1
|
Duran E, Schmidt A, Welty R, Jalihal AP, Pitchiaya S, Walter NG. Utilizing functional cell-free extracts to dissect ribonucleoprotein complex biology at single-molecule resolution. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1787. [PMID: 37042458 PMCID: PMC10524090 DOI: 10.1002/wrna.1787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023]
Abstract
Cellular machineries that drive and regulate gene expression often rely on the coordinated assembly and interaction of a multitude of proteins and RNA together called ribonucleoprotein complexes (RNPs). As such, it is challenging to fully reconstitute these cellular machines recombinantly and gain mechanistic understanding of how they operate and are regulated within the complex environment that is the cell. One strategy for overcoming this challenge is to perform single molecule fluorescence microscopy studies within crude or recombinantly supplemented cell extracts. This strategy enables elucidation of the interaction and kinetic behavior of specific fluorescently labeled biomolecules within RNPs under conditions that approximate native cellular environments. In this review, we describe single molecule fluorescence microcopy approaches that dissect RNP-driven processes within cellular extracts, highlighting general strategies used in these methods. We further survey biological advances in the areas of pre-mRNA splicing and transcription regulation that have been facilitated through this approach. Finally, we conclude with a summary of practical considerations for the implementation of the featured approaches to facilitate their broader future implementation in dissecting the mechanisms of RNP-driven cellular processes. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Elizabeth Duran
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Andreas Schmidt
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Robb Welty
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Ameya P Jalihal
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, Department of Pathology, Department of Urology, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Rasor BJ, Karim AS, Alper HS, Jewett MC. Cell Extracts from Bacteria and Yeast Retain Metabolic Activity after Extended Storage and Repeated Thawing. ACS Synth Biol 2023; 12:904-908. [PMID: 36848582 DOI: 10.1021/acssynbio.2c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Cell-free synthetic biology enables rapid prototyping of biological parts and synthesis of proteins or metabolites in the absence of cell growth constraints. Cell-free systems are frequently made from crude cell extracts, where composition and activity can vary significantly based on source strain, preparation and processing, reagents, and other considerations. This variability can cause extracts to be treated as black boxes for which empirical observations guide practical laboratory practices, including a hesitance to use dated or previously thawed extracts. To better understand the robustness of cell extracts over time, we assessed the activity of cell-free metabolism during storage. As a model, we studied conversion of glucose to 2,3-butanediol. We found that cell extracts from Escherichia coli and Saccharomyces cerevisiae subjected to an 18-month storage period and repeated freeze-thaw cycles retain consistent metabolic activity. This work gives users of cell-free systems a better understanding of the impacts of storage on extract behavior.
Collapse
|
3
|
Ganesh RB, Maerkl SJ. Biochemistry of Aminoacyl tRNA Synthetase and tRNAs and Their Engineering for Cell-Free and Synthetic Cell Applications. Front Bioeng Biotechnol 2022; 10:918659. [PMID: 35845409 PMCID: PMC9283866 DOI: 10.3389/fbioe.2022.918659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free biology is increasingly utilized for engineering biological systems, incorporating novel functionality, and circumventing many of the complications associated with cells. The central dogma describes the information flow in biology consisting of transcription and translation steps to decode genetic information. Aminoacyl tRNA synthetases (AARSs) and tRNAs are key components involved in translation and thus protein synthesis. This review provides information on AARSs and tRNA biochemistry, their role in the translation process, summarizes progress in cell-free engineering of tRNAs and AARSs, and discusses prospects and challenges lying ahead in cell-free engineering.
Collapse
|
4
|
Leitão ADG, Rudolffi-Soto P, Chappard A, Bhumkar A, Lau D, Hunter DJB, Gambin Y, Sierecki E. Selectivity of Lewy body protein interactions along the aggregation pathway of α-synuclein. Commun Biol 2021; 4:1124. [PMID: 34556785 PMCID: PMC8460662 DOI: 10.1038/s42003-021-02624-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/01/2021] [Indexed: 02/08/2023] Open
Abstract
The aggregation of alpha-synuclein (α-SYN) follows a cascade of oligomeric, prefibrillar and fibrillar forms, culminating in the formation of Lewy Bodies (LB), the pathological hallmarks of Parkinson's Disease. Although LB contain over 70 proteins, the potential for interactions along the aggregation pathway of α-SYN is unknown. Here we propose a map of interactions of 65 proteins against different species of α-SYN. We measured binding to monomeric α-SYN using AlphaScreen, a sensitive nano-bead luminescence assay for detection of protein interactions. To access oligomeric species, we used the pathological mutants of α-SYN (A30P, G51D and A53T) which form oligomers with distinct properties. Finally, we generated amyloid fibrils from recombinant α-SYN. Binding to oligomers and fibrils was measured by two-color coincidence detection (TCCD) on a single molecule spectroscopy setup. Overall, we demonstrate that LB components are recruited to specific steps in the aggregation of α-SYN, uncovering future targets to modulate aggregation in synucleinopathies.
