1
|
Millesi E, Millesi F, Rechberger JS, Daniels DJ, Radtke C, Mardini S. Localized tacrolimus therapy: innovations in peripheral nerve regeneration through advanced drug delivery systems. Ther Deliv 2024; 15:743-748. [PMID: 39229814 PMCID: PMC11457664 DOI: 10.1080/20415990.2024.2392481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024] Open
Affiliation(s)
- Elena Millesi
- Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN55905, USA
- Division of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Flavia Millesi
- Division of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | | | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN55905,USA
| | - Christine Radtke
- Division of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Samir Mardini
- Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN55905, USA
| |
Collapse
|
2
|
Crook BS, Cullen MM, Pidgeon TS. The Role of Tissue Engineering and Three-Dimensional-Filled Conduits in Bridging Nerve Gaps: A Review of Recent Advancements. JOURNAL OF HAND SURGERY GLOBAL ONLINE 2024; 6:700-704. [PMID: 39381400 PMCID: PMC11456632 DOI: 10.1016/j.jhsg.2024.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/20/2024] [Indexed: 10/10/2024] Open
Abstract
Tissue-engineered nerve guidance conduits (NGCs) are an area of research interest and investment. Currently, two separate three-dimensional, filled NGCs have Food and Drug Administration approval in the management of nerve gaps up to 3 cm in length, with more on the horizon. Future NGC options will leverage increasingly intricate designs to mimic the natural biology and architecture of native nerve tissue. To enhance the development of next-generation NGCs, experimental protocols and models should be standardized. For the NGCs currently on the market, more clinical data and randomized comparative studies are needed.
Collapse
Affiliation(s)
- Bryan S. Crook
- Department of Orthopaedic Surgery, Duke University Hospital, Durham, NC
| | - Mark M. Cullen
- Department of Orthopaedic Surgery, Duke University Hospital, Durham, NC
| | - Tyler S. Pidgeon
- Department of Orthopaedic Surgery, Duke University Hospital, Durham, NC
| |
Collapse
|
3
|
Azapagic A, Agarwal J, Gale B, Shea J, Wojtalewicz S, Sant H. A tacrolimus-eluting nerve guidance conduit enhances regeneration in a critical-sized peripheral nerve injury rat model. Biomed Microdevices 2024; 26:34. [PMID: 39102047 DOI: 10.1007/s10544-024-00717-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Critical-sized peripheral nerve injuries pose a significant clinical challenge and lead to functional loss and disability. Current regeneration strategies, including autografts, synthetic nerve conduits, and biologic treatments, encounter challenges such as limited availability, donor site morbidity, suboptimal recovery, potential immune responses, and sustained stability and bioactivity. An obstacle in peripheral nerve regeneration is the immune response that can lead to inflammation and scarring that impede the regenerative process. Addressing both the immunological and regenerative needs is crucial for successful nerve recovery. Here, we introduce a novel biodegradable tacrolimus-eluting nerve guidance conduit engineered from a blend of poly (L-lactide-co-caprolactone) to facilitate peripheral nerve regeneration and report the testing of this conduit in 15-mm critical-sized gaps in the sciatic nerve of rats. The conduit's diffusion holes enable the local release of tacrolimus, a potent immunosuppressant with neuro-regenerative properties, directly into the injury site. A series of in vitro experiments were conducted to assess the ability of the conduit to maintain a controlled tacrolimus release profile that could promote neurite outgrowth. Subsequent in vivo assessments in rat models of sciatic nerve injury revealed significant enhancements in nerve regeneration, as evidenced by improved axonal growth and functional recovery compared to controls using placebo conduits. These findings indicate the synergistic effects of combining a biodegradable conduit with localized, sustained delivery of tacrolimus, suggesting a promising approach for treating peripheral nerve injuries. Further optimization of the design and long-term efficacy studies and clinical trials are needed before the potential for clinical translation in humans can be considered.
