed as a historical anthology, showing how the intrinsic properties of NMR spectroscopy and its developments structured the accessible knowledge on cellular phenomena. Using this systematic approach, we sought i) to make this review accessible to the broadest audience and ii) to highlight some early techniques that may find renewed interest. Finally, we present a brief discussion on what may be potential and desirable developments in the context of integrative studies in biology.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France.
| | - Enrico Luchinat
- Dipartimento di Scienze e Tecnologie Agro-Alimentari, Alma Mater Studiorum - Università di Bologna, Piazza Goidanich 60, 47521 Cesena, Italy; CERM - Magnetic Resonance Center, and Neurofarba Department, Università degli Studi di Firenze, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
10
|
Cortada-Garcia J, Haggarty J, Moses T, Daly R, Alison Arnold S, Burgess K. On-line untargeted metabolomics monitoring of an E. coli succinate fermentation process. Biotechnol Bioeng 2022; 119:2757-2769. [PMID: 35798686 PMCID: PMC9541951 DOI: 10.1002/bit.28173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/19/2022] [Indexed: 11/08/2022]
Abstract
The real‐time monitoring of metabolites (RTMet) is instrumental for the industrial production of biobased fermentation products. This study shows the first application of untargeted on‐line metabolomics for the monitoring of undiluted fermentation broth samples taken automatically from a 5 L bioreactor every 5 min via flow injection mass spectrometry. The travel time from the bioreactor to the mass spectrometer was 30 s. Using mass spectrometry allows, on the one hand, the direct monitoring of targeted key process compounds of interest and, on the other hand, provides information on hundreds of additional untargeted compounds without requiring previous calibration data. In this study, this technology was applied in an Escherichia coli succinate fermentation process and 886 different m/z signals were monitored, including key process compounds (glucose, succinate, and pyruvate), potential biomarkers of biomass formation such as (R)‐2,3‐dihydroxy‐isovalerate and (R)‐2,3‐dihydroxy‐3‐methylpentanoate and compounds from the pentose phosphate pathway and nucleotide metabolism, among others. The main advantage of the RTMet technology is that it allows the monitoring of hundreds of signals without the requirement of developing partial least squares regression models, making it a perfect tool for bioprocess monitoring and for testing many different strains and process conditions for bioprocess development.
Collapse
Affiliation(s)
- Joan Cortada-Garcia
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom
| | - Jennifer Haggarty
- Institute of Infection, Immunity and Inflammation, Glasgow Polyomics, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - Tessa Moses
- EdinOmics, SynthSys - Centre for Synthetic and Systems Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Rónán Daly
- Institute of Infection, Immunity and Inflammation, Glasgow Polyomics, University of Glasgow, Glasgow, G61 1QH, United Kingdom
| | - S Alison Arnold
- Ingenza Ltd., Roslin Innovation Centre, Roslin, EH25 9RG, United Kingdom
| | - Karl Burgess
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH8 9AB, United Kingdom
| |
Collapse
|
11
|
Gerzon G, Sheng Y, Kirkitadze M. Process Analytical Technologies - Advances in bioprocess integration and future perspectives. J Pharm Biomed Anal 2022; 207:114379. [PMID: 34607168 DOI: 10.1016/j.jpba.2021.114379] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/12/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Process Analytical Technology (PAT) instruments include analyzers capable of measuring physical and chemical process parameters and key attributes with the goal of optimizing process controls. PAT in the form of a probe or sensor is designed to integrate within the pharmaceutical manufacturing line and is coupled with computing equipment to perform chemometric modeling for result interpretation and multilayer statistical control of processes. PAT solutions are intended for understanding bioprocesses with a goal to control quality at all stages of product manufacturing and achieve quality by design (QbD). The goal of PAT implementation is to promote real-time release of products to decrease the cycle time and cost of production. This review focuses on the applications of PAT solutions at different stages of the manufacturing process for vaccine production, the advantages, challenges at present state, and the vision of the future development of biopharmaceutical industries.
Collapse
Affiliation(s)
- Gabriella Gerzon
- Department of Biology, Faculty of Science, York University, Toronto, Canada; Analytical Sciences, Sanofi Pasteur, Toronto, Canada
| | - Yi Sheng
- Department of Biology, Faculty of Science, York University, Toronto, Canada
| | | |
Collapse
|
12
|
Abstract
Benchtop nuclear magnetic resonance (NMR) spectroscopy uses small permanent magnets to generate magnetic fields and therefore offers the advantages of operational simplicity and reasonable cost, presenting a viable alternative to high-field NMR spectroscopy. In particular, the use of benchtop NMR spectroscopy for rapid in-field analysis, e.g., for quality control or forensic science purposes, has attracted considerable attention. As benchtop NMR spectrometers are sufficiently compact to be operated in a fume hood, they can be efficiently used for real-time reaction and process monitoring. This review introduces the recent applications of benchtop NMR spectroscopy in diverse fields, including food science, pharmaceuticals, process and reaction monitoring, metabolomics, and polymer materials.
