1
|
Khadem S, Marles RJ. The occurrence and bioactivity of tetrahydronaphthoquinoline-diones (THNQ-dione). Nat Prod Res 2025; 39:1622-1635. [PMID: 38885316 DOI: 10.1080/14786419.2024.2367235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
Natural products have been important in the discovery of new drugs, but their use is limited due to issues with accessibility and synthesis. Tetrahydronaphthoquinoline-dione (THNQ-dione) is a key structural feature found in several natural and synthetic compounds that exhibit notable biological properties. The unique properties of THNQ-diones can be attributed to the fusion of tetrahydroquinoline and anthraquinone moieties. These alkaloids are synthesised through various biosynthetic pathways, leading to diverse structures and bioactivities. Despite their significance, THNQ-diones have not been extensively covered in the review literature, highlighting the importance of this article in discussing their natural occurrence and biological activities. This article explores the distribution of THNQ-dione alkaloids in different organisms and their potential as a source of novel bioactive natural products.
Collapse
Affiliation(s)
- Shahriar Khadem
- Safe Environments Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Robin J Marles
- Retired Senior Scientific Advisor from Health Canada, Ottawa, Canada
| |
Collapse
|
2
|
Thissera B, Soldatou S, Belbahri L, Ebel R, Jaspars M, Rateb ME. Unconventional approaches for the induction of microbial natural products. J Appl Microbiol 2025; 136:lxaf014. [PMID: 39794282 DOI: 10.1093/jambio/lxaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/11/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
Expansion of the microbial drug discovery pipeline has been impeded by a limited and skewed appreciation of the microbial world and its full chemical capabilities and by an inability to induce silent biosynthetic gene clusters (BGCs). Typically, these silent genes are not expressed under standard laboratory conditions, instead requiring particular interventions to activate them. Genetic, physical, and chemical strategies have been employed to trigger these BGCs, and some have resulted in the induction of novel secondary metabolites. This review encompasses a wide range of literature and emphasizes selected successful induction of microbial secondary metabolites examples through unconventional approaches such as quorum sensing, epigenetic modulation, and ribosome engineering. Whenever applicable, we will also discuss their mechanisms and optimizations to improve the microbial drug discovery process.
Collapse
Affiliation(s)
- Bathini Thissera
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK
| | - Sylvia Soldatou
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Lassaad Belbahri
- University Institute of Teacher Education (IUFE), University of Geneva, 24 Rue du Général-Dufour, 1211 Geneva, Switzerland
| | - Rainer Ebel
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Marcel Jaspars
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK
| |
Collapse
|
3
|
Liu H, Fan Z, Tong N, Lin J, Huang Y, Duan Y, Zhu X. The exploration of high production of tiancimycins in Streptomyces sp. CB03234-S revealed potential influences of universal stress proteins on secondary metabolisms of streptomycetes. Microb Cell Fact 2024; 23:337. [PMID: 39702388 DOI: 10.1186/s12934-024-02613-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Universal stress proteins (USPs) are prevalent in various bacteria to cope with different adverse stresses, while their possible effects on secondary metabolisms of hosts are unclear. Tiancimycins (TNMs) are ten-membered endiynes possessing excellent potential for development of anticancer antibody-drug conjugates. During our efforts to improve TNMs titer, a high-producing strain Streptomyces sp. CB03234-S had been obtained and its possible high yield mechanism is being continuously explored to further enhance TNMs production. RESULTS In this work, the whole-genome resequencing and analysis results revealed a notable 583 kb terminal deletion containing 8 highly expressed usp genes in the genome of CB03234-S. The individual complementation of lost USPs in CB03234-S all showed differential effects on secondary metabolism, especially TNMs production. Among them, the overexpression of USP3 increased TNMs titer from 12.8 ± 0.2 to 31.1 ± 2.3 mg/L, while the overexpression of USP8 significantly reduced TNMs titer to only 1.0 ± 0.1 mg/L, but activated the production of porphyrin-type compounds. Subsequent genetic manipulations on USP3/USP8 orthologs in Streptomyces. coelicolor A3(2) and Streptomyces sp. CB00271 also presented clear effects on the secondary metabolisms of hosts. Further sequence similarity network analysis and Streptomyces-based pan‑genomic analysis suggested that the USP3/USP8 orthologs are widely distributed across Streptomyces. CONCLUSION Our studies shed light on the potential effects of USPs on secondary metabolisms of streptomycetes for the first time, and USPs could become novel targets for exploring and exploiting natural products in streptomycetes.
Collapse
Affiliation(s)
- Huiming Liu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China
| | - Zhiying Fan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China
| | - Nian Tong
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China
| | - Jing Lin
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China.
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, 410013, China.
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, 410013, China.
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Tongzipo Road, #172, Yuelu District, Changsha, Hunan, 410013, China.
- Center for Future Foods, Muyuan Laboratory, 110 Shangding Road, Zhengzhou, Henan, 450016, China.
- Nanyang Westlake-Muyuan Institute of Synthetic Biology, Nanyang, Henan, 473000, China.
| |
Collapse
|
4
|
Lin J, Xiao Y, Liu H, Gao D, Duan Y, Zhu X. Combined transcriptomic and pangenomic analyses guide metabolic amelioration to enhance tiancimycins production. Appl Microbiol Biotechnol 2024; 108:18. [PMID: 38170317 DOI: 10.1007/s00253-023-12937-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/15/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Exploration of high-yield mechanism is important for further titer improvement of valuable antibiotics, but how to achieve this goal is challenging. Tiancimycins (TNMs) are anthraquinone-fused enediynes with promising drug development potentials, but their prospective applications are limited by low titers. This work aimed to explore the intrinsic high-yield mechanism in previously obtained TNMs high-producing strain Streptomyces sp. CB03234-S for the further titer amelioration of TNMs. First, the typical ribosomal RpsL(K43N) mutation in CB03234-S was validated to be merely responsible for the streptomycin resistance but not the titer improvement of TNMs. Subsequently, the combined transcriptomic, pan-genomic and KEGG analyses revealed that the significant changes in the carbon and amino acid metabolisms could reinforce the metabolic fluxes of key CoA precursors, and thus prompted the overproduction of TNMs in CB03234-S. Moreover, fatty acid metabolism was considered to exert adverse effects on the biosynthesis of TNMs by shunting and reducing the accumulation of CoA precursors. Therefore, different combinations of relevant genes were respectively overexpressed in CB03234-S to strengthen fatty acid degradation. The resulting mutants all showed the enhanced production of TNMs. Among them, the overexpression of fadD, a key gene responsible for the first step of fatty acid degradation, achieved the highest 21.7 ± 1.1 mg/L TNMs with a 63.2% titer improvement. Our studies suggested that comprehensive bioinformatic analyses are effective to explore metabolic changes and guide rational metabolic reconstitution for further titer improvement of target products. KEY POINTS: • Comprehensive bioinformatic analyses effectively reveal primary metabolic changes. • Primary metabolic changes cause precursor enrichment to enhance TNMs production. • Strengthening of fatty acid degradation further improves the titer of TNMs.