Collapse
Affiliation(s)
- Azur Azapagic
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA.
| | - Jayant Agarwal
- Department of Surgery, Division of Plastic Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132, USA
| | - Bruce Gale
- Department of Mechanical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Jill Shea
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
- Department of Biomedical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| | - Susan Wojtalewicz
- Department of Surgery, The University of Utah School of Medicine, 30 N 1900 E, Salt Lake City, UT, 84132 , USA
| | - Himanshu Sant
- Department of Chemical Engineering, The University of Utah, 1495 E 100 S, Salt Lake City, UT, 84112, USA
| |
Collapse
|
4
|
Jain A, Pontrelli G, McGinty S. Laplace Transform Based Modeling of Drug Delivery with Reversible Drug Binding in a Multilayer Tissue. Pharm Res 2024; 41:1093-1107. [PMID: 38862720 DOI: 10.1007/s11095-024-03711-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/01/2024] [Indexed: 06/13/2024]
Abstract
OBJECTIVE Drug delivery from a drug-loaded device into an adjacent tissue is a complicated process involving drug transport through diffusion and advection, coupled with drug binding kinetics responsible for drug uptake in the tissue. This work presents a theoretical model to predict drug delivery from a device into a multilayer tissue, assuming linear reversible drug binding in the tissue layers. METHODS The governing mass conservation equations based on diffusion, advection and drug binding in a multilayer cylindrical geometry are written, and solved using Laplace transformation. The model is used to understand the impact of various non-dimensional parameters on the amounts of bound and unbound drug concentrations as functions of time. RESULTS Good agreement for special cases considered in past work is demonstrated. The effect of forward and reverse binding reaction rates on the multilayer drug binding process is studied in detail. The effect of the nature of the external boundary condition on drug binding and drug loss is also studied. For typical parameter values, results indicate that only a small fraction of drug delivered binds in the tissue. Additionally, the amount of bound drug rises rapidly with time due to early dominance of the forward reaction, reaches a maxima and then decays due to the reverse reaction. CONCLUSIONS The general model presented here can account for other possible effects such as drug absorption within the device. Besides generalizing past work on drug delivery modeling, this work also offers analytical tools to understand and optimize practical drug delivery devices.
Collapse
Affiliation(s)
- Ankur Jain
- Mechanical and Aerospace Engineering Department, University of Texas at Arlington, 500 W First St, Rm 211, Arlington, TX, 76019, USA.
| | - Giuseppe Pontrelli
- Istituto per le Applicazioni del Calcolo - CNR, Via dei Taurini 19, 00185, Rome, Italy
| | - Sean McGinty
- Division of Biomedical Engineering, University of Glasgow, Glasgow, UK
- Glasgow Computational Engineering Centre, University of Glasgow, Glasgow, UK
| |
Collapse
|
5
|
Gregory HN, Guillemot-Legris O, Crouch D, Williams G, Phillips JB. Electrospun aligned tacrolimus-loaded polycaprolactone biomaterials for peripheral nerve repair. Regen Med 2024; 19:171-187. [PMID: 37818696 DOI: 10.2217/rme-2023-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Background: Efficacious repair of peripheral nerve injury is an unmet clinical need. The implantation of biomaterials containing neurotrophic drugs at the injury site could promote nerve regeneration and improve outcomes for patients. Materials & methods: Random and aligned electrospun poly-ε-caprolactone scaffolds containing encapsulated tacrolimus were fabricated, and the gene expression profile of Schwann cells (SCs) cultured on the surface was elucidated. On aligned fibers, the morphology of SCs and primary rat neurons was investigated. Results: Both scaffold types exhibited sustained release of drug, and the gene expression of SCs was modulated by both nanofibrous topography and the presence of tacrolimus. Aligned fibers promoted the alignment of SCs and orientated outgrowth from neurons. Conclusion: Electrospun PCL scaffolds with tacrolimus hold promise for the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Holly N Gregory
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1N 1AX, UK
| | - Owein Guillemot-Legris
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1N 1AX, UK
| | - Daisy Crouch
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1N 1AX, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1N 1AX, UK
| | - James B Phillips
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1N 1AX, UK
| |
Collapse
|
6
|
Wu S, Shen W, Ge X, Ao F, Zheng Y, Wang Y, Jia X, Mao Y, Luo Y. Advances in Large Gap Peripheral Nerve Injury Repair and Regeneration with Bridging Nerve Guidance Conduits. Macromol Biosci 2023; 23:e2300078. [PMID: 37235853 DOI: 10.1002/mabi.202300078] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Peripheral nerve injury is a common complication of accidents and diseases. The traditional autologous nerve graft approach remains the gold standard for the treatment of nerve injuries. While sources of autologous nerve grafts are very limited and difficult to obtain. Nerve guidance conduits are widely used in the treatment of peripheral nerve injuries as an alternative to nerve autografts and allografts. However, the development of nerve conduits does not meet the needs of large gap peripheral nerve injury. Functional nerve conduits can provide a good microenvironment for axon elongation and myelin regeneration. Herein, the manufacturing methods and different design types of functional bridging nerve conduits for nerve conduits combined with electrical or magnetic stimulation and loaded with Schwann cells, etc., are summarized. It summarizes the literature and finds that the technical solutions of functional nerve conduits with electrical stimulation, magnetic stimulation and nerve conduits combined with Schwann cells can be used as effective strategies for bridging large gap nerve injury and provide an effective way for the study of large gap nerve injury repair. In addition, functional nerve conduits provide a new way to construct delivery systems for drugs and growth factors in vivo.