Collapse
|
13
|
Morschett H, Tenhaef N, Hemmerich J, Herbst L, Spiertz M, Dogan D, Wiechert W, Noack S, Oldiges M. Robotic integration enables autonomous operation of laboratory scale stirred tank bioreactors with model-driven process analysis. Biotechnol Bioeng 2021; 118:2759-2769. [PMID: 33871051 DOI: 10.1002/bit.27795] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/14/2021] [Accepted: 04/10/2021] [Indexed: 12/19/2022]
Abstract
Given its geometric similarity to large-scale production plants and the excellent possibilities for precise process control and monitoring, the classic stirred tank bioreactor (STR) still represents the gold standard for bioprocess development at a laboratory scale. However, compared to microbioreactor technologies, bioreactors often suffer from a low degree of process automation and deriving key performance indicators (KPIs) such as specific rates or yields often requires manual sampling and sample processing. A widely used parallelized STR setup was automated by connecting it to a liquid handling system and controlling it with a custom-made process control system. This allowed for the setup of a flexible modular platform enabling autonomous operation of the bioreactors without any operator present. Multiple unit operations like automated inoculation, sampling, sample processing and analysis, and decision making, for example for automated induction of protein production were implemented to achieve such functionality. The data gained during application studies was used for fitting of bioprocess models to derive relevant KPIs being in good agreement with literature. By combining the capabilities of STRs with the flexibility of liquid handling systems, this platform technology can be applied to a multitude of different bioprocess development pipelines at laboratory scale.
Collapse
Affiliation(s)
- Holger Morschett
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Niklas Tenhaef
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Johannes Hemmerich
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Laura Herbst
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Markus Spiertz
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Deniz Dogan
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Wolfgang Wiechert
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Computational Systems Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marco Oldiges
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.,Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
14
|
Perspectives for the application of Ustilaginaceae as biotech cell factories. Essays Biochem 2021; 65:365-379. [PMID: 33860800 DOI: 10.1042/ebc20200141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/05/2023]
Abstract
Basidiomycetes fungi of the family Ustilaginaceae are mainly known as plant pathogens causing smut disease on crops and grasses. However, they are also natural producers of value-added substances like glycolipids, organic acids, polyols, and harbor secretory enzymes with promising hydrolytic activities. These attributes recently evoked increasing interest in their biotechnological exploitation. The corn smut fungus Ustilago maydis is the best characterized member of the Ustilaginaceae. After decades of research in the fields of genetics and plant pathology, a broad method portfolio and detailed knowledge on its biology and biochemistry are available. As a consequence, U. maydis has developed into a versatile model organism not only for fundamental research but also for applied biotechnology. Novel genetic, synthetic biology, and process development approaches have been implemented to engineer yields and product specificity as well as for the expansion of the repertoire of produced substances. Furthermore, research on U. maydis also substantially promoted the interest in other members of the Ustilaginaceae, for which the available tools can be adapted. Here, we review the latest developments in applied research on Ustilaginaceae towards their establishment as future biotech cell factories.
Collapse
|
15
|
Chitrakar B, Zhang M, Bhandari B. Improvement strategies of food supply chain through novel food processing technologies during COVID-19 pandemic. Food Control 2021; 125:108010. [PMID: 33679006 PMCID: PMC7914018 DOI: 10.1016/j.foodcont.2021.108010] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/05/2021] [Accepted: 02/21/2021] [Indexed: 12/24/2022]
Abstract
Coronavirus disease-19 (COVID-19) is a contagious disease caused by a novel corona virus (SARS-CoV-2). No medical intervention has yet succeeded, though vaccine success is expected soon. However, it may take months or years to reach the vaccine to the whole population of the world. Therefore, the technological preparedness is worth to discuss for the smooth running of food processing activities. We have explained the impact of the COVID-19 pandemic on the food supply chain (FSC) and then discussed the technological interventions to overcome these impacts. The novel and smart technologies during food processing to minimize human-to-human and human-to-food contact were compiled. The potential virus-decontamination technologies were also discussed. Finally, we concluded that these technologies would make food processing activities smarter, which would ultimately help to run the FSC smoothly during COVID-19 pandemic.
Collapse
Affiliation(s)
- Bimal Chitrakar
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 214122, Wuxi, Jiangsu, China.,International Joint Laboratory on Food Safety, Jiangnan University, 214122, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
16
|
Saib A, Bara-Estaún A, Harper OJ, Berry DBG, Thomlinson IA, Broomfield-Tagg R, Lowe JP, Lyall CL, Hintermair U. Engineering aspects of FlowNMR spectroscopy setups for online analysis of solution-phase processes. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00217a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this article we review some fundamental engineering concepts and evaluate components and materials required to assemble and operate safe and effective FlowNMR setups that reliably generate meaningful results.
