2
|
Chen Y, Yoh HZ, Shokouhi AR, Murayama T, Suu K, Morikawa Y, Voelcker NH, Elnathan R. Role of actin cytoskeleton in cargo delivery mediated by vertically aligned silicon nanotubes. J Nanobiotechnology 2022; 20:406. [PMID: 36076230 PMCID: PMC9461134 DOI: 10.1186/s12951-022-01618-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/10/2022] Open
Abstract
Nanofabrication technologies have been recently applied to the development of engineered nano–bio interfaces for manipulating complex cellular processes. In particular, vertically configurated nanostructures such as nanoneedles (NNs) have been adopted for a variety of biological applications such as mechanotransduction, biosensing, and intracellular delivery. Despite their success in delivering a diverse range of biomolecules into cells, the mechanisms for NN-mediated cargo transport remain to be elucidated. Recent studies have suggested that cytoskeletal elements are involved in generating a tight and functional cell–NN interface that can influence cargo delivery. In this study, by inhibiting actin dynamics using two drugs—cytochalasin D (Cyto D) and jasplakinolide (Jas), we demonstrate that the actin cytoskeleton plays an important role in mRNA delivery mediated by silicon nanotubes (SiNTs). Specifically, actin inhibition 12 h before SiNT-cellular interfacing (pre-interface treatment) significantly dampens mRNA delivery (with efficiencies dropping to 17.2% for Cyto D and 33.1% for Jas) into mouse fibroblast GPE86 cells, compared to that of untreated controls (86.9%). However, actin inhibition initiated 2 h after the establishment of GPE86 cell–SiNT interface (post-interface treatment), has negligible impact on mRNA transfection, maintaining > 80% efficiency for both Cyto D and Jas treatment groups. The results contribute to understanding potential mechanisms involved in NN-mediated intracellular delivery, providing insights into strategic design of cell–nano interfacing under temporal control for improved effectiveness.
Collapse
Affiliation(s)
- Yaping Chen
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.
| | - Hao Zhe Yoh
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia
| | - Ali-Reza Shokouhi
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia.,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia
| | - Takahide Murayama
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Koukou Suu
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Yasuhiro Morikawa
- Institute of Semiconductor and Electronics Technologies, ULVAC Inc, 1220-1 Suyama, Susono, Shizuoka, 410-1231, Japan
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia. .,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, VIC, 3168, Australia. .,Department of Materials Science and Engineering, Monash University, 22 Alliance Lane, Clayton, VIC, 3168, Australia. .,INM-Leibnitz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| | - Roey Elnathan
- Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC, 3052, Australia. .,Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, 151 Wellington Road, Clayton, VIC, 3168, Australia. .,School of Medicine, Faculty of Health, Deakin University, Waurn Ponds, Geelong, VIC, 3216, Australia. .,Institute for Frontier Materials, Deakin University, Geelong Waurn Ponds campus, Geelong, VIC, 3216, Australia.
| |
Collapse
|
3
|
Agostini F, Vicinanza C, Biolo G, Spessotto P, Da Ros F, Lombardi E, Durante C, Mazzucato M. Nucleofection of Adipose Mesenchymal Stem/Stromal Cells: Improved Transfection Efficiency for GMP Grade Applications. Cells 2021; 10:cells10123412. [PMID: 34943920 PMCID: PMC8700287 DOI: 10.3390/cells10123412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/26/2021] [Accepted: 12/02/2021] [Indexed: 12/19/2022] Open
Abstract
Nucleofection (NF) is a safe, non-viral transfection method, compatible with Good Manufacturing Practice guidelines. Such a technique is useful to improve therapeutic effectiveness of adipose tissue mesenchymal stem cells (ASC) in clinical settings, but improvement of NF efficiency is mandatory. Supernatant rich in growth factors (SRGF) is a clinical-grade medium additive for ASC expansion. We showed a dramatically increased NF efficiency and post-transfection viability in ASC expanded in presence of SRGF (vs. fetal bovine serum). SRGF expanded ASC were characterized by increased vesicle endocytosis but lower phagocytosis properties. SRGF increased n-6/n-3 ratio, reduced membrane lipid raft occurrence, and lowered intracellular actin content in ASC. A statistical correlation between NF efficiency and lipid raft availability on cell membranes was shown, even though a direct relationship could not be demonstrated: attempts to selectively modulate lipid rafts levels were, in fact, limited by technical constraints. In conclusion, we reported for the first time that tuning clinical-grade compatible cell culture conditions can significantly improve ASC transfection efficiency by a non-viral and safe approach. A deep mechanistic characterization is extremely complex, but we can hypothesize that integrated changes in membrane structure and intracellular actin content could contribute to explain SRGF impact on ASC NF efficiency.