Collapse
Affiliation(s)
- Shang Wu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Wen Shen
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xuemei Ge
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Fen Ao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yan Zheng
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yigang Wang
- Department of Pharmacy, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi, 712000, P. R. China
| | - Xiaoni Jia
- Central Laboratory, Xi'an Mental Health Center, Xi'an, 710061, P. R. China
| | - Yueyang Mao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Yali Luo
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| |
Collapse
|
7
|
Laranjeira S, Roberton VH, Phillips JB, Shipley RJ. Perspectives on optimizing local delivery of drugs to peripheral nerves using mathematical models. WIREs Mech Dis 2023; 15:e1593. [PMID: 36624330 PMCID: PMC10909486 DOI: 10.1002/wsbm.1593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Drug therapies for treating peripheral nerve injury repair have shown significant promise in preclinical studies. Despite this, drug treatments are not used routinely clinically to treat patients with peripheral nerve injuries. Drugs delivered systemically are often associated with adverse effects to other tissues and organs; it remains challenging to predict the effective concentration needed at an injured nerve and the appropriate delivery strategy. Local drug delivery approaches are being developed to mitigate this, for example via injections or biomaterial-mediated release. We propose the integration of mathematical modeling into the development of local drug delivery protocols for peripheral nerve injury repair. Mathematical models have the potential to inform understanding of the different transport mechanisms at play, as well as quantitative predictions around the efficacy of individual local delivery protocols. We discuss existing approaches in the literature, including drawing from other research fields, and present a process for taking forward an integrated mathematical-experimental approach to accelerate local drug delivery approaches for peripheral nerve injury repair. This article is categorized under: Neurological Diseases > Molecular and Cellular Physiology Neurological Diseases > Computational Models Neurological Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Simao Laranjeira
- UCL Mechanical EngineeringUCL Centre for Nerve EngineeringLondonLondonUK
| | | | - James B. Phillips
- UCL School of PharmacyUCL Centre for Nerve EngineeringLondonLondonUK
| | - Rebecca J. Shipley
- UCL Mechanical EngineeringUCL Centre for Nerve EngineeringLondonLondonUK
| |
Collapse
|
8
|
Roberton VH, Gregory HN, Angkawinitwong U, Mokrane O, Boyd AS, Shipley RJ, Williams GR, Phillips JB. Local delivery of tacrolimus using electrospun poly-ϵ-caprolactone nanofibres suppresses the T-cell response to peripheral nerve allografts. J Neural Eng 2023; 20. [PMID: 36538818 DOI: 10.1088/1741-2552/acad2a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Objective.Repair of nerve gap injuries can be achieved through nerve autografting, but this approach is restricted by limited tissue supply and donor site morbidity. The use of living nerve allografts would provide an abundant tissue source, improving outcomes following peripheral nerve injury. Currently this approach is not used due to the requirement for systemic immunosuppression, to prevent donor-derived cells within the transplanted nerve causing an immune response, which is associated with severe adverse effects. The aim of this study was to develop a method for delivering immunosuppression locally, then to test its effectiveness in reducing the immune response to transplanted tissue in a rat model of nerve allograft repair.Approach.A coaxial electrospinning approach was used to produce poly-ϵ-caprolactone fibre sheets loaded with the immunosuppressant tacrolimus. The material was characterised in terms of structure and tacrolimus release, then testedin vivothrough implantation in a rat sciatic nerve allograft model with immunologically mismatched host and donor tissue.Main results.Following successful drug encapsulation, the fibre sheets showed nanofibrous structure and controlled release of tacrolimus over several weeks. Materials containing tacrolimus (and blank material controls) were implanted around the nerve graft at the time of allograft or autograft repair. The fibre sheets were well tolerated by the animals and tacrolimus release resulted in a significant reduction in lymphocyte infiltration at 3 weeks post-transplantation.Significance.These findings demonstrate proof of concept for a novel nanofibrous biomaterial-based targeted drug delivery strategy for immunosuppression in peripheral nerve allografting.