Collapse
Affiliation(s)
- Asad Saib
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Alejandro Bara-Estaún
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Owen J. Harper
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Centre for Sustainable & Circular Technologies, University of Bath, Bath BA2 7AY, UK
| | - Daniel B. G. Berry
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Isabel A. Thomlinson
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Centre for Sustainable & Circular Technologies, University of Bath, Bath BA2 7AY, UK
| | - Rachael Broomfield-Tagg
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - John P. Lowe
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Catherine L. Lyall
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Centre for Sustainable & Circular Technologies, University of Bath, Bath BA2 7AY, UK
| |
Collapse
|
17
|
van Beek TA. Low-field benchtop NMR spectroscopy: status and prospects in natural product analysis †. PHYTOCHEMICAL ANALYSIS : PCA 2021; 32:24-37. [PMID: 31989704 DOI: 10.1002/pca.2921] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/14/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
INTRODUCTION Since a couple of years, low-field (LF) nuclear magnetic resonance (NMR) spectrometers (40-100 MHz) have re-entered the market. They are used for various purposes including analyses of natural products. Similar to high-field instruments (300-1200 MHz), modern LF instruments can measure multiple nuclei and record two-dimensional (2D) NMR spectra. OBJECTIVE To review the commercial availability as well as applications, advantages, limitations, and prospects of LF-NMR spectrometers for the purpose of natural products analysis. METHOD Commercial LF instruments were compared. A literature search was performed for articles using and discussing modern LF-NMR. Next, the articles relevant to natural products were read and summarised. RESULTS Seventy articles were reviewed. Most appeared in 2018 and 2019. Low costs and ease of operation are most often mentioned as reasons for using LF-NMR. CONCLUSION As the spectral resolution of LF instruments is limited, they are not used for structure elucidation of new natural products but rather applied for quality control (QC), forensics, food and health research, process control and teaching. Chemometric data handling is valuable. LF-NMR is a rapidly developing niche and new instruments keep being introduced.
Collapse
Affiliation(s)
- Teris André van Beek
- Laboratory of Organic Chemistry, Wageningen University, Stippeneng 4, WE Wageningen, The Netherlands
| |
Collapse
|
18
|
A Nuclear Magnetic Resonance (NMR) Platform for Real-Time Metabolic Monitoring of Bioprocesses. Molecules 2020; 25:molecules25204675. [PMID: 33066296 PMCID: PMC7587382 DOI: 10.3390/molecules25204675] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 01/05/2023] Open
Abstract
We present a Nuclear Magnetic Resonance (NMR) compatible platform for the automated real-time monitoring of biochemical reactions using a flow shuttling configuration. This platform requires a working sample volume of ∼11 mL and it can circulate samples with a flow rate of 28 mL/min, which makes it suitable to be used for real-time monitoring of biochemical reactions. Another advantage of the proposed low-cost platform is the high spectral resolution. As a proof of concept, we acquire 1H NMR spectra of waste orange peel, bioprocessed using Trichoderma reesei fungus, and demonstrate the real-time measurement capability of the platform. The measurement is performed over more than 60 h, with a spectrum acquired every 7 min, such that over 510 data points are collected without user intervention. The designed system offers high resolution, automation, low user intervention, and, therefore, time-efficient measurement per sample.
Collapse
|
19
|
Gouilleux B, Farjon J, Giraudeau P. Gradient-based pulse sequences for benchtop NMR spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 319:106810. [PMID: 33036709 DOI: 10.1016/j.jmr.2020.106810] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Benchtop NMR spectroscopy has been on the rise for the last decade, by bringing high-resolution NMR in environments that are not easily compatible with high-field NMR. Benchtop spectrometers are accessible, low cost and show an impressive performance in terms of sensitivity with respect to the relatively low associated magnetic field (40-100 MHz). However, their application is limited by the strong and ubiquitous peak overlaps arising from the complex mixtures which are often targeted, often characterized by a great diversity of concentrations and by strong signals from non-deuterated solvents. Such limitations can be addressed by pulse sequences making clever use of magnetic field gradient pulses, capable of performing efficient coherence selection or encoding chemical shift or diffusion information. Gradients pulses are well-known ingredients of high-field pulse sequence recipes, but were only recently made available on benchtop spectrometers, thanks to the introduction of gradient coils in 2015. This article reviews the recent methodological advances making use of gradient pulses on benchtop spectrometers and the applications stemming from these developments. Particular focus is made on solvent suppression schemes, diffusion-encoded, and spatially-encoded experiments, while discussing both methodological advances and subsequent applications. We eventually discuss the exciting development and application perspectives that result from such advances.