Collapse
Affiliation(s)
- André D G Leitão
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Paulina Rudolffi-Soto
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Alexandre Chappard
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- School of Chemistry, The University of Edinburgh, Edinburgh, UK
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Derrick Lau
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dominic J B Hunter
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia.
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and School of Medical Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
5
|
Meyer B, Chiaravalli J, Gellenoncourt S, Brownridge P, Bryne DP, Daly LA, Grauslys A, Walter M, Agou F, Chakrabarti LA, Craik CS, Eyers CE, Eyers PA, Gambin Y, Jones AR, Sierecki E, Verdin E, Vignuzzi M, Emmott E. Characterising proteolysis during SARS-CoV-2 infection identifies viral cleavage sites and cellular targets with therapeutic potential. Nat Commun 2021; 12:5553. [PMID: 34548480 PMCID: PMC8455558 DOI: 10.1038/s41467-021-25796-w] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 08/24/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 is the causative agent behind the COVID-19 pandemic, responsible for over 170 million infections, and over 3.7 million deaths worldwide. Efforts to test, treat and vaccinate against this pathogen all benefit from an improved understanding of the basic biology of SARS-CoV-2. Both viral and cellular proteases play a crucial role in SARS-CoV-2 replication. Here, we study proteolytic cleavage of viral and cellular proteins in two cell line models of SARS-CoV-2 replication using mass spectrometry to identify protein neo-N-termini generated through protease activity. We identify previously unknown cleavage sites in multiple viral proteins, including major antigens S and N: the main targets for vaccine and antibody testing efforts. We discover significant increases in cellular cleavage events consistent with cleavage by SARS-CoV-2 main protease, and identify 14 potential high-confidence substrates of the main and papain-like proteases. We show that siRNA depletion of these cellular proteins inhibits SARS-CoV-2 replication, and that drugs targeting two of these proteins: the tyrosine kinase SRC and Ser/Thr kinase MYLK, show a dose-dependent reduction in SARS-CoV-2 titres. Overall, our study provides a powerful resource to understand proteolysis in the context of viral infection, and to inform the development of targeted strategies to inhibit SARS-CoV-2 and treat COVID-19.
Collapse
Affiliation(s)
- Bjoern Meyer
- Viral Populations and Pathogenesis Unit, CNRS, UMR 3569, Institut Pasteur, CEDEX 15, Paris, France
| | - Jeanne Chiaravalli
- Chemogenomic and Biological Screening Core Facility, C2RT, Departments of Cell Biology & Infection and of Structural Biology & Chemistry, Institut Pasteur, CEDEX 15, Paris, France
| | - Stacy Gellenoncourt
- CIVIC Group, Virus & Immunity Unit, Institut Pasteur and CNRS, UMR 3569, Paris, France
| | - Philip Brownridge
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Dominic P Bryne
- Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Leonard A Daly
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Arturas Grauslys
- Computational Biology Facility, LIV-SRF, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Marius Walter
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Fabrice Agou
- Chemogenomic and Biological Screening Core Facility, C2RT, Departments of Cell Biology & Infection and of Structural Biology & Chemistry, Institut Pasteur, CEDEX 15, Paris, France
| | - Lisa A Chakrabarti
- CIVIC Group, Virus & Immunity Unit, Institut Pasteur and CNRS, UMR 3569, Paris, France
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Claire E Eyers
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Patrick A Eyers
- Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Andrew R Jones
- Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Emma Sierecki
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, CNRS, UMR 3569, Institut Pasteur, CEDEX 15, Paris, France
| | - Edward Emmott
- Centre for Proteome Research, Department of Biochemistry & Systems Biology, Institute of Systems, Molecular & Integrative Biology, Biosciences Building, Crown Street, University of Liverpool, Liverpool, L69 7ZB, UK.