Collapse
Affiliation(s)
- Jing Lin
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China
| | - Yu Xiao
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China
| | - Huiming Liu
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China
| | - Die Gao
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China.
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Yuelu District, Tongzipo Road, #172, Changsha, 410013, Hunan, China.
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, Hunan, China.
| |
Collapse
|
5
|
Liu H, Lin J, Huang Y, Duan Y, Zhu X. Genomic Comparisons Revealed the Key Genotypes of Streptomyces sp. CB03234-GS26 to Optimize Its Growth and Relevant Production of Tiancimycins. Bioengineering (Basel) 2024; 11:1128. [PMID: 39593788 PMCID: PMC11591506 DOI: 10.3390/bioengineering11111128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Strain robustness and titer improvement are major challenges faced in the industrial development of natural products from Streptomyces. Tiancimycins (TNMs) produced by Streptomyces sp. CB03234 are promising anticancer payloads for antibody-drug conjugates, but further development is severely limited by the low titer of TNMs. Despite many efforts to generate various TNMs overproducers, the mechanisms underlying high TNMs production remain to be explored. Herein, genome resequencing and genomic comparisons of different TNMs overproducers were conducted to explore the unique genotypes in CB03234-GS26. Four target genes were selected for further bioinformatic analyses and genetic validations. The results indicated that the inactivation of histidine ammonia-lyase (HAL) showed the most significant effect by blocking the intracellular degradation of histidine to facilitate relevant enzymatic catalysis and thus improve the production of TNMs. Additionally, the potassium/proton antiporter (P/PA) was crucial for intracellular pH homeostasis, and its deficiency severely impaired the alkaline tolerance of the cells. Subsequent pan-genomic analysis suggested that HAL and P/PA are core enzymes that are highly conserved in Streptomyces. Therefore, HAL and P/PA represented novel targets to regulate secondary metabolism and enhance strain robustness and could become potential synthetic biological modules to facilitate development of natural products and strain improvement in Streptomyces.
Collapse
Affiliation(s)
- Huiming Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (H.L.); (Y.H.)
| | - Jing Lin
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (H.L.); (Y.H.)
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (H.L.); (Y.H.)
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410013, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (H.L.); (Y.H.)
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha 410013, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha 410013, China; (H.L.); (Y.H.)
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha 410013, China
- Muyuan Laboratory, Zhengdong New District, Zhengzhou 450047, China
| |
Collapse
|
6
|
Zhuang Z, Kong W, Wen Z, Tong N, Lin J, Zhang F, Fan Z, Yi L, Huang Y, Duan Y, Yan X, Zhu X. Combinatorial metabolic engineering of Streptomyces sp. CB03234-S for the enhanced production of anthraquinone-fused enediyne tiancimycins. Microb Cell Fact 2024; 23:128. [PMID: 38704580 PMCID: PMC11069151 DOI: 10.1186/s12934-024-02399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Anthraquinone-fused enediynes (AFEs) are excellent payloads for antibody-drug conjugates (ADCs). The yields of AFEs in the original bacterial hosts are extremely low. Multiple traditional methods had been adopted to enhance the production of the AFEs. Despite these efforts, the production titers of these compounds are still low, presenting a practical challenge for their development. Tiancimycins (TNMs) are a class of AFEs produced by Streptomyces sp. CB03234. One of their salient features is that they exhibit rapid and complete cell killing ability against various cancer cell lines. RESULTS In this study, a combinatorial metabolic engineering strategy guided by the CB03234-S genome and transcriptome was employed to improve the titers of TNMs. First, re-sequencing of CB03234-S (Ribosome engineered mutant strains) genome revealed the deletion of a 583-kb DNA fragment, accounting for about 7.5% of its genome. Second, by individual or combined inactivation of seven potential precursor competitive biosynthetic gene clusters (BGCs) in CB03234-S, a double-BGC inactivation mutant, S1009, was identified with an improved TNMs titer of 28.2 ± 0.8 mg/L. Third, overexpression of five essential biosynthetic genes, including two post-modification genes, and three self-resistance auxiliary genes, was also conducted, through which we discovered that mutants carrying the core genes, tnmE or tnmE10, exhibited enhanced TNMs production. The average TNMs yield reached 43.5 ± 2.4 mg/L in a 30-L fermenter, representing an approximately 360% increase over CB03234-S and the highest titer among all AFEs to date. Moreover, the resulting mutant produced TNM-W, a unique TNM derivative with a double bond instead of a common ethylene oxide moiety. Preliminary studies suggested that TNM-W was probably converted from TNM-A by both TnmE and TnmE10. CONCLUSIONS Based on the genome and transcriptome analyses, we adopted a combined metabolic engineering strategy for precursor enrichment and biosynthetic pathway reorganization to construct a high-yield strain of TNMs based on CB03234-S. Our study establishes a solid basis for the clinical development of AFE-based ADCs.
Collapse
Affiliation(s)
- Zhoukang Zhuang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China
| | - Wenping Kong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China
| | - Zhongqing Wen
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China
| | - Nian Tong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China
| | - Jing Lin
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China
| | - Fan Zhang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China
| | - Zhiying Fan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China
| | - Liwei Yi
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China
- The Affiliated Nanhua Hospital, Department of Pharmacy, Institute of Clinical Pharmacy, Hengyang Medical School, University of South China, Hengyang, 421002, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410011, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China.