Collapse
Affiliation(s)
- Boris Gouilleux
- Université Paris-Saclay, ICMMO, UMR CNRS 8182, RMN en Milieu Orienté, France
| | - Jonathan Farjon
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France
| | - Patrick Giraudeau
- Université de Nantes, CNRS, CEISAM UMR 6230, F-44000 Nantes, France.
| |
Collapse
|
20
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero‐Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - James Eills
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - John W. Blanchard
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
| | - Antoine Garcon
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Román Picazo‐Frutos
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance Microimaging International Tomography Center 630090 Novosibirsk Russia
- Novosibirsk State University 630090 Novosibirsk Russia
| | - Dmitry Budker
- Helmholtz Institute Mainz GSI Helmholtzzentrum für Schwerionenforschung GmbH 55128 Mainz Germany
- Johannes Gutenberg University 55090 Mainz Germany
- University of California Berkeley Berkeley CA 94720 USA
| |
Collapse
|
21
|
Burueva DB, Eills J, Blanchard JW, Garcon A, Picazo‐Frutos R, Kovtunov KV, Koptyug IV, Budker D. Chemical Reaction Monitoring using Zero-Field Nuclear Magnetic Resonance Enables Study of Heterogeneous Samples in Metal Containers. Angew Chem Int Ed Engl 2020; 59:17026-17032. [PMID: 32510813 PMCID: PMC7540358 DOI: 10.1002/anie.202006266] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/28/2022]
Abstract
We demonstrate that heterogeneous/biphasic chemical reactions can be monitored with high spectroscopic resolution using zero-field nuclear magnetic resonance spectroscopy. This is possible because magnetic susceptibility broadening is negligible at ultralow magnetic fields. We show the two-step hydrogenation of dimethyl acetylenedicarboxylate with para-enriched hydrogen gas in conventional glass NMR tubes, as well as in a titanium tube. The low frequency zero-field NMR signals ensure that there is no significant signal attenuation arising from shielding by the electrically conductive sample container. This method paves the way for in situ monitoring of reactions in complex heterogeneous multiphase systems and in reactors made of conductive materials while maintaining resolution and chemical specificity.
Collapse
Affiliation(s)
- Dudari B. Burueva
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - James Eills
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - John W. Blanchard
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
| | - Antoine Garcon
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Román Picazo‐Frutos
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
| | - Kirill V. Kovtunov
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Igor V. Koptyug
- Laboratory of Magnetic Resonance MicroimagingInternational Tomography Center630090NovosibirskRussia
- Novosibirsk State University630090NovosibirskRussia
| | - Dmitry Budker
- Helmholtz Institute MainzGSI Helmholtzzentrum für Schwerionenforschung GmbH55128MainzGermany
- Johannes Gutenberg University55090MainzGermany
- University of California BerkeleyBerkeleyCA94720USA
| |
Collapse
|
22
|
Lee J, Hilgers F, Loeschke A, Jaeger KE, Feldbrügge M. Ustilago maydis Serves as a Novel Production Host for the Synthesis of Plant and Fungal Sesquiterpenoids. Front Microbiol 2020; 11:1655. [PMID: 32849341 PMCID: PMC7396576 DOI: 10.3389/fmicb.2020.01655] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Sesquiterpenoids are important secondary metabolites with various pharma- and nutraceutical properties. In particular, higher basidiomycetes possess a versatile biosynthetic repertoire for these bioactive compounds. To date, only a few microbial production systems for fungal sesquiterpenoids have been established. Here, we introduce Ustilago maydis as a novel production host. This model fungus is a close relative of higher basidiomycetes. It offers the advantage of metabolic compatibility and potential tolerance for substances toxic to other microorganisms. We successfully implemented a heterologous pathway to produce the carotenoid lycopene that served as a straightforward read-out for precursor pathway engineering. Overexpressing genes encoding enzymes of the mevalonate pathway resulted in increased lycopene levels. Verifying the subcellular localization of the relevant enzymes revealed that initial metabolic reactions might take place in peroxisomes: despite the absence of a canonical peroxisomal targeting sequence, acetyl-CoA C-acetyltransferase Aat1 localized to peroxisomes. By expressing the plant (+)-valencene synthase CnVS and the basidiomycete sesquiterpenoid synthase Cop6, we succeeded in producing (+)-valencene and α-cuprenene, respectively. Importantly, the fungal compound yielded about tenfold higher titers in comparison to the plant substance. This proof of principle demonstrates that U. maydis can serve as promising novel chassis for the production of terpenoids.