Collapse
Affiliation(s)
- V H Roberton
- UCL School of Pharmacy, University College London, London, United Kingdom
- UCL Centre for Nerve Engineering, London, United Kingdom
| | - H N Gregory
- UCL School of Pharmacy, University College London, London, United Kingdom
- UCL Centre for Nerve Engineering, London, United Kingdom
| | - U Angkawinitwong
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - O Mokrane
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - A S Boyd
- UCL Centre for Nerve Engineering, London, United Kingdom
- UCL Institute of Immunity and Transplantation, Royal Free Hospital, London, United Kingdom
| | - R J Shipley
- UCL Centre for Nerve Engineering, London, United Kingdom
- Department of Mechanical Engineering, UCL, London, United Kingdom
| | - G R Williams
- UCL School of Pharmacy, University College London, London, United Kingdom
| | - J B Phillips
- UCL School of Pharmacy, University College London, London, United Kingdom
- UCL Centre for Nerve Engineering, London, United Kingdom
| |
Collapse
|
9
|
Augmenting Peripheral Nerve Regeneration with Adipose-Derived Stem Cells. Stem Cell Rev Rep 2022; 18:544-558. [PMID: 34417730 PMCID: PMC8858329 DOI: 10.1007/s12015-021-10236-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 02/03/2023]
Abstract
Peripheral nerve injuries (PNIs) are common and debilitating, cause significant health care costs for society, and rely predominately on autografts, which necessitate grafting a nerve section non-locally to repair the nerve injury. One possible approach to improving treatment is bolstering endogenous regenerative mechanisms or bioengineering new nervous tissue in the peripheral nervous system. In this review, we discuss critical-sized nerve gaps and nerve regeneration in rats, and summarize the roles of adipose-derived stem cells (ADSCs) in the treatment of PNIs. Several regenerative treatment modalities for PNI are described: ADSCs differentiating into Schwann cells (SCs), ADSCs secreting growth factors to promote peripheral nerve growth, ADSCs promoting myelination growth, and ADSCs treatments with scaffolds. ADSCs' roles in regenerative treatment and features are compared to mesenchymal stem cells, and the administration routes, cell dosages, and cell fates are discussed. ADSCs secrete neurotrophic factors and exosomes and can differentiate into Schwann cell-like cells (SCLCs) that share features with naturally occurring SCs, including the ability to promote nerve regeneration in the PNS. Future clinical applications are also discussed.
Collapse
|
10
|
Souza NM, Gonçalves MF, Ferreira LFR, Bilal M, Iqbal HMN, Soriano RN. Revisiting the Role of Biologically Active Natural and Synthetic Compounds as an Intervention to Treat Injured Nerves. Mol Neurobiol 2021; 58:4980-4998. [PMID: 34228268 DOI: 10.1007/s12035-021-02473-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/24/2021] [Indexed: 02/08/2023]
Abstract
Traumatic lesions in nerves present high incidence and may culminate in sensorimotor and/or autonomic dysfunctions or a total loss of function, affecting the patient's quality of life. Although the microenvironment favors peripheral nerve regeneration, the regenerative process is not always successful. Some herbs, natural products, and synthetic drugs have been studied as potential pro-regenerative interventions. We reviewed and discussed the most recent articles published over the last ten years in high impact factor journals. Even though most of the articles contemplated in this review were in vitro and animal model studies, those with herbs showed promising results. Most of them presented antioxidant and anti-inflammatory effects. Drugs of several pharmacological classes also showed optimistic outcomes in nerve functional recovery, including clinical trials. The results are hopeful; however, mechanisms of action need to be elucidated, and there is a need for more high-quality clinical studies. The study presents careful compilation of findings of dozens of compounds with consistent pro-regenerative evidence published in respected scientific journals. It may be valuable for health professionals and researchers in the field.