Collapse
Affiliation(s)
- Francesco Agostini
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
- Correspondence: ; Tel.: +39-0434-659095
| | - Carla Vicinanza
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Gianni Biolo
- Unit of Internal Medicine, Clinica Medica, Department of Medical Surgical and Health Sciences, University of Trieste, Strada di Fiume 447, 34100 Trieste, Italy;
| | - Paola Spessotto
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy;
| | - Francesco Da Ros
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Elisabetta Lombardi
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Cristina Durante
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| | - Mario Mazzucato
- Stem Cell Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Via F. Gallini 2, 33081 Aviano, Italy; (C.V.); (F.D.R.); (E.L.); (C.D.); (M.M.)
| |
Collapse
|
4
|
Kumar S, Li A, Thadhani NN, Prausnitz MR. Optimization of intracellular macromolecule delivery by nanoparticle-mediated photoporation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102431. [PMID: 34175453 DOI: 10.1016/j.nano.2021.102431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Nanoparticle-mediated photoporation is a novel delivery platform for intracellular molecule delivery. We studied the dependence of macromolecular delivery on molecular weight and sought to enhance delivery efficiency. DU145 prostate cancer cells were exposed to pulsed laser beam in the presence of carbon-black nanoparticles. Intracellular uptake of molecules decreased with increasing molecular weight. Attributing this dependence to molecular diffusivity, we hypothesized that macromolecular delivery efficiency could be enhanced by increasing either laser fluence or laser exposure duration at low fluence. We observed increased percentages of macromolecule uptake by cells in both cases. However, trade-off between cell uptake and viability loss was most favorable at low laser fluence (25-29 mJ/cm2) and longer exposure durations (4-5 min). We conclude that long exposure at low laser fluence optimizes intracellular macromolecule delivery by nanoparticle-mediated photoporation, which may be explained by longer time for macromolecules to diffuse into cells, during and between laser pulses.
Collapse
Affiliation(s)
- Simple Kumar
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew Li
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Naresh N Thadhani
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
5
|
Li C, Chen L, Wang Y, Wang T, Di D, Zhang H, Zhao H, Shen X, Guo J. Protein Nanoparticle-Related Osmotic Pressure Modifies Nonselective Permeability of the Blood-Brain Barrier by Increasing Membrane Fluidity. Int J Nanomedicine 2021; 16:1663-1680. [PMID: 33688184 PMCID: PMC7935347 DOI: 10.2147/ijn.s291286] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/19/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Intracellular tension plays a crucial role in the destruction of the blood-brain barrier (BBB) in response to lesion stimuli. Tight junction structure could be primarily affected by tension activity. In this study, we aimed to determine the effects of extracellular BBB damage on intracellular tension activity, and elucidate the mechanism underlying the effects of intracellular protein nanoparticle-related osmotic pressure on BBB permeability. METHODS The intracellular tension for tight junction proteins occludin and ZO1 was evaluated using the fluorescence resonance energy transfer (FRET)-based tension probes and cpstFRET analysis. The changes in mobility ratios of occludin were evaluated via the fluorescence recovery after photobleaching (FRAP) test. The cytoplasmic osmotic pressure (OP) was measured using Osmometer. The count rate of cytoplasmic nanoparticles was detected by Nanosight NS300. The activation of cofilin and stathmin was examined by Western blot analysis. The BBB permeability in vivo was determined via the changes of Evans Blue (EB) injected into SD rats. The tight junction formation was assessed by the measurement of transendothelial electrical resistance (TEER). Intracellular calcium or chloride ions were measured using Fluo-4 AM or MQAE dyes. RESULTS BBB lesions were accompanied by changes in occludin/ZO1 tension. Increases in intracellular osmotic pressure were involved in alteration of BBB permeability, possibly through the depolymerization of microfilaments or microtubules and mass production of protein nanoparticles according to the Donnan effect. Recovery of protein nanoparticle-related osmotic pressure could effectively reverse the effects of changes in occludin/ZO1 tension under BBB lesions. Outward tension of intracellular osmotic potential also caused upregulation of membrane fluidity, which promoted nonselective drug influx. CONCLUSION Our results suggest a crucial mechanical mechanism underlying BBB lesions, and protein nanoparticle-related osmotic pressure could be a novel therapeutic target for BBB lesion-related brain diseases.
Collapse
Affiliation(s)
- Chen Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - LinLin Chen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - YuanYuan Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - TingTing Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Dong Di
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Hao Zhang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Science and Technology Experimental Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - HuanHuan Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Xu Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| | - Jun Guo
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Key Laboratory of Drug Target and Drug for Degenerative Disease, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
- Science and Technology Experimental Center, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
6
|
Photoacoustic effect applied on model membranes and living cells: direct observation with multiphoton excitation microscopy and long-term viability analysis. Sci Rep 2020; 10:299. [PMID: 31941922 PMCID: PMC6962462 DOI: 10.1038/s41598-019-56799-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/01/2019] [Indexed: 01/09/2023] Open
Abstract
The photoacoustic effect is generated when a variable light interacts with a strongly light-absorbing material. In water, it may produce hot bubbles and shock waves that could affect the integrity of nearby cellular membranes, opening transient pores (photoporation). In this study, we have evaluated the effect of pulsed laser-irradiated carbon nanoparticles (cNP) on model membranes and on Chinese hamster ovary (CHO) cells. Fluorescence lifetime measurements of calcein-loaded liposomes support the notion that the photoacoustic effect causes transient openings in membranes, allowing diffusion fluxes driven by gradient concentrations. With CHO cells, we have shown that this effect can induce either intracellular delivery of calcein, or release of cellular compounds. The latter process has been recorded live with multiphoton excitation microscopy during pulsed infrared laser irradiation. Calcein loading and cell viability were assayed by flow cytometry, measuring necrotic cells as well as those in early apoptosis. To further assess long-term cell recovery after the rather harsh treatment, cells were reseeded and their behaviour recorded for 48 h. These extended studies on cell viability show that pulsed laser cNP photoporation may be considered an adequate intracellular delivery technique only if employed with soft irradiation conditions (below 50 mJ/cm2).
Collapse
|