Collapse
Affiliation(s)
- Jungho Lee
- Bioeconomy Science Centre, Cluster of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabienne Hilgers
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, and Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Anita Loeschke
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, and Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute for Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, and Forschungszentrum Jülich GmbH, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1, Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Michael Feldbrügge
- Bioeconomy Science Centre, Cluster of Excellence on Plant Sciences, Institute for Microbiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
23
|
Friebel A, von Harbou E, Münnemann K, Hasse H. Online process monitoring of a batch distillation by medium field NMR spectroscopy. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
24
|
Friebel A, Specht T, von Harbou E, Münnemann K, Hasse H. Prediction of flow effects in quantitative NMR measurements. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 312:106683. [PMID: 32014660 DOI: 10.1016/j.jmr.2020.106683] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/31/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
A method for the prediction of the magnetization in flow NMR experiments is presented, which can be applied to mixtures. It enables a quantitative evaluation of NMR spectra of flowing liquid samples even in cases in which the magnetization is limited by the flow. A transport model of the nuclei's magnetization, which is based on the Bloch-equations, is introduced into a computational fluid dynamics (CFD) code. This code predicts the velocity field and relative magnetization of different nuclei for any chosen flow cell geometry, fluid and flow rate. The prediction of relative magnetization is used to correct the observed reduction of signal intensity caused by incomplete premagnetization in fast flowing liquids. By means of the model, quantitative NMR measurements at high flow rates are possible. The method is predictive and enables calculating correction factors for any flow cell design and operating condition based on simple static T1 time measurements. This makes time-consuming calibration measurements for assessing the influence of flow effects obsolete, which otherwise would have to be carried out for each studied condition. The new method is especially interesting for flow measurements with compact medium field NMR spectrometers, which have small premagnetization volumes. In the present work, experiments with three different flow cells in a medium field NMR spectrometer were carried out. Acetonitrile, water, and mixtures of these components were used as model fluids. The experimental results for the magnetization were compared to the predictions from the CFD model and good agreement was observed.
Collapse
Affiliation(s)
- Anne Friebel
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Germany
| | - Thomas Specht
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Germany
| | - Erik von Harbou
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Germany.
| | - Kerstin Münnemann
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, Germany
| |
Collapse
|
25
|
Claaßen C, Mack K, Rother D. Benchtop NMR for Online Reaction Monitoring of the Biocatalytic Synthesis of Aromatic Amino Alcohols. ChemCatChem 2020; 12:1190-1199. [PMID: 32194875 PMCID: PMC7074048 DOI: 10.1002/cctc.201901910] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/19/2019] [Indexed: 01/25/2023]
Abstract
Online analytics provides insights into the progress of an ongoing reaction without the need for extensive sampling and offline analysis. In this study, we investigated benchtop NMR as an online reaction monitoring tool for complex enzyme cascade reactions. Online NMR was used to monitor a two-step cascade beginning with an aromatic aldehyde and leading to an aromatic amino alcohol as the final product, applying two different enzymes and a variety of co-substrates and intermediates. Benchtop NMR enabled the concentration of the reaction components to be detected in buffered systems in the single-digit mM range without using deuterated solvent. The concentrations determined via NMR were correlated with offline samples analyzed via uHPLC and displayed a good correlation between the two methods. In summary, benchtop NMR proved to be a sensitive, selective and reliable method for online reaction monitoring in (multi-step) biosynthesis. In future, online analytic systems such as the benchtop NMR devices described might not only enable direct monitoring of the reaction, but may also form the basis for self-regulation in biocatalytic reactions.
Collapse
Affiliation(s)
- C. Claaßen
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
| | - K. Mack
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| | - D. Rother
- Institute of Bio- and Geosciences – Biotechnology (IBG-1)Forschungszentrum Jülich GmbH52425JülichGermany
- Aachen Biology and Biotechnology (ABBt)RWTH Aachen University52074AachenGermany
| |
Collapse
|
26
|
Taraban MB, Briggs KT, Merkel P, Yu YB. Flow Water Proton NMR: In-Line Process Analytical Technology for Continuous Biomanufacturing. Anal Chem 2019; 91:13538-13546. [DOI: 10.1021/acs.analchem.9b02622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Marc B. Taraban
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Katharine T. Briggs
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Peter Merkel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| | - Y. Bruce Yu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
27
|
Friebel A, von Harbou E, Münnemann K, Hasse H. Reaction Monitoring by Benchtop NMR Spectroscopy Using a Novel Stationary Flow Reactor Setup. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Anne Friebel
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Erik von Harbou
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kerstin Münnemann
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Hans Hasse
- Laboratory of Engineering Thermodynamics (LTD), University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
28
|
Ezeanaka MC, Nsor-Atindana J, Zhang M. Online Low-field Nuclear Magnetic Resonance (LF-NMR) and Magnetic Resonance Imaging (MRI) for Food Quality Optimization in Food Processing. FOOD BIOPROCESS TECH 2019. [DOI: 10.1007/s11947-019-02296-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
29
|
Bouillaud D, Farjon J, Gonçalves O, Giraudeau P. Benchtop NMR for the monitoring of bioprocesses. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2019; 57:794-804. [PMID: 30586475 DOI: 10.1002/mrc.4821] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/17/2018] [Accepted: 12/19/2018] [Indexed: 06/09/2023]
Abstract
This mini-review highlights the potential of benchtop nuclear magnetic resonance (NMR) for the monitoring of bioprocesses. It describes recent perspectives opened by the reduced size of devices in relaxometry, magnetic resonance imaging and NMR spectroscopy. In particular, the recent emergence of the benchtop NMR spectroscopy gives access to many applications thanks to the implementation of advanced experiments.