Collapse
Affiliation(s)
- Natália Melo Souza
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, 35032-620, Brazil
| | - Mateus Figueiredo Gonçalves
- Department of Medicine, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, 35032-620, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University (UNIT), Av. Murilo Dantas, Aracaju Sergipe, Farolândia, 30049032-490, Brazil
- Institute of Technology and Research (ITP), Tiradentes University (UNIT), Av. Murilo Dantas, Aracaju-Sergipe, Farolândia, 30049032-490, Brazil
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico.
| | - Renato Nery Soriano
- Division of Physiology and Biophysics, Department of Basic Life Sciences, Federal University of Juiz de Fora, Governador Valadares, Minas Gerais, 35010-177, Brazil.
| |
Collapse
|
11
|
Yeoh S, Warner WS, Eli I, Mahan MA. Rapid-stretch injury to peripheral nerves: comparison of injury models. J Neurosurg 2021; 135:893-903. [PMID: 33157535 DOI: 10.3171/2020.5.jns193448] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/13/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Traditional animal models of nerve injury use controlled crush or transection injuries to investigate nerve regeneration; however, a more common and challenging clinical problem involves closed traction nerve injuries. The authors have produced a precise traction injury model and sought to examine how the pathophysiology of stretch injuries compares with that of crush and transection injuries. METHODS Ninety-five late-adolescent (8-week-old) male mice underwent 1 of 7 injury grades or a sham injury (n > 10 per group): elastic stretch, inelastic stretch, stretch rupture, crush, primary coaptation, secondary coaptation, and critical gap. Animals underwent serial neurological assessment with sciatic function index, tapered beam, and von Frey monofilament testing for 48 days after injury, followed by trichrome and immunofluorescent nerve histology and muscle weight evaluation. RESULTS The in-continuity injuries, crush and elastic stretch, demonstrated different recovery profiles, with more severe functional deficits after crush injury than after elastic stretch immediately following injury (p < 0.05). However, animals with either injury type returned to baseline performance in all neurological assessments, accompanied by minimal change in nerve histology. Inelastic stretch, a partial discontinuity injury, produced more severe neurological deficits, incomplete return of function, 47% ± 9.1% (mean ± SD) reduction of axon counts (p < 0.001), and partial neuroma formation within the nerve. Discontinuity injuries, including immediate and delayed nerve repair, stretch rupture, and critical gap, manifested severe, long-term neurological deficits and profound axonal loss, coupled with intraneural scar formation. Although repaired nerves demonstrated axon regeneration across the gap, rupture and critical gap injuries demonstrated negligible axon crossing, despite rupture injuries having healed into continuity. CONCLUSIONS Stretch-injured nerves present unique pathology and functional deficits compared with traditional nerve injury models. Because of the profound neuroma formation, stretch injuries represent an opportunity to study the pathophysiology associated with clinical injury mechanisms. Further validation for comparison with human injuries will require evaluation in a large-animal model.
Collapse
|
12
|
Zhang RC, Du WQ, Zhang JY, Yu SX, Lu FZ, Ding HM, Cheng YB, Ren C, Geng DQ. Mesenchymal stem cell treatment for peripheral nerve injury: a narrative review. Neural Regen Res 2021; 16:2170-2176. [PMID: 33818489 PMCID: PMC8354135 DOI: 10.4103/1673-5374.310941] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Peripheral nerve injuries occur as the result of sudden trauma and lead to reduced quality of life. The peripheral nervous system has an inherent capability to regenerate axons. However, peripheral nerve regeneration following injury is generally slow and incomplete that results in poor functional outcomes such as muscle atrophy. Although conventional surgical procedures for peripheral nerve injuries present many benefits, there are still several limitations including scarring, difficult accessibility to donor nerve, neuroma formation and a need to sacrifice the autologous nerve. For many years, other therapeutic approaches for peripheral nerve injuries have been explored, the most notable being the replacement of Schwann cells, the glial cells responsible for clearing out debris from the site of injury. Introducing cultured Schwann cells to the injured sites showed great benefits in promoting axonal regeneration and functional recovery. However, there are limited sources of Schwann cells for extraction and difficulties in culturing Schwann cells in vitro. Therefore, novel therapeutic avenues that offer maximum benefits for the treatment of peripheral nerve injuries should be investigated. This review focused on strategies using mesenchymal stem cells to promote peripheral nerve regeneration including exosomes of mesenchymal stem cells, nerve engineering using the nerve guidance conduits containing mesenchymal stem cells, and genetically engineered mesenchymal stem cells. We present the current progress of mesenchymal stem cell treatment of peripheral nerve injuries.