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410011, China.
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, China.
| | - Xiaohui Yan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China.
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, 410013, China.
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410011, China.
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410013, China.
| |
Collapse
|
7
|
Jalali E, Wang F, Overbay BR, Miller MD, Shaaban KA, Ponomareva LV, Ye Q, Saghaeiannejad-Esfahani H, Bhardwaj M, Steele AD, Teijaro CN, Shen B, Van Lanen SG, She QB, Voss SR, Phillips GN, Thorson JS. Biochemical and Structural Studies of the Carminomycin 4- O-Methyltransferase DnrK. JOURNAL OF NATURAL PRODUCTS 2024; 87:798-809. [PMID: 38412432 PMCID: PMC11623920 DOI: 10.1021/acs.jnatprod.3c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Structural and functional studies of the carminomycin 4-O-methyltransferase DnrK are described, with an emphasis on interrogating the acceptor substrate scope of DnrK. Specifically, the evaluation of 100 structurally and functionally diverse natural products and natural product mimetics revealed an array of pharmacophores as productive DnrK substrates. Representative newly identified DnrK substrates from this study included anthracyclines, angucyclines, anthraquinone-fused enediynes, flavonoids, pyranonaphthoquinones, and polyketides. The ligand-bound structure of DnrK bound to a non-native fluorescent hydroxycoumarin acceptor, 4-methylumbelliferone, along with corresponding DnrK kinetic parameters for 4-methylumbelliferone and native acceptor carminomycin are also reported for the first time. The demonstrated unique permissivity of DnrK highlights the potential for DnrK as a new tool in future biocatalytic and/or strain engineering applications. In addition, the comparative bioactivity assessment (cancer cell line cytotoxicity, 4E-BP1 phosphorylation, and axolotl embryo tail regeneration) of a select set of DnrK substrates/products highlights the ability of anthracycline 4-O-methylation to dictate diverse functional outcomes.
Collapse
Affiliation(s)
| | - Fengbin Wang
- Department of Biosciences, Rice University, Houston, Texas 77030, United States
| | | | - Mitchell D Miller
- Department of Biosciences, Rice University, Houston, Texas 77030, United States
| | | | | | - Qing Ye
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | | | | | | | | | | | | | - Qing-Bai She
- Markey Cancer Center, Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, Kentucky 40536, United States
| | - S Randal Voss
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky 40536, United States
- Ambystoma Genetic Stock Center, University of Kentucky, Lexington, Kentucky 40536, United States
- Spinal Cord and Brain Injury Research Center, University of Kentucky, Lexington, Kentucky 40536, United States
| | - George N Phillips
- Department of Biosciences, Rice University, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, Houston, Texas 77030, United States
| | | |
Collapse
|
8
|
Wen Z, Zhuang Z, Liu H, Wang Z, Feng X, Zhu X, Yan X, Duan Y, Huang Y. DNA Interaction and Cleavage Modes of Anthraquinone-Fused Enediynes: A Study on Tiancimycins, Yangpumicins, and Their Semisynthetic Analogues. J Med Chem 2024; 67:4624-4640. [PMID: 38483132 DOI: 10.1021/acs.jmedchem.3c02049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Dynemicin A has been the sole prototypical anthraquinone-fused enediyne (AFE) explored since its discovery in 1989. This study investigates the distinct DNA binding and cleavage mechanisms of emerging AFEs, represented by tiancimycins and yangpumicins, along with semisynthetic analogues. Our findings reveal their potent cytotoxicity against various tumor cell lines, while 18-methoxy tiancimycin A treatment could significantly suppress breast tumor growth with minimal toxicity. One of the most potent AFEs, i.e., tiancimycin A, preferentially targets DNA sequences 5'-ATT, 5'-CTT, 5'-GAA, 5'-GAT, and 5'-TTA. Molecular dynamics simulations suggest that emerging AFEs intercalate deeper into AT-rich DNA base pairs compared to dynemicin A. Importantly, tiancimycin A may equilibrate between insertional and intercalative modes without deintercalation, enabling selective cleavage of T and A bases. This study underscores how subtle structural variations among AFEs significantly influence their DNA recognition and cleavage, facilitating future design of novel AFEs as potent and selective payloads for antibody-drug conjugates.
Collapse
Affiliation(s)
- Zhongqing Wen
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Zhoukang Zhuang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Huiming Liu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Zilong Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Xueqiong Feng
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China
| | - Xiaohui Yan
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei 230601, China
| |
Collapse
|
9
|
Zhao X, Hussain MH, Mohsin A, Liu Z, Xu Z, Li Z, Guo W, Guo M. Mechanistic insight for improving butenyl-spinosyn production through combined ARTP/UV mutagenesis and ribosome engineering in Saccharopolyspora pogona. Front Bioeng Biotechnol 2024; 11:1329859. [PMID: 38292303 PMCID: PMC10825966 DOI: 10.3389/fbioe.2023.1329859] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Butenyl-spinosyn is a highly effective, wide-spectrum and environmentally-friendly biological insecticide produced by Saccharopolyspora pogona. However, its scale-up is impeded due to its lower titer in wild-type strains. In this work, ARTP/UV mutagenesis and ribosome engineering were employed to enhance the butenyl-spinosyn production, and a stable mutant Saccharopolyspora pogona aG6 with high butenyl-spinosyn yield was successfully obtained. For the first time, the fermentation results in the 5 L bioreactor demonstrated that the butenyl-spinosyn produced by mutant Saccharopolyspora pogona aG6 reached the maximum value of 130 mg/L, almost 4-fold increase over the wild-type strain WT. Furthermore, comparative genomic, transcriptome and target metabolomic analysis revealed that the accumulation of butenyl-spinosyn was promoted by alterations in ribosomal proteins, branched-chain amino acid degradation and oxidative phosphorylation. Conclusively, the proposed model of ribosome engineering combined with ARTP/UV showed the improved biosynthesis regulation of butenyl-spinosyn in S. pogona.