| |
Collapse
|
6
|
Clabbers MTB, Holmes S, Muusse TW, Vajjhala PR, Thygesen SJ, Malde AK, Hunter DJB, Croll TI, Flueckiger L, Nanson JD, Rahaman MH, Aquila A, Hunter MS, Liang M, Yoon CH, Zhao J, Zatsepin NA, Abbey B, Sierecki E, Gambin Y, Stacey KJ, Darmanin C, Kobe B, Xu H, Ve T. MyD88 TIR domain higher-order assembly interactions revealed by microcrystal electron diffraction and serial femtosecond crystallography. Nat Commun 2021; 12:2578. [PMID: 33972532 PMCID: PMC8110528 DOI: 10.1038/s41467-021-22590-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/18/2021] [Indexed: 02/03/2023] Open
Abstract
MyD88 and MAL are Toll-like receptor (TLR) adaptors that signal to induce pro-inflammatory cytokine production. We previously observed that the TIR domain of MAL (MALTIR) forms filaments in vitro and induces formation of crystalline higher-order assemblies of the MyD88 TIR domain (MyD88TIR). These crystals are too small for conventional X-ray crystallography, but are ideally suited to structure determination by microcrystal electron diffraction (MicroED) and serial femtosecond crystallography (SFX). Here, we present MicroED and SFX structures of the MyD88TIR assembly, which reveal a two-stranded higher-order assembly arrangement of TIR domains analogous to that seen previously for MALTIR. We demonstrate via mutagenesis that the MyD88TIR assembly interfaces are critical for TLR4 signaling in vivo, and we show that MAL promotes unidirectional assembly of MyD88TIR. Collectively, our studies provide structural and mechanistic insight into TLR signal transduction and allow a direct comparison of the MicroED and SFX techniques.
Collapse
Affiliation(s)
- Max T B Clabbers
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, USA
| | - Susannah Holmes
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Timothy W Muusse
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Parimala R Vajjhala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Sara J Thygesen
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Alpeshkumar K Malde
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia
| | - Dominic J B Hunter
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, New South Wales, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Tristan I Croll
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Leonie Flueckiger
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Jeffrey D Nanson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Md Habibur Rahaman
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew Aquila
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Mark S Hunter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Mengning Liang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Chun Hong Yoon
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California, USA
| | - Jingjing Zhao
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
| | - Nadia A Zatsepin
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Brian Abbey
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, New South Wales, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Kensington, New South Wales, Australia
| | - Katryn J Stacey
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Connie Darmanin
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia.
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia.
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia.
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden.
| | - Thomas Ve
- Institute for Glycomics, Griffith University, Southport, Queensland, Australia.
| |
Collapse
|
7
|
Rae J, Ferguson C, Ariotti N, Webb RI, Cheng HH, Mead JL, Riches JD, Hunter DJ, Martel N, Baltos J, Christopoulos A, Bryce NS, Cagigas ML, Fonseka S, Sayre ME, Hardeman EC, Gunning PW, Gambin Y, Hall TE, Parton RG. A robust method for particulate detection of a genetic tag for 3D electron microscopy. eLife 2021; 10:64630. [PMID: 33904409 PMCID: PMC8104959 DOI: 10.7554/elife.64630] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Genetic tags allow rapid localization of tagged proteins in cells and tissues. APEX, an ascorbate peroxidase, has proven to be one of the most versatile and robust genetic tags for ultrastructural localization by electron microscopy (EM). Here, we describe a simple method, APEX-Gold, which converts the diffuse oxidized diaminobenzidine reaction product of APEX into a silver/gold particle akin to that used for immunogold labelling. The method increases the signal-to-noise ratio for EM detection, providing unambiguous detection of the tagged protein, and creates a readily quantifiable particulate signal. We demonstrate the wide applicability of this method for detection of membrane proteins, cytoplasmic proteins, and cytoskeletal proteins. The method can be combined with different EM techniques including fast freezing and freeze substitution, focussed ion beam scanning EM, and electron tomography. Quantitation of expressed APEX-fusion proteins is achievable using membrane vesicles generated by a cell-free expression system. These membrane vesicles possess a defined quantum of signal, which can act as an internal standard for determination of the absolute density of expressed APEX-fusion proteins. Detection of fusion proteins expressed at low levels in cells from CRISPR-edited mice demonstrates the high sensitivity of the APEX-Gold method.