Collapse
Affiliation(s)
- Rui-Cheng Zhang
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Wen-Qi Du
- Department of Human Anatomy, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Jing-Yuan Zhang
- Department of Neurosurgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Shao-Xia Yu
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - Fang-Zhi Lu
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Hong-Mei Ding
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yan-Bo Cheng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Chao Ren
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong Province, China
| | - De-Qin Geng
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| |
Collapse
|
13
|
Zhang Q, Wu P, Chen F, Zhao Y, Li Y, He X, Huselstein C, Ye Q, Tong Z, Chen Y. Brain Derived Neurotrophic Factor and Glial Cell Line-Derived Neurotrophic Factor-Transfected Bone Mesenchymal Stem Cells for the Repair of Periphery Nerve Injury. Front Bioeng Biotechnol 2020; 8:874. [PMID: 32850732 PMCID: PMC7406647 DOI: 10.3389/fbioe.2020.00874] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022] Open
Abstract
Peripheral nerve injury is a common clinical neurological disease. In our previous study, highly oriented poly (L-lactic acid) (PLLA)/soy protein isolate (SPI) nanofiber nerve conduits were constructed and exhibited a certain repair capacity for peripheral nerve injury. In order to further improve their nerve repairing efficiency, the bone mesenchymal stem cells (BMSCs) overexpressing brain derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) were introduced into the conduits as seed cells and then were used to repair the 10-mm sciatic nerve defects in rats. The nerve repair efficiency of the functional nerve conduits was evaluated by gait experiment, electrophysiological test, and a series of assays such as hemotoxylin-eosin (HE) staining, immunofluorescence staining, toluidine blue (TB) staining, transmission electron microscopy (TEM) observation of regenerated nerve and Masson's trichrome staining of gastrocnemius muscle. The results showed that the conduits containing BMSCs overexpressing BDNF and GDNF double-factors group had better nerve repairing efficiency than blank BMSCs and single BDNF or GDNF factor groups, and superior to autografts group in some aspects. These data demonstrated that BDNF and GDNF produced by BMSCs could synergistically promote peripheral nerve repair. This study shed a new light on the conduits and stem cells-based peripheral nerve repair.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hangzhou Singclean Medical Products Co., Ltd., Hangzhou, China
| | - Ping Wu
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Feixiang Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yanan Zhao
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yinping Li
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiaohua He
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Céline Huselstein
- CNRS UMR 7561 and FR CNRS-INSERM 32.09, Nancy University, Vandæuvre-lès-Nancy, France
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan, China
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Wuhan University, Wuhan, China
| | - Zan Tong
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yun Chen
- Department of Biomedical Engineering and Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Wu P, Zhao Y, Chen F, Xiao A, Du Q, Dong Q, Ke M, Liang X, Zhou Q, Chen Y. Conductive Hydroxyethyl Cellulose/Soy Protein Isolate/Polyaniline Conduits for Enhancing Peripheral Nerve Regeneration via Electrical Stimulation. Front Bioeng Biotechnol 2020; 8:709. [PMID: 32719783 PMCID: PMC7347754 DOI: 10.3389/fbioe.2020.00709] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
Nerve regeneration remains a challenge to the treatment of peripheral nerve injury. Electrical stimulation (ES) is an assistant treatment to enhance recovery from peripheral nerve injury. A conductive nerve guide conduit was prepared from hydroxyethyl cellulose (HEC)/soy protein isolate (SPI)/PANI sponge (HSPS) and then the HSPS conduits were used to repair 10 mm sciatic nerve injury in rat model with or without ES, using HSPS+brain-derived neurotrophic factor (BDNF) and autografts as controls. The nerve repairing capacities were evaluated by animal experiments of behavioristics, electrophysiology, toluidine blue staining, and transmission electron microscopy (TEM) in the regenerated nerves. The results revealed that the nerve regeneration efficiency of HSPS conduits with ES (HSPS+ES) group was the best among the conduit groups but slightly lower than that of autografts group. HSPS+ES group even exhibited notably increased in the BDNF expression of regenerated nerve tissues, which was also confirmed through in vitro experiments that exogenous BDNF could promote Schwann cells proliferation and MBP protein expression. As a result, this work provided a strategy to repair nerve defect using conductive HSPS as nerve guide conduit and using ES as an extrinsic physical cue to promote the expression of endogenous BDNF.