Collapse
Affiliation(s)
- Dylan Bouillaud
- Université de Nantes, CEISAM, UMR CNRS 6230, Nantes Cedex 3, France
- Université de Nantes, GEPEA, UMR CNRS 6144, Saint-Nazaire Cedex, France
| | - Jonathan Farjon
- Université de Nantes, CEISAM, UMR CNRS 6230, Nantes Cedex 3, France
| | - Olivier Gonçalves
- Université de Nantes, GEPEA, UMR CNRS 6144, Saint-Nazaire Cedex, France
| | - Patrick Giraudeau
- Université de Nantes, CEISAM, UMR CNRS 6230, Nantes Cedex 3, France
- Institut Universitaire de France, Paris Cedex 05, France
| |
Collapse
|
30
|
Sano M, Kuroda H, Ohara H, Ando H, Matsumoto K, Aso Y. A high-throughput screening method based on the Mizoroki-Heck reaction for isolating itaconic acid-producing fungi from soils. Heliyon 2019; 5:e02048. [PMID: 31372531 PMCID: PMC6658728 DOI: 10.1016/j.heliyon.2019.e02048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 05/06/2019] [Accepted: 07/03/2019] [Indexed: 11/24/2022] Open
Abstract
In this study, we report a novel method based on the Mizoroki-Heck reaction followed by an iodine test for the screening of itaconic acid-producing fungi from soils. This method is simple, rapid, and requires 10 μL of culture; results are obtained within 1.5 h. The detection limit of itaconic acid in the cultures was 0.13 mM. This is the first report on the direct screening of itaconic acid-producing fungi using a coupling reaction.
Collapse
Affiliation(s)
- Mei Sano
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hikari Kuroda
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hitomi Ohara
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Hiroshi Ando
- Corporate R&B Planning Department, Kaneka Corporation, 2-3-18 Nakanoshima, Kita-ku, Osaka, 530-8288, Japan
| | - Keiji Matsumoto
- Corporate R&B Planning Department, Kaneka Corporation, 2-3-18 Nakanoshima, Kita-ku, Osaka, 530-8288, Japan
| | - Yuji Aso
- Department of Biobased Materials Science, Kyoto Institute of Technology, 1 Hashigami-cho, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| |
Collapse
|
31
|
Legner R, Wirtz A, Koza T, Tetzlaff T, Nickisch-Hartfiel A, Jaeger M. Application of green analytical chemistry to a green chemistry process: Magnetic resonance and Raman spectroscopic process monitoring of continuous ethanolic fermentation. Biotechnol Bioeng 2019; 116:2874-2883. [PMID: 31286482 DOI: 10.1002/bit.27112] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/29/2022]
Abstract
Compact 1 H NMR and Raman spectrometers were used for real-time process monitoring of alcoholic fermentation in a continuous flow reactor. Yeast cells catalyzing the sucrose conversion were immobilized in alginate beads floating in the reactor. The spectrometers proved to be robust and could be easily attached to the reaction apparatus. As environmentally friendly analysis methods, 1 H NMR and Raman spectroscopy were selected to match the resource- and energy-saving process. Analyses took only a few seconds to minutes compared to chromatographic procedures and were, therefore, suitable for real-time control realized as a feedback loop. Both compact spectrometers were successfully implemented online. Raman spectroscopy allowed for faster spectral acquisition and higher quantitative precision, NMR yielded more resolved signals thus higher specificity. By using the software Matlab for automated data loading and processing, relevant parameters such as the ethanol, glycerol, and sugar content could be easily obtained. The subsequent multivariate data analysis using partial linear least-squares regression type 2 enabled the quantitative monitoring of all reactants within a single model in real time.