Collapse
Affiliation(s)
- James Rae
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Charles Ferguson
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Nicholas Ariotti
- Mark Wainwright Analytical Centre, University of New South Wales, Sydney, Australia.,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Richard I Webb
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| | - Han-Hao Cheng
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| | - James L Mead
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia.,Division Microrobotics and Control Engineering, Department of Computing Science, University of Oldenburg, Oldenburg, Germany
| | - James D Riches
- Queensland University of Technology, Queensland, Australia
| | - Dominic Jb Hunter
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia.,EMBL Australia Node for Single Molecule Sciences, University of New South Wales, Sydney, Australia
| | - Nick Martel
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Joanne Baltos
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Arthur Christopoulos
- Monash Institute of Pharmaceutical Sciences, Monash University, Victoria, Australia
| | - Nicole S Bryce
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | - Sachini Fonseka
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Marcel E Sayre
- The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| | - Edna C Hardeman
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Peter W Gunning
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Sciences, University of New South Wales, Sydney, Australia
| | - Thomas E Hall
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia
| | - Robert G Parton
- The University of Queensland, Institute for Molecular Bioscience, Queensland, Australia.,The University of Queensland, Centre for Microscopy and Microanalysis, Queensland, Australia
| |
Collapse
|
8
|
Lau D, Walsh JC, Dickson CF, Tuckwell A, Stear JH, Hunter DJB, Bhumkar A, Shah V, Turville SG, Sierecki E, Gambin Y, Böcking T, Jacques DA. Rapid HIV-1 Capsid Interaction Screening Using Fluorescence Fluctuation Spectroscopy. Anal Chem 2021; 93:3786-3793. [PMID: 33593049 DOI: 10.1021/acs.analchem.0c04250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The HIV capsid is a multifunctional protein capsule that mediates the delivery of the viral genetic material into the nucleus of the target cell. Host cell proteins bind to a number of repeating binding sites on the capsid to regulate steps in the replication cycle. Here, we develop a fluorescence fluctuation spectroscopy method using self-assembled capsid particles as the bait to screen for fluorescence-labeled capsid-binding analytes ("prey" molecules) in solution. The assay capitalizes on the property of the HIV capsid as a multivalent interaction platform, facilitating high sensitivity detection of multiple prey molecules that have accumulated onto capsids as spikes in fluorescence intensity traces. By using a scanning stage, we reduced the measurement time to 10 s without compromising on sensitivity, providing a rapid binding assay for screening libraries of potential capsid interactors. The assay can also identify interfaces for host molecule binding by using capsids with defects in known interaction interfaces. Two-color coincidence detection using the fluorescent capsid as the bait further allows the quantification of binding levels and determination of binding affinities. Overall, the assay provides new tools for the discovery and characterization of molecules used by the HIV capsid to orchestrate infection. The measurement principle can be extended for the development of sensitive interaction assays, utilizing natural or synthetic multivalent scaffolds as analyte-binding platforms.
Collapse
Affiliation(s)
- Derrick Lau
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - James C Walsh
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Claire F Dickson
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Andrew Tuckwell
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Jeffrey H Stear
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Dominic J B Hunter
- The Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Vaibhav Shah
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Stuart G Turville
- The Kirby Institute, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| | - David A Jacques
- EMBL Australia Node in Single Molecule Science and ARC Centre of Excellence in Advanced Molecular Imaging, School of Medical Sciences, UNSW Sydney, Sydney, New South Wales 2052, Australia
| |
Collapse
|
9
|
Moustaqil M, Ollivier E, Chiu HP, Van Tol S, Rudolffi-Soto P, Stevens C, Bhumkar A, Hunter DJB, Freiberg AN, Jacques D, Lee B, Sierecki E, Gambin Y. SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): implications for disease presentation across species. Emerg Microbes Infect 2021; 10:178-195. [PMID: 33372854 PMCID: PMC7850364 DOI: 10.1080/22221751.2020.1870414] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The genome of SARS-CoV-2 encodes two viral proteases (NSP3/papain-like protease and NSP5/3C-like protease) that are responsible for cleaving viral polyproteins during replication. Here, we discovered new functions of the NSP3 and NSP5 proteases of SARS-CoV-2, demonstrating that they could directly cleave proteins involved in the host innate immune response. We identified 3 proteins that were specifically and selectively cleaved by NSP3 or NSP5: IRF-3, and NLRP12 and TAB1, respectively. Direct cleavage of IRF3 by NSP3 could explain the blunted Type-I IFN response seen during SARS-CoV-2 infections while NSP5 mediated cleavage of NLRP12 and TAB1 point to a molecular mechanism for enhanced production of cytokines and inflammatory response observed in COVID-19 patients. We demonstrate that in the mouse NLRP12 protein, one of the recognition site is not cleaved in our in-vitro assay. We pushed this comparative alignment of IRF-3 and NLRP12 homologs and show that the lack or presence of cognate cleavage motifs in IRF-3 and NLRP12 could contribute to the presentation of disease in cats and tigers, for example. Our findings provide an explanatory framework for indepth studies into the pathophysiology of COVID-19.