Collapse
Affiliation(s)
- Ping Wu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yanan Zhao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feixiang Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Ao Xiao
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qiaoyue Du
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qi Dong
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Meifang Ke
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xiao Liang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qing Zhou
- Department of Ultrasound Imaging, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yun Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Province Key Laboratory of Allergy and Immune Related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, China
- Hubei Engineering Center of Natural Polymers-Based Medical Materials, Wuhan University, Wuhan, China
| |
Collapse
|
15
|
Labroo P, Ho S, Sant H, Shea JE, Agarwal J, Gale B. Modeling diffusion-based drug release inside a nerve conduit in vitro and in vivo validation study. Drug Deliv Transl Res 2020; 11:154-168. [PMID: 32367424 DOI: 10.1007/s13346-020-00755-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The objective of this work was to develop a model and understand the diffusion of a drug into and throughout a drug delivering nerve conduit from a surrounding reservoir through a hole in the wall separating the lumen of the conduit and the reservoir. A mathematical model based on Fick's law of diffusion was developed using the finite difference method to understand the drug diffusion and the effect of varying device parameters on the concentration of drug delivered from a hole-based drug delivery device. The mathematical model was verified using a physical microfluidic (μFD) model and an in vitro/in vivo release test using prototype devices. The results of the mathematical model evaluation and microfluidic device testing offered positive insight into the reliability and function of the reservoir and hole-based drug delivering nerve conduit. The mathematical model demonstrated how changing device parameters would change the drug concentration inside the device. It was observed that the drug release in the conduit could be tuned by both concentration scaling and changing the hole size or number of holes. Based on the results obtained from the microfluidic device, the error in the mathematical drug release model was shown to be less than 10% when comparing the data obtained from mathematical model and μFD model. The data highlights the flexibility of having a hole-based drug delivery system, since the drug release can be scaled predictably by changing the device parameters or the concentration of the drug in the reservoir. Graphical abstract .
Collapse
Affiliation(s)
- Pratima Labroo
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Scott Ho
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Himanshu Sant
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| | - Jill E Shea
- Department of Surgery, University of Utah, 30 N 1900 E, 3b400, Salt Lake City, UT, 84112-9057, USA
| | - Jayant Agarwal
- Department of Surgery, University of Utah, 30 N 1900 E, 3b400, Salt Lake City, UT, 84112-9057, USA.
| | - Bruce Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, 84112, USA
| |
Collapse
|
16
|
Li Q, Li L, Yu M, Zheng M, Li Y, Yang J, Dai M, Zhong L, Sun L, Lu D. Elastomeric polyurethane porous film functionalized with gastrodin for peripheral nerve regeneration. J Biomed Mater Res A 2020; 108:1713-1725. [PMID: 32196902 DOI: 10.1002/jbm.a.36937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Qing Li
- Science and Technology Achievement Incubation CenterKunming Medical University Kunming China
| | - Limei Li
- Science and Technology Achievement Incubation CenterKunming Medical University Kunming China
| | - Mali Yu
- Science and Technology Achievement Incubation CenterKunming Medical University Kunming China
| | - Meng Zheng
- Science and Technology Achievement Incubation CenterKunming Medical University Kunming China
| | - Yao Li
- Department of StomatologyThe First People's Hospital of Yunnan Provience Kunming China
| | - Jian Yang
- Department of Biomedical EngineeringMaterials Research Institute, The Huck Institutes of The Life Sciences, The Pennsylvania State University University Park Pennsylvania USA
| | - Min Dai
- Department of Second CardiologyThe Third People's Hospital of Kunming Kunming China
| | - Lianmei Zhong
- Department of NeurologyThe First Affiliated Hospital, Kunming Medical University Kunming China
| | - Lin Sun
- Department of CardiologyThe Second Affiliated Hospital, Kunming Medical University Kunming China
| | - Di Lu
- Science and Technology Achievement Incubation CenterKunming Medical University Kunming China
| |
Collapse
|
17
|