Collapse
Affiliation(s)
- Xueli Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Muhammad Hammad Hussain
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Ali Mohsin
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zebo Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhixian Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Zhanxia Li
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiqun Guo
- Academy of National Food and Strategic Reserves Administration, Beijing, China
| | - Meijin Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
10
|
Xiong Z, Tian X, Wang G, Song X, Xia Y, Zhang H, Ai L. Development of a high-throughput screening method for exopolysaccharide-producing Streptococcus thermophilus based on Congo red. Food Res Int 2022; 162:112094. [DOI: 10.1016/j.foodres.2022.112094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/23/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2022]
|
11
|
Zhu M, Zhang F, Gan T, Lin J, Duan Y, Zhu X. Deciphering the pathway-specific regulatory network for production of ten-membered enediyne Tiancimycins in Streptomyces sp. CB03234-S. Microb Cell Fact 2022; 21:188. [PMID: 36088456 PMCID: PMC9464397 DOI: 10.1186/s12934-022-01916-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Background The anthraquinone-fused 10-membered enediynes (AFEs), represented by tiancimycins (TNMs), possess a unique structural feature and promising potentials as payloads of antitumor antibody–drug conjugates. Despite many efforts, the insufficient yields remain a practical challenge for development of AFEs. Recent studies have suggested a unified basic biosynthetic route for AFEs, those core genes involved in the formation of essential common AFE intermediates, together with multiple regulatory genes, are highly conserved among the reported biosynthetic gene clusters (BGCs) of AFEs. The extreme cytotoxicities of AFEs have compelled hosts to evolve strict regulations to control their productions, but the exact roles of related regulatory genes are still uncertain. Results In this study, the genetic validations of five putative regulatory genes present in the BGC of TNMs revealed that only three (tnmR1, tnmR3 and tnmR7) of them were involved in the regulation of TNMs biosynthesis. The bioinformatic analysis also revealed that they represented three major but distinct groups of regulatory genes conserved in all BGCs of AFEs. Further transcriptional analyses suggested that TnmR7 could promote the expressions of core enzymes TnmD/G and TnmN/O/P, while TnmR3 may act as a sensor kinase to work with TnmR1 and form a higher class unconventional orphan two-component regulatory system, which dynamically represses the expressions of TnmR7, core enzymes TnmD/G/J/K1/K2 and auxiliary proteins TnmT2/S2/T1/S1. Therefore, the biosynthesis of TNMs was stringently restricted by this cascade regulatory network at early stage to ensure the normal cell growth, and then partially released at the stationary phase for product accumulation. Conclusion The pathway-specific cascade regulatory network consisting with TnmR3/R1 and TnmR7 was deciphered to orchestrate the production of TNMs. And it could be speculated as a common regulatory mechanism for productions of AFEs, which shall provide us new insights in future titer improvement of AFEs and potential dynamic regulatory applications in synthetic biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01916-z.
Collapse
|
12
|
Feng X, Liu H, Pan J, Xiong Y, Zhu X, Yan X, Duan Y, Huang Y. Liposome-Encapsulated Tiancimycin A Is Active against Melanoma and Metastatic Breast Tumors: The Effect of cRGD Modification of the Liposomal Carrier and Tiancimycin A Dose on Drug Activity and Toxicity. Mol Pharm 2022; 19:1078-1090. [PMID: 35290067 DOI: 10.1021/acs.molpharmaceut.1c00753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Enediyne natural products, including neocarzinostatin and calicheamicin γ1, are used in the form of a copolymer or antibody-drug conjugate to treat hepatomas and leukemia. Tiancimycin (TNM) A is a novel anthraquinone-fused enediyne that can rapidly and completely kill tumor cells. Herein, we encapsulated TNM A in liposomes (Lip-TNM A) and cyclic arginine-glycine-aspartate (cRGD)-functionalized liposomes (cRGD-Lip-TNM A) and demonstrated its antitumor activity using mouse xenografts. Because TNM A causes rapid DNA damage, cell cycle arrest, and apoptosis, these nanoparticles exhibited potent cytotoxicity against multiple tumor cells for 8 h. In B16-F10 and KPL-4 xenografts, both nanoparticles showed superior potency over doxorubicin and trastuzumab. However, cRGD-Lip-TNM A reduced the tumor weight more significantly than Lip-TNM A in B16-F10 xenografts, in which the αvβ3-integrin receptors are significantly overexpressed in this melanoma. Lip-TNM A was slightly more active than cRGD-Lip-TNM A against KPL-4 xenografts, which probably reflected the difference of their in vivo fate in this mouse model. In a highly metastatic 4T1 tumor model, cRGD-Lip-TNM A reduced tumor metastasis induced by losartan, a tumor microenvironment-remodeling agent. These findings suggest that targeted delivery of enediynes with unique modes of action may enable more effective translation of anticancer nanomedicines.
Collapse
Affiliation(s)
- Xueqiong Feng
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Huiming Liu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Jian Pan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Yi Xiong
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan 410011, China
| | - Xiaohui Yan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China.,State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discover, Changsha, Hunan 410011, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine, Central South University, Changsha, Hunan 410013, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| |
Collapse
|
13
|
Yang D, Ye F, Teijaro CN, Hwang D, Annaval T, Adhikari A, Li G, Yan X, Gui C, Rader C, Shen B. Functional Characterization of Cytochrome P450 Hydroxylase YpmL in Yangpumicin A Biosynthesis and Its Application for Anthraquinone-Fused Enediyne Structural Diversification. Org Lett 2022; 24:1219-1223. [PMID: 35084871 PMCID: PMC9594962 DOI: 10.1021/acs.orglett.2c00009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Comparative analyses of four anthraquinone-fused enediyne biosynthetic gene clusters (BGCs) identified YpmL as a cytochrome P450 enzyme unique to the yangpumicin (YPM) BGC. In vitro characterization of YpmL established it as a hydroxylase, catalyzing C-6 hydroxylation in YPM A biosynthesis. In vivo application of YpmL enabled engineered production of four new tiancimycin analogues (14-17). Evaluation of their cytotoxicity against selected human cancer cell lines shed new insights into the enediyne structure-activity relationship.