Collapse
Affiliation(s)
- Mehdi Moustaqil
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Emma Ollivier
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Hsin-Ping Chiu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sarah Van Tol
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | - Paulina Rudolffi-Soto
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Christian Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Akshay Bhumkar
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Dominic J B Hunter
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia.,Institute for Molecular Biosciences, The University of Queensland, St Lucia, Australia
| | - Alexander N Freiberg
- Department of Pathology, Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX, USA
| | - David Jacques
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Sierecki
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node for Single Molecule Sciences, and School of Medical Sciences, Botany Road, The University of New South Wales, Sydney, Australia
| |
Collapse
|
10
|
Abstract
A bispecific antibody (bsAb) can simultaneously bind two different epitopes or antigens, allowing for multiple mechanistic functions with synergistic effects. BsAbs have attracted significant scientific attentions and efforts towards their development as drugs for cancers. There are 21 bsAbs currently undergoing clinical trials in China. Here, we review their platform technologies, expression and production, and biological activities and bioassay of these bsAbs, and summarize their structural formats and mechanisms of actions. T-cell redirection and checkpoint inhibition are two main mechanisms of the bsAbs that we discuss in detail. Furthermore, we provide our perspective on the future of bsAb development in China, including CD3-bsAbs for solid tumors and related cytokine release syndromes, expression and chemistry, manufacturing and controls, clinical development, and immunogenicity.
Collapse
Affiliation(s)
- Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Jizu Yi
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| |
Collapse
|
11
|
Brown JWP, Bauer A, Polinkovsky ME, Bhumkar A, Hunter DJB, Gaus K, Sierecki E, Gambin Y. Single-molecule detection on a portable 3D-printed microscope. Nat Commun 2019; 10:5662. [PMID: 31827096 PMCID: PMC6906517 DOI: 10.1038/s41467-019-13617-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/08/2019] [Indexed: 11/22/2022] Open
Abstract
Single-molecule assays have, by definition, the ultimate sensitivity and represent the next frontier in biological analysis and diagnostics. However, many of these powerful technologies require dedicated laboratories and trained personnel and have therefore remained research tools for specialists. Here, we present a single-molecule confocal system built from a 3D-printed scaffold, resulting in a compact, plug and play device called the AttoBright. This device performs single photon counting and fluorescence correlation spectroscopy (FCS) in a simple format and is widely applicable to the detection of single fluorophores, proteins, liposomes or bacteria. The power of single-molecule detection is demonstrated by detecting single α-synuclein amyloid fibrils, that are currently evaluated as biomarkers for Parkinson’s disease, with an improved sensitivity of >100,000-fold over bulk measurements. Single-molecule in vitro assays require dedicated confocal microscopes equipped with fluorescence correlation spectroscopy (FCS) modules. Here the authors present a compact, cheap and open-source 3D-printed confocal microscope for single photon counting and FCS measurements, and use it to detect α-synuclein aggregation.
Collapse
Affiliation(s)
- James W P Brown
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Arnaud Bauer
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Mark E Polinkovsky
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Dominic J B Hunter
- The Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD, 4072, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, 2052, NSW, Australia
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia.