Restoration of Neurological Function Following Peripheral Nerve Trauma. Int J Mol Sci 2020; 21:ijms21051808. [PMID: 32155716 PMCID: PMC7084579 DOI: 10.3390/ijms21051808] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Following peripheral nerve trauma that damages a length of the nerve, recovery of function is generally limited. This is because no material tested for bridging nerve gaps promotes good axon regeneration across the gap under conditions associated with common nerve traumas. While many materials have been tested, sensory nerve grafts remain the clinical “gold standard” technique. This is despite the significant limitations in the conditions under which they restore function. Thus, they induce reliable and good recovery only for patients < 25 years old, when gaps are <2 cm in length, and when repairs are performed <2–3 months post trauma. Repairs performed when these values are larger result in a precipitous decrease in neurological recovery. Further, when patients have more than one parameter larger than these values, there is normally no functional recovery. Clinically, there has been little progress in developing new techniques that increase the level of functional recovery following peripheral nerve injury. This paper examines the efficacies and limitations of sensory nerve grafts and various other techniques used to induce functional neurological recovery, and how these might be improved to induce more extensive functional recovery. It also discusses preliminary data from the clinical application of a novel technique that restores neurological function across long nerve gaps, when repairs are performed at long times post-trauma, and in older patients, even under all three of these conditions. Thus, it appears that function can be restored under conditions where sensory nerve grafts are not effective.
Collapse
|
18
|
Yoo J, Park JH, Kwon YW, Chung JJ, Choi IC, Nam JJ, Lee HS, Jeon EY, Lee K, Kim SH, Jung Y, Park JW. Augmented peripheral nerve regeneration through elastic nerve guidance conduits prepared using a porous PLCL membrane with a 3D printed collagen hydrogel. Biomater Sci 2020; 8:6261-6271. [DOI: 10.1039/d0bm00847h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Longitudinally oriented, 3D printed collagen hydrogel-grafted elastic nerve guidance conduits to promote nerve regeneration in peripheral nerve defects.
Collapse
|
19
|
Saffari TM, Bedar M, Zuidam JM, Shin AY, Baan CC, Hesselink DA, Hundepool CA. Exploring the neuroregenerative potential of tacrolimus. Expert Rev Clin Pharmacol 2019; 12:1047-1057. [DOI: 10.1080/17512433.2019.1675507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- T. M. Saffari
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - M. Bedar
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - J. M. Zuidam
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| | - A. Y. Shin
- Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - C. C. Baan
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D. A. Hesselink
- Department of Internal Medicine, Division of Nephrology and Transplantation, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C. A. Hundepool
- Department of Plastic-, Reconstructive- and Hand Surgery, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Davis B, Hilgart D, Erickson S, Labroo P, Burton J, Sant H, Shea J, Gale B, Agarwal J. Local FK506 delivery at the direct nerve repair site improves nerve regeneration. Muscle Nerve 2019; 60:613-620. [PMID: 31397908 DOI: 10.1002/mus.26656] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022]
Abstract
INTRODUCTION The objective of this study is to assess the efficacy of local tacrolimus (FK506) delivery to improve outcomes in the setting of nerve transection injury. METHODS FK506 embedded poly(lactide-co-caprolactone) films capable of extended, localized release of FK506 were developed. FK506 rate of release testing and bioactivity assay was performed. Mouse sciatic nerve transection and direct repair model was used to evaluate the effect extended, local delivery of FK506 had on nerve regeneration outcomes. RESULTS Linear release of FK506 was observed for 30 days and released FK506 matched control levels of neurite extension in the dorsal root ganglion assay. Groups treated with local FK506 had greater gastrocnemius muscle weight, foot electromyogram, and number of axons distal of the repair site than non-FK506 groups. DISCUSSION Results of this study indicate that extended, localized delivery of FK506 to nerve injuries can improve nerve regeneration outcomes in a mouse sciatic nerve transection and repair.
Collapse
Affiliation(s)
- Brett Davis
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - David Hilgart
- Department of Bioengineering, University of Utah, Salt Lake City, Utah
| | - Sierra Erickson
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Pratima Labroo
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Joshua Burton
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Himanshu Sant
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| | - Jill Shea
- Department of Surgery, University of Utah, Salt Lake City, Utah
| | - Bruce Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah
| | - Jay Agarwal
- Department of Surgery, University of Utah, Salt Lake City, Utah
| |
Collapse
|