Collapse
Affiliation(s)
- Dong Yang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
- Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Fei Ye
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Dobeen Hwang
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Thibault Annaval
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Gengnan Li
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Chun Gui
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
- Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, FL 33458, USA
| |
Collapse
|
14
|
Xue L, Zhang L, Zhang C, Zhao X, Dang W, Wang Z, Wang C, Suo T, Yan X. Discovery of Tiancimycin Congeners from Streptomyces sp. CB03234-S. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202111018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Yu F, Zhang M, Sun J, Wang F, Li X, Liu Y, Wang Z, Zhao X, Li J, Chen J, Du G, Xue Z. Improved Neomycin Sulfate Potency in Streptomyces fradiae Using Atmospheric and Room Temperature Plasma (ARTP) Mutagenesis and Fermentation Medium Optimization. Microorganisms 2022; 10:microorganisms10010094. [PMID: 35056543 PMCID: PMC8780280 DOI: 10.3390/microorganisms10010094] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 12/04/2022] Open
Abstract
To improve the screening efficiency of high-yield neomycin sulfate (NM) Streptomyces fradiae strains after mutagenesis, a high-throughput screening method using streptomycin resistance prescreening (8 μg/mL) and a 24-deep well plates/microplate reader (trypan blue spectrophotometry) rescreening strategy was developed. Using this approach, we identified a high-producing NM mutant strain, Sf6-2, via six rounds of atmospheric and room temperature plasma (ARTP) mutagenesis and screening. The mutant displayed a NM potency of 7780 ± 110 U/mL and remarkably stable genetic properties over six generations. Furthermore, the key components (soluble starch, peptone, and (NH4)2SO4) affecting NM potency in fermentation medium were selected using Plackett-Burman and optimized by Box-Behnken designs. Finally, the NM potency of Sf6-2 was increased to 10,849 ± 141 U/mL at the optimal concentration of each factor (73.98 g/L, 9.23 g/L, and 5.99 g/L, respectively), and it exhibited about a 40% and 100% enhancement when compared with before optimization conditions and the wild-type strain, respectively. In this study, we provide a new S. fradiae NM production strategy and generate valuable insights for the breeding and screening of other microorganisms.
Collapse
Affiliation(s)
- Fei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Min Zhang
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Junfeng Sun
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Fang Wang
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Xiangfei Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
| | - Yan Liu
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Zhou Wang
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
| | - Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; (F.Y.); (X.L.); (X.Z.); (J.L.); (J.C.)
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
- Correspondence: (G.D.); (Z.X.)
| | - Zhenglian Xue
- Microorganism Fermentation Engineering and Technology Research Center of Anhui Province, College of Biologic & Food Engineering, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China; (M.Z.); (J.S.); (F.W.); (Y.L.); (Z.W.)
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, Anhui Polytechnic University, 8 Middle Beijing Road, Wuhu 241000, China
- Correspondence: (G.D.); (Z.X.)
| |
Collapse
|
16
|
Mutations in the regulatory regions result in increased streptomycin resistance and keratinase synthesis in Bacillus thuringiensis. Arch Microbiol 2021; 203:5387-5396. [PMID: 34390357 DOI: 10.1007/s00203-021-02525-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/29/2022]
Abstract
Keratinases are a group of proteases of great industrial significance. To take full advantage of Bacillus species as an inherent superior microbial producer of proteases, we performed the ribosome engineering to improve the keratinase synthesis capacity of the wild-type Bacillus thuringiensis by inducing streptomycin resistance. Mutant Bt(Str-O) was identified as a stable keratinase overproducer. Comparative characterization of the two strains revealed that, although the resistance to Streptomycin increased by eight-fold in MIC, the mutant's resistance to other commonly used antibiotics was not affected. Furthermore, the mutant exhibited an enhanced keratinase synthesis (1.5-fold) when cultured in a liquid LB medium. In the whole feather degradation experiment, the mutant could secret twofold keratinase into the medium, reaching 640 U/mL per 107 CFU. By contrast, no significant differences were found in the scanning electron microscopic analysis and spore formation experiment. To understand the genetic factors causing these phenotypic changes, we cloned and analyzed the rpsL gene. No mutation was observed. We subsequently determined the genome sequences of the two strains. Comparing the rpsL gene revealed that the emergence of streptomycin resistance was not necessarily dependent on the mutation(s) in the generally recognized "hotspot." Genome-wide analysis showed that the phenotypic changes of the mutant were the collective consequence of the genetic variations occurring in the regulatory regions and the non-coding RNA genes. This study demonstrated the importance of genetic changes in regulatory regions and the effectiveness of irrational ribosome engineering in creating prokaryotic microbial mutants without sufficient genetic information.
Collapse
|
17
|
Abstract
Covering: up to the end of July, 2021Anthraquinone-fused enediynes (AFEs) are a subfamily of enediyne natural products. Dynemicin A (DYN A), the first member of the AFE family, was discovered more than thirty years ago. Subsequently, extensive studies have been reported on the mode of action and the interactions of AFEs with DNA using DYN A as a model. However, progress in the discovery, biosynthesis and clinical development of AFEs has been limited for a long time. In the past five years, four new AFEs have been discovered and significant progress has been made in the biosynthesis of AFEs, especially on the biogenesis of the anthraquinone moiety and their tailoring steps. Moreover, the streamlined total synthesis of AFEs and their analogues boosts the preparation of AFE-based linker-drugs, thus enabling the development of AFE-based antibody-drug conjugates (ADCs). This review summarizes the discovery, mechanism of action, biosynthesis, total synthesis and preclinical studies of AFEs.