Collapse
Affiliation(s)
- Robin Legner
- Niederrhein University of Applied Sciences, Frankenring, Krefeld, Germany.,University Duisburg-Essen, Universitaetsstraße, Essen, Germany
| | - Alexander Wirtz
- Niederrhein University of Applied Sciences, Frankenring, Krefeld, Germany
| | - Tim Koza
- Niederrhein University of Applied Sciences, Frankenring, Krefeld, Germany
| | - Till Tetzlaff
- Niederrhein University of Applied Sciences, Frankenring, Krefeld, Germany
| | | | - Martin Jaeger
- Niederrhein University of Applied Sciences, Frankenring, Krefeld, Germany
| |
Collapse
|
32
|
Brandner JJ. In-Situ Measurements in Microscale Gas Flows-Conventional Sensors or Something Else? MICROMACHINES 2019; 10:E292. [PMID: 31035685 PMCID: PMC6562918 DOI: 10.3390/mi10050292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/24/2019] [Accepted: 04/26/2019] [Indexed: 12/03/2022]
Abstract
Within the last few decades miniaturization has a driving force in almost all areas of technology, leading to a tremendous intensification of systems and processes. Information technology provides now data density several orders of magnitude higher than a few years ago, and the smartphone technology includes, as well the simple ability to communicate with others, features like internet, video and music streaming, but also implementation of the global positioning system, environment sensors or measurement systems for individual health. So-called wearables are everywhere, from the physio-parameter sensing wrist smart watch up to the measurement of heart rates by underwear. This trend holds also for gas flow applications, where complex flow arrangements and measurement systems formerly designed for a macro scale have been transferred into miniaturized versions. Thus, those systems took advantage of the increased surface to volume ratio as well as of the improved heat and mass transfer behavior of miniaturized equipment. In accordance, disadvantages like gas flow mal-distribution on parallelized mini- or micro tubes or channels as well as increased pressure losses due to the minimized hydraulic diameters and an increased roughness-to-dimension ratio have to be taken into account. Furthermore, major problems are arising for measurement and control to be implemented for in-situ and/or in-operando measurements. Currently, correlated measurements are widely discussed to obtain a more comprehensive view to a process by using a broad variety of measurement techniques complementing each other. Techniques for correlated measurements may include commonly used techniques like thermocouples or pressure sensors as well as more complex systems like gas chromatography, mass spectrometry, infrared or ultraviolet spectroscopy and many others. Some of these techniques can be miniaturized, some of them cannot yet. Those should, nevertheless, be able to conduct measurements at the same location and the same time, preferably in-situ and in-operando. Therefore, combinations of measurement instruments might be necessary, which will provide complementary techniques for accessing local process information. A recently more intensively discussed additional possibility is the application of nuclear magnetic resonance (NMR) systems, which might be useful in combination with other, more conventional measurement techniques. NMR is currently undergoing a tremendous change from large-scale to benchtop measurement systems, and it will most likely be further miniaturized. NMR allows a multitude of different measurements, which are normally covered by several instruments. Additionally, NMR can be combined very well with other measurement equipment to perform correlative in-situ and in-operando measurements. Such combinations of several instruments would allow us to retrieve an "information cloud" of a process. This paper will present a view of some common measurement techniques and the difficulties of applying them on one hand in a miniaturized scale, and on the other hand in a correlative mode. Basic suggestions to achieve the above-mentioned objective by a combination of different methods including NMR will be given.
Collapse
Affiliation(s)
- Juergen J Brandner
- Staff Position Microstructures and Process Sensors (MPS), Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| |
Collapse
|
33
|
Leutzsch M, Sederman AJ, Gladden LF, Mantle MD. In situ reaction monitoring in heterogeneous catalysts by a benchtop NMR spectrometer. Magn Reson Imaging 2019; 56:138-143. [DOI: 10.1016/j.mri.2018.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 10/28/2022]
|
34
|
Halbfeld C, Baumbach JI, Blank LM, Ebert BE. Multi-capillary Column Ion Mobility Spectrometry of Volatile Metabolites for Phenotyping of Microorganisms. Methods Mol Biol 2018; 1671:229-258. [PMID: 29170963 DOI: 10.1007/978-1-4939-7295-1_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Rational strain engineering requires solid testing of phenotypes including productivity and ideally contributes thereby directly to our understanding of the genotype-phenotype relationship. Actually, the test step of the strain engineering cycle becomes the limiting step, as ever advancing tools for generating genetic diversity exist. Here, we briefly define the challenge one faces in quantifying phenotypes and summarize existing analytical techniques that partially overcome this challenge. We argue that the evolution of volatile metabolites can be used as proxy for cellular metabolism. In the simplest case, the product of interest is a volatile (e.g., from bulk alcohols to special fragrances) that is directly quantified over time. But also nonvolatile products (e.g., from bulk long-chain fatty acids to natural products) require major flux rerouting that result potentially in altered volatile production. While alternative techniques for volatile determination exist, rather few can be envisaged for medium to high-throughput analysis required for phenotype testing. Here, we contribute a detailed protocol for an ion mobility spectrometry (IMS) analysis that allows volatile metabolite quantification down to the ppb range. The sensitivity can be exploited for small-scale fermentation monitoring. The insights shared might contribute to a more frequent use of IMS in biotechnology, while the experimental aspects are of general use for researchers interested in volatile monitoring.