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, 2052, NSW, Australia.
| |
Collapse
|
12
|
O'Carroll A, Coyle J, Gambin Y. Prions and Prion-like assemblies in neurodegeneration and immunity: The emergence of universal mechanisms across health and disease. Semin Cell Dev Biol 2019; 99:115-130. [PMID: 31818518 DOI: 10.1016/j.semcdb.2019.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 02/07/2023]
Abstract
Prion-like behaviour is an abrupt process, an "all-or-nothing" transition between a monomeric species and an "infinite" fibrillated form. Once a nucleation point is formed, the process is unstoppable as fibrils self-propagate by recruiting and converting all monomers into the amyloid fold. After the "mad cow" episode, prion diseases have made the headlines, but more and more prion-like behaviours have emerged in neurodegenerative diseases, where formation of fibrils and large conglomerates of proteins deeply disrupt the cell homeostasis. More interestingly, in the last decade, examples emerged to suggest that prion-like conversion can be used as a positive gain of function, for memory storage or structural scaffolding. More recent experiments show that we are only seeing the tip of the iceberg and that, for example, prion-like amplification is found in many pathways of the immune response. In innate immunity, receptors on the cellular surface or within the cells 'sense' danger and propagate this information as signal, through protein-protein interactions (PPIs) between 'receptor', 'adaptor' and 'effector' proteins. In innate immunity, the smallest signal of a foreign element or pathogen needs to trigger a macroscopic signal output, and it was found that adaptor polymerize to create an extreme signal amplification. Interestingly, our body uses multiple structural motifs to create large signalling platform; a few innate proteins use amyloid scaffolds but most of the polymers discovered are composed by self-assembly in helical filaments. Some of these helical assemblies even have intercellular "contamination" in a "true" prion action, as demonstrated for ASC specks and MyD88 filaments. Here, we will describe the current knowledge in neurodegenerative diseases and innate immunity and show how these two very different fields can cross-seed discoveries.
Collapse
Affiliation(s)
- Ailis O'Carroll
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Joanne Coyle
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, and School of Medical Sciences, Faculty of Edicine, The University of New South Wales, Sydney, Australia.
| |
Collapse
|
13
|
Lai JY, Klatt S, Lim TS. Potential application of Leishmania tarentolae as an alternative platform for antibody expression. Crit Rev Biotechnol 2019; 39:380-394. [DOI: 10.1080/07388551.2019.1566206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
| | - Stephan Klatt
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang, Malaysia
- Analytical Biochemistry Research Centre, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
14
|
Johnston WA, Moradi SV, Alexandrov K. Adaption of the Leishmania Cell-Free Expression System to High-Throughput Analysis of Protein Interactions. Methods Mol Biol 2019; 2025:403-421. [PMID: 31267464 DOI: 10.1007/978-1-4939-9624-7_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this chapter, we present methods for adapting the eukaryotic cell-free expression system based on Leishmania tarentolae to high-throughput analysis of protein interactions. Specifically, we present a lysate optimization technique that minimizes the amount of unwanted premature termination products while balancing protein expression level and protein aggregation. Finally, we present methods for adapting the Leishmania cell-free system to the AlphaLISA-based protein interaction assay.
Collapse
Affiliation(s)
- Wayne A Johnston
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Shayli Varasteh Moradi
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
15
|
A decade of Nucleic Acid Programmable Protein Arrays (NAPPA) availability: News, actors, progress, prospects and access. J Proteomics 2018; 198:27-35. [PMID: 30553075 DOI: 10.1016/j.jprot.2018.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 12/04/2018] [Accepted: 12/10/2018] [Indexed: 12/29/2022]
Abstract
Understanding the dynamic of the proteome is a critical challenge because it requires high sensitive methodologies in high-throughput formats in order to decipher its modifications and complexity. While molecular biology provides relevant information about cell physiology that may be reflected in post-translational changes, High-Throughput (HT) experimental proteomic techniques are essential to provide valuable functional information of the proteins, peptides and the interconnections between them. Hence, many methodological developments and innovations have been reported during the last decade. To study more dynamic protein networks and fine interactions, Nucleic Acid Programmable Protein Arrays (NAPPA) was introduced a decade ago. The tool is rapidly maturing and serving as a gateway to characterize biological systems and diseases thanks primarily to its accuracy, reproducibility, throughput and flexibility. Currently, NAPPA technology has proved successful in several research areas adding valuable information towards innovative diagnostic and therapeutic applications. Here, the basic and latest advances within this modern technology in basic, translational research are reviewed, in addition to presenting its exciting new directions. Our final goal is to encourage more scientists/researchers to incorporate this method, which can help to remove bottlenecks in their particular research or biomedical projects. SIGNIFICANCE: Nucleic Acid Programmable Protein Arrays (NAPPA) is becoming an essential tool for functional proteomics and protein-protein interaction studies. The technology impacts decisively on projects aiming massive screenings and the latest innovations like the multiplexing capability or printing consistency make this a promising method to be integrated in novel and combinatorial proteomic approaches.
Collapse
|