Collapse
Affiliation(s)
- Xiaohui Yan
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, China.
| |
Collapse
|
18
|
Wang Z, Sun R, Li M, Liu L, Duan Y, Huang Y. Yield improvement of enediyne yangpumicins in Micromonospora yangpuensis through ribosome engineering and fermentation optimization. Biotechnol J 2021; 16:e2100250. [PMID: 34473904 DOI: 10.1002/biot.202100250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/22/2022]
Abstract
Yangpumicins (YPMs), for example, YPM A, F, and G, are newly discovered enediynes from Micromonospora yangpuensis DSM 45577, which could be exploited as promising payloads of antibody-drug conjugates. However, the low yield of YPMs in the wild-type strain (∼1 mg L-1 ) significantly hampers their further drug development. In this study, a combined ribosome engineering and fermentation optimization strategy has been used for yield improvement of YPMs. One gentamicin-resistant M. yangpuensis DSM 45577 strain (MY-G-1) showed higher YPMs production (7.4 ± 1.0 mg L-1 ), while it exhibits delayed sporulation and slender mycelium under scanning electron microscopy. Whole genome re-sequencing of MY-G-1 reveals several deletion and single nucleotide polymorphism mutations, which were confirmed by PCR and DNA sequencing. Further Box-Behnken experiment and regression analysis determined that the optimal medium concentrations of soluble starch, D-mannitol, and pharmamedia for YPMs production in shaking flasks (10.0 ± 0.8 mg L-1 ). Finally, the total titer of YPM A/F/G in MY-G-1 reached to 15.0 ± 2.5 mg L-1 in 3 L fermenters, which was about 11-fold higher than the original titer of 1.3 ± 0.3 mg L-1 in wild-type strain. Our study may be instrumental to develop YPMs into a clinical anticancer drug, and inspire the use of these multifaceted strategies for yield improvement in Micromonospora species. GRAPHICAL ABSTRACT LAY SUMMARY: ???
Collapse
Affiliation(s)
- Zilong Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Runze Sun
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Miao Li
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Ling Liu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan, China
| |
Collapse
|
19
|
Hindra, Yang D, Luo J, Huang T, Yan X, Adhikari A, Teijaro CN, Ge H, Shen B. Submerged fermentation of Streptomyces uncialis providing a biotechnology platform for uncialamycin biosynthesis, engineering, and production. J Ind Microbiol Biotechnol 2021; 48:6178870. [PMID: 33739406 PMCID: PMC8210685 DOI: 10.1093/jimb/kuab025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/15/2021] [Indexed: 12/19/2022]
Abstract
Uncialamycin (UCM) belongs to the anthraquinone-fused subfamily of 10-membered enediyne natural products that exhibits an extraordinary cytotoxicity against a wide spectrum of human cancer cell lines. Antibody-drug conjugates, utilizing synthetic analogues of UCM as payloads, are in preclinical development. UCM is exclusively produced by Streptomyces uncialis DCA2648 on solid agar medium with low titers (∼0.019 mg/l), limiting its supply by microbial fermentation and hampering its biosynthetic and engineering studies by in vivo pathway manipulation. Here, we report cultivation conditions that enable genetic manipulation of UCM biosynthesis in vivo and allow UCM production, with improved titers, by submerged fermentation of the engineered S. uncialis strains. Specifically, the titer of UCM was improved nearly 58-fold to ∼1.1 mg/l through the combination of deletion of biosynthetic gene clusters encoding unrelated metabolites from the S. uncialis wild-type, chemical mutagenesis and manipulation of pathway-specific regulators to generate the engineered S. uncialis strains, and finally medium optimization of the latter for UCM production. Genetic manipulation of UCM biosynthesis was demonstrated by inactivating selected genes in the engineered S. uncialis strains, one of which afforded a mutant strain accumulating tiancimycin B, a common biosynthetic intermediate known for the anthraquinone-fused subfamily of enediyne natural products. These findings highlight a biotechnology platform for UCM biosynthesis, engineering, and production that should facilitate both its fundamental studies and translational applications.
Collapse
Affiliation(s)
| | | | - Jun Luo
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Tingting Huang
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Huiming Ge
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Ben Shen
- Correspondence to: Ben Shen. Phone: +1-561-228-2456. Fax: +1-561-228-2472. E-mail:
| |
Collapse
|
20
|
Adhikari A, Shen B, Rader C. Challenges and Opportunities to Develop Enediyne Natural Products as Payloads for Antibody-Drug Conjugates. Antib Ther 2021; 4:1-15. [PMID: 33554043 PMCID: PMC7850032 DOI: 10.1093/abt/tbab001] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Calicheamicin, the payload of the antibody-drug-conjugates (ADCs) gemtuzumab ozogamicin (Mylotarg®) and inotuzumab ozogamicin (Besponsa®), belongs to the class of enediyne natural products. Since the isolation and structural determination of the neocarzinostatin chromophore in 1985, the enediynes have attracted considerable attention for their value as DNA damaging agents in cancer chemotherapy. Due to their non-discriminatory cytotoxicity towards both cancer and healthy cells, the clinical utilization of enediyne natural products relies on conjugation to an appropriate delivery system, such as an antibody. Here we review the current landscape of enediynes as payloads of first-generation and next-generation ADCs.