Collapse
Affiliation(s)
- Christoph Halbfeld
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Jörg Ingo Baumbach
- Faculty of Applied Chemistry, Reutlingen University, 72762, Reutlingen, Germany
| | - Lars M Blank
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany.
| | - Birgitta E Ebert
- iAMB-Institute of Applied Microbiology, ABBt-Aachen Biology and Biotechnology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| |
Collapse
|
35
|
Blümich B, Singh K. Desktop NMR and Its Applications From Materials Science To Organic Chemistry. Angew Chem Int Ed Engl 2017; 57:6996-7010. [PMID: 29230908 DOI: 10.1002/anie.201707084] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Indexed: 12/19/2022]
Abstract
NMR spectroscopy is an indispensable method of analysis in chemistry, which until recently suffered from high demands for space, high costs for acquisition and maintenance, and operational complexity. This has changed with the introduction of compact NMR spectrometers suitable for small-molecule analysis on the chemical workbench. These spectrometers contain permanent magnets giving rise to proton NMR frequencies between 40 and 80 MHz. The enabling technology is to make small permanent magnets with homogeneous fields. Tabletop instruments with inhomogeneous fields have been in use for over 40 years for characterizing food and hydrogen-containing materials by relaxation and diffusion measurements. Related NMR instruments measure these parameters in the stray field outside the magnet. They are used to inspect the borehole walls of oil wells and to test objects nondestructively. The state-of-the-art of NMR spectroscopy, imaging and relaxometry with compact instruments is reviewed.
Collapse
Affiliation(s)
- Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| | - Kawarpal Singh
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
36
|
Blümich B, Singh K. NMR mit Tischgeräten und deren Anwendungen von der Materialwissenschaft bis zur organischen Chemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bernhard Blümich
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Aachen Deutschland
| | - Kawarpal Singh
- Institut für Technische und Makromolekulare Chemie; RWTH Aachen University; Aachen Deutschland
| |
Collapse
|
37
|
Huang L, Song Y, Kamal T, Li Y, Xia K, Lin Z, Qi L, Cheng S, Zhu BW, Tan M. A non-invasive method based on low-field NMR to analyze the quality changes in caviar from hybrid sturgeon (Huso dauricus, Acipenser schrenckiid
). J FOOD PROCESS PRES 2017. [DOI: 10.1111/jfpp.13256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Linlin Huang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 China
- Engineering Research Center of Seafood of Ministry of Education of China; Dalian 116034 China
- Liaoning Key Laboratory of Seafood Science and Technology; Dalian 116034 China
| | - Yukun Song
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 China
- Engineering Research Center of Seafood of Ministry of Education of China; Dalian 116034 China
- Liaoning Key Laboratory of Seafood Science and Technology; Dalian 116034 China
| | - Tariq Kamal
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 China
| | - Yan Li
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 China
- Engineering Research Center of Seafood of Ministry of Education of China; Dalian 116034 China
- Liaoning Key Laboratory of Seafood Science and Technology; Dalian 116034 China
| | - Kexin Xia
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 China
- Engineering Research Center of Seafood of Ministry of Education of China; Dalian 116034 China
- Liaoning Key Laboratory of Seafood Science and Technology; Dalian 116034 China
| | - Zhuyi Lin
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 China
- Engineering Research Center of Seafood of Ministry of Education of China; Dalian 116034 China
- Liaoning Key Laboratory of Seafood Science and Technology; Dalian 116034 China
| | - Libo Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 China
| | - Shasha Cheng
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 China
- Engineering Research Center of Seafood of Ministry of Education of China; Dalian 116034 China
- Liaoning Key Laboratory of Seafood Science and Technology; Dalian 116034 China
| | - Bei-Wei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 China
- Engineering Research Center of Seafood of Ministry of Education of China; Dalian 116034 China
- Liaoning Key Laboratory of Seafood Science and Technology; Dalian 116034 China
| | - Mingqian Tan
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood; Dalian 116034 China
- Engineering Research Center of Seafood of Ministry of Education of China; Dalian 116034 China
- Liaoning Key Laboratory of Seafood Science and Technology; Dalian 116034 China
| |
Collapse
|
38
|
Singh K, Blümich B. Desktop NMR for structure elucidation and identification of strychnine adulteration. Analyst 2017; 142:1459-1470. [DOI: 10.1039/c7an00020k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A complete assignment of the structure of strychnine with NMR spectroscopy at 1 T and identification of strychnine adulteration.
Collapse
Affiliation(s)
- Kawarpal Singh
- Institute for Technical Chemistry and Macromolecular Chemistry
- RWTH Aachen University
- Aachen
- Germany
| | - Bernhard Blümich
- Institute for Technical Chemistry and Macromolecular Chemistry
- RWTH Aachen University
- Aachen
- Germany
| |
Collapse
|
39
|
|
40
|
|
41
|
|