Collapse
Affiliation(s)
- Ajeeth Adhikari
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL, USA.,Natural Products Discovery Center at Scripps Research, The Scripps Research Institute, Jupiter, FL, USA
| | - Christoph Rader
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| |
Collapse
|
21
|
Zhang Q, Ren JW, Wang W, Zhai J, Yang J, Liu N, Huang Y, Chen Y, Pan G, Fan K. A Versatile Transcription-Translation in One Approach for Activation of Cryptic Biosynthetic Gene Clusters. ACS Chem Biol 2020; 15:2551-2557. [PMID: 32786260 DOI: 10.1021/acschembio.0c00581] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ever-growing drug resistance problem worldwide highlights the urgency to discover and develop new drugs. Microbial natural products are a prolific source of drugs. Genome sequencing has revealed a tremendous amount of uncharacterized natural product biosynthetic gene clusters (BGCs) encoded within microbial genomes, most of which are cryptic or express at very low levels under standard culture conditions. Therefore, developing effective strategies to awaken these cryptic BGCs is of great interest for natural product discovery. In this study, we designed and validated a Transcription-Translation in One (TTO) approach for activation of cryptic BGCs. This approach aims to alter the metabolite profiles of target strains by directly overexpressing exogenous rpsL (encoding ribosomal protein S12) and rpoB (encoding RNA polymerase β subunit) genes containing beneficial mutations for natural product production using a plug-and-play plasmid system. As a result, this approach bypasses the tedious screening work and overcomes the false positive problem in the traditional ribosome engineering approach. In this work, the TTO approach was successfully applied to activating cryptic BGCs in three Streptomyces strains, leading to the discovery of two aromatic polyketide antibiotics, piloquinone and homopiloquinone. We further identified a single BGC responsible for the biosynthesis of both piloquinone and homopiloquinone, which features an unusual starter unit incorporation step. This powerful strategy can be further exploited for BGC activation in strains even beyond streptomycetes, thus facilitating natural product discovery research in the future.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jin-Wei Ren
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weishan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ji’an Zhai
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jing Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ning Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihua Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guohui Pan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Keqiang Fan
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
22
|
Li Y, Li J, Ye Z, Lu L. Enhancement of angucycline production by combined UV mutagenesis and ribosome engineering and fermentation optimization in Streptomyces dengpaensis XZHG99 T. Prep Biochem Biotechnol 2020; 51:173-182. [PMID: 32815762 DOI: 10.1080/10826068.2020.1805754] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Strain improvement of Streptomyces dengpaensis XZHG99T was performed by combined UV mutagenesis and ribosome engineering, as well as fermentation optimization for enhanced angucycline production (rabelomycin and saquayamycin B1). First, four streptomycin-resistant mutants were obtained after screening of UV mutagenesis and ribosome engineering. Then a rpsL mutant (HTT7) with higher productivity of rabelomycin and saquayamycin B1 was selected according to genetic screening and HPLC/LC-MS analyses, whose maximum titers of rabelomycin and saquayamycin B1 were 3.6 ± 0.02 mg/L and 7.5 ± 0.04 mg/L, respectively, about fourfold higher than those produced by XZHG99T. Next, fermentation optimization of HTT7 was successively carried out by single-factor experiments in shake flasks. The titers of rabelomycin and saquayamycin B1 were increased to 11.2 ± 0.04 mg/L and 20.5 ± 0.02 mg/L after optimization of shake flask fermentation conditions, respectively, which was increased about sixfold compared with those produced by XZHG99T. Finally, the titers of rabelomycin and saquayamycin B1 reached 15.7 ± 0.05 mg/L and 39.9 ± 0.05 mg/L after the scaled-up fermentation, which was 7.8-fold and 11.4-fold higher than those produced by XZHG99T, respectively. These data demonstrate that the combined empirical strain-breeding approaches are still an effective and convenient pathway to improve strain production ability.
Collapse
Affiliation(s)
- Yumei Li
- School of Bioscience and Biotechnology, University of Jinan, Jinan, China
| | - Jiyu Li
- School of Bioscience and Biotechnology, University of Jinan, Jinan, China
| | - Zhengmao Ye
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| | - Lingchao Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, China
| |
Collapse
|
23
|
Adhikari A, Teijaro CN, Yan X, Chang CY, Gui C, Liu YC, Crnovcic I, Yang D, Annaval T, Rader C, Shen B. Characterization of TnmH as an O-Methyltransferase Revealing Insights into Tiancimycin Biosynthesis and Enabling a Biocatalytic Strategy To Prepare Antibody-Tiancimycin Conjugates. J Med Chem 2020; 63:8432-8441. [PMID: 32658465 DOI: 10.1021/acs.jmedchem.0c00799] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The enediynes are among the most cytotoxic molecules known, and their use as anticancer drugs has been successfully demonstrated by targeted delivery. Clinical advancement of the anthraquinone-fused enediynes has been hindered by their low titers and lack of functional groups to enable the preparation of antibody-drug conjugates (ADCs). Here we report biochemical and structural characterization of TnmH from the tiancimycin (TNM) biosynthetic pathway, revealing that (i) TnmH catalyzes regiospecific methylation at the C-7 hydroxyl group, (ii) TnmH exhibits broad substrate promiscuity toward hydroxyanthraquinones and S-alkylated SAM analogues and catalyzes efficient installation of reactive alkyl handles, (iii) the X-ray crystal structure of TnmH provides the molecular basis to account for its broad substrate promiscuity, and (iv) TnmH as a biocatalyst enables the development of novel conjugation strategies to prepare antibody-TNM conjugates. These findings should greatly facilitate the construction and evaluation of antibody-TNM conjugates as next-generation ADCs for targeted chemotherapy.
Collapse
|
24
|
Zhang F, Gao D, Lin J, Zhu M, Zhuang Z, Duan Y, Zhu X. Construction of Inducible Genetic Switch for the Global Regulator WblA To Sustain Both Overproduction of Tiancimycins and On-Demand Sporulation in Streptomyces sp. CB03234. ACS Synth Biol 2020; 9:1460-1467. [PMID: 32379959 DOI: 10.1021/acssynbio.0c00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complex life cycle of streptomycetes is closely related to their secondary metabolisms, all controlled by cascade regulations. Tiancimycins (TNMs) are ten-membered enediynes possessing great potential for antitumor drug development. However, their low yields in Streptomyces sp. CB03234 have greatly limited subsequent studies. Through transcriptome analysis and genetic characterization, we proved that WblA is one pivotal global regulator to repress the biosynthesis of TNMs. The deletion of wblA could significantly enhance the production of TNMs, but also abolish the sporulation in CB03234. By constructing the NitR-ε-caprolactam inducible genetic switch, the expression of wblA was governed in CB03234-NRW, thereby sustaining the overproduction of TNMs and recovering the normal sporulation upon induction, which were practical for the scaled-up production of TNMs. Considering the prevalence and conserved regulatory roles of WblA in streptomycetes, our developed strategy shall provide an effective and practical approach to facilitate titer improvement and discovery of natural products.
Collapse
|
25
|
Liu L, Li S, Sun R, Qin X, Ju J, Zhang C, Duan Y, Huang Y. Activation and Characterization of Bohemamine Biosynthetic Gene Cluster from Streptomyces sp. CB02009. Org Lett 2020; 22:4614-4619. [PMID: 32463693 DOI: 10.1021/acs.orglett.0c01224] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bohemamines (BHMs) are bacterial alkaloids containing a pyrrolizidine core with two unusual methyl groups. Herein we report the activation of BHMs biosynthesis using a ribosome engineering approach. Characterization of the bhm gene cluster reveals that nonribosomal peptide synthetase BhmJ and Baeyer-Villiger monooxygenase BhmK are responsible for the formation of the pyrrolizidine core, which is further methylated on C-7 by methyltransferase BhmG. The 9-methyl group of BHMs is instead originated from a nonproteinogenic amino acid (2S,5S)-5-methylproline.
Collapse
Affiliation(s)
- Ling Liu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Sainan Li
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Runze Sun
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China
| | - Xiangjing Qin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Jianhua Ju
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China.,Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410011, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410011, Hunan, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China.,National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, 410011, Hunan, China
| |
Collapse
|
26
|
Yang J, Huang Y, Xu H, Gu D, Xu F, Tang J, Fang C, Yang Y. Optimization of fungi co-fermentation for improving anthraquinone contents and antioxidant activity using artificial neural networks. Food Chem 2020; 313:126138. [DOI: 10.1016/j.foodchem.2019.126138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/01/2019] [Accepted: 12/28/2019] [Indexed: 12/14/2022]
|
27
|
Genome shuffling based on different types of ribosome engineering mutants for enhanced production of 10-membered enediyne tiancimycin-A. Appl Microbiol Biotechnol 2020; 104:4359-4369. [PMID: 32236679 DOI: 10.1007/s00253-020-10583-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/15/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022]
Abstract
Tiancimycin-A (TNM-A) is an anthraquinone-fused ten-membered enediyne produced by Streptomyces sp. CB03234, which is very promising for the development of anticancer antibody-drug conjugates (ADCs). To improve the titer of TNM-A, we have generated high-producing mutants CB03234-S and CB03234-R through ribosome engineering, but still not sufficient for pilot production of TNM-A. As the follow-up work, gentamycin-induced ribosome engineering was further adopted here to generate the mutant CB03234-G, which produced similar level of TNM-A as in CB03234-S and CB03234-R. Benefiting from the distinct antibiotic resistances of three ribosome engineering mutants, genome shuffling between any two of them was respectively carried out, and finally obtained the recombinant CB03234-GS26. Under optimal conditions, CB03234-GS26 produced 40.6 ± 1.0 mg/L TNM-A in shaking flasks and 20.8 ± 0.4 mg/L in a scaled-up 30-L fermentor. Comparing with the parental high-producing mutants, the over 1.6-fold titer improvement of CB03234-GS26 in fermentor was more promising for pilot production of TNM-A. Besides the distinctive morphological features, genetic characterization revealed that CB03234-GS26 possessed 1.8 kb rsmG related deletion just the same as CB03234-S, but no mutation was found in rpsL. Subsequent knockouts proved that rsmG was unrelated to titer improvement of TNM-A, which implied other genomic variations and mechanisms rather than ribosome engineering to enhance the biosynthesis of TNM-A. Therefore, CB03234-GS26 provided a basis to locate potential novel genetic targets, and explore the interactions between complex metabolic network and TNM biosynthetic pathway, which shall promote future construction of high-yielding systems for TNM-A and other anthraquinone-fused enediynes.Key Points •United genome shuffling and ribosome engineering help further strain improvement. •CB03234-GS26 with improved titer is practical for the pilot production of TNM-A. •Enhanced TNM-A production should attribute to novel genetic features/mechanisms.
Collapse
|
28
|
Wang Z, Wen Z, Liu L, Zhu X, Shen B, Yan X, Duan Y, Huang Y. Yangpumicins F and G, Enediyne Congeners from Micromonospora yangpuensis DSM 45577. JOURNAL OF NATURAL PRODUCTS 2019; 82:2483-2488. [PMID: 31490685 PMCID: PMC7170010 DOI: 10.1021/acs.jnatprod.9b00229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enediyne natural products are among the most cytotoxic small molecules and thus excellent payload candidates for the development of antibody-drug conjugates (ADCs). Here we report the isolation and structural elucidation of two new 10-membered anthraquinone-fused enediynes, yangpumicins (YPM) F (6) and G (7), together with five known congeners, YPM A-E (1-5), from Micromonospora yangpuensis DSM 45577. YPM F (6) and G (7) showed strong cytotoxicity against the tested human cancer cell lines, as well as activity against several Gram-positive and Gram-negative pathogens. The 1,2-diols in 6 and 7 promise to enable new linker chemistry for the development of YPM-based ADCs.
Collapse
Affiliation(s)
- Zilong Wang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Zhongqing Wen
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Ling Liu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
| | - Xiangcheng Zhu
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
- Department of Natural Products Library Initiative at The Scripps Research Institute, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Xiaohui Yan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| | - Yanwen Duan
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, Hunan 410011, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| | - Yong Huang
- Xiangya International Academy of Translational Medicine at Central South University, Changsha, Hunan 410013, China
- National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, Changsha, Hunan 410011, China
| |
Collapse
|
29
|
The Application of Ribosome Engineering to Natural Product Discovery and Yield Improvement in Streptomyces. Antibiotics (Basel) 2019; 8:antibiotics8030133. [PMID: 31480298 PMCID: PMC6784132 DOI: 10.3390/antibiotics8030133] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/10/2019] [Accepted: 08/27/2019] [Indexed: 12/23/2022] Open
Abstract
Microbial natural product drug discovery and development has entered a new era, driven by microbial genomics and synthetic biology. Genome sequencing has revealed the vast potential to produce valuable secondary metabolites in bacteria and fungi. However, many of the biosynthetic gene clusters are silent under standard fermentation conditions. By rational screening for mutations in bacterial ribosomal proteins or RNA polymerases, ribosome engineering is a versatile approach to obtain mutants with improved titers for microbial product formation or new natural products through activating silent biosynthetic gene clusters. In this review, we discuss the mechanism of ribosome engineering and its application to natural product discovery and yield improvement in Streptomyces. Our analysis suggests that ribosome engineering is a rapid and cost-effective approach and could be adapted to speed up the discovery and development of natural product drug leads in the post-genomic era.
Collapse
|
30
|
Huang R, Lin J, Gao D, Zhang F, Yi L, Huang Y, Yan X, Duan Y, Zhu X. Discovery of gas vesicles in Streptomyces sp. CB03234-S and potential effects of gas vesicle gene overexpression on morphological and metabolic changes in streptomycetes. Appl Microbiol Biotechnol 2019; 103:5751-5761. [DOI: 10.1007/s00253-019-09891-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/24/2022]
|