1
|
Toustou C, Plasson C, Kiefer-Meyer MC, Bardor M. Characterization of the VOC Promoter That Is Active Under Low-Salinity Conditions in the Diatom Phaeodactylum tricornutum. Mar Drugs 2025; 23:185. [PMID: 40422775 DOI: 10.3390/md23050185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/11/2025] [Accepted: 04/23/2025] [Indexed: 05/28/2025] Open
Abstract
Microalgae such as Phaeodactylum tricornutum are promising cell biofactories for the production of high-value molecules, including monoclonal antibodies (mAbs). However, to date, the production of mAbs in P. tricornutum using the inducible nitrate reductase (NR) promoter has yielded only a limited amount of mAbs. Therefore, the identification of a robust promoter that produces high yields of mAbs is crucial for the development of a cost-effective expression system. To date, only a few endogenous promoters have been characterized in P. tricornutum. In this study, we identified thirty-three potential "strong" endogenous promoters based on our previously published transcriptomic data from the P. tricornutum Pt3 strain. These putative promoter sequences were cloned into an episomal vector and fused to the gene encoding enhanced green fluorescent protein (eGFP). Their strength was assessed by measuring eGFP fluorescence, which reflects the level of eGFP protein expression. Of the thirty-three promoters, thirteen were able to successfully drive eGFP protein expression. Among them, the best results were obtained with the VOC promoter, which allowed a significant increase in eGFP expression compared to that induced by the NR promoter. These results contribute to the identification of new genetic tools that can be used in future studies to increase the yield of production of recombinant proteins in P. tricornutum at an industrial scale.
Collapse
Affiliation(s)
- Charlotte Toustou
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV) UR4358, University of Rouen Normandie (UNIROUEN), Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Carole Plasson
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV) UR4358, University of Rouen Normandie (UNIROUEN), Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Marie-Christine Kiefer-Meyer
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV) UR4358, University of Rouen Normandie (UNIROUEN), Normandie Université, 76821 Mont-Saint-Aignan, France
| | - Muriel Bardor
- Laboratoire Glycobiologie et Matrice Extracellulaire Végétale (GlycoMEV) UR4358, University of Rouen Normandie (UNIROUEN), Normandie Université, 76821 Mont-Saint-Aignan, France
- ALGA BIOLOGICS, Centre Universitaire de Recherche et d'Innovation en Biologie (CURIB), 25 Rue Tesnière, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
2
|
Zou LG, Wen FF, Zhang X, Li G, Wang Q, Li HY, Yang YF. Mechanistic impact of Gracilaria bailinae extracts on photosynthesis and metabolism in Phaeodactylum tricornutum. MARINE ENVIRONMENTAL RESEARCH 2025; 204:106861. [PMID: 39671987 DOI: 10.1016/j.marenvres.2024.106861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/19/2024] [Accepted: 11/20/2024] [Indexed: 12/15/2024]
Abstract
In the intricate realm of aquatic ecosystems, biotic interactions play pivotal roles in shaping the physiological responses and survival strategies of microorganisms. This study investigates the effects of Gracilaria bailinae on photosynthesis and metabolism on the diatom Phaeodactylum tricornutum and the ecological significance. Our results reveal considerable suppression by G. bailinae on both its light-dependent and light-independent reactions of photosynthesis in P. tricornutum. A pronounced decline in carbon fixation was observed causing. the diatom to prioritize its carbon flux towards carbohydrate synthesis for its cellular energy needs. At high G. bailinae concentrations a marked reduction in lipid content indicated their importance as emergency energy sources. This response in lipid mobilization under photosynthetic stress is an evolutionary strategy for environmental adaptation. In addition, G. bailinae-induced stress amplified lysosomal activity in the diatom. Such an upsurge in oxidative stress appears to fast-track cellular death. We conclude that the ROS production, induced by G. bailinae, acts as a linchpin in mediating stress responses, thereby significantly reconfiguring the metabolism in the diatom. This study not only elucidates the physiological countermeasures of microalgae against biotic stressors but it also underscores the complex interactions between aquatic microorganisms.
Collapse
Affiliation(s)
- Li-Gong Zou
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China; Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Fu-Fang Wen
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| | - Xiao Zhang
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| | - Gang Li
- Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Qing Wang
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China
| | - Hong-Ye Li
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China.
| | - Yu-Feng Yang
- College of Life Science and Technology, Jinan University, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou, 510632, China.
| |
Collapse
|
3
|
Toustou C, Boulogne I, Gonzalez AA, Bardor M. Comparative RNA-Seq of Ten Phaeodactylum tricornutum Accessions: Unravelling Criteria for Robust Strain Selection from a Bioproduction Point of View. Mar Drugs 2024; 22:353. [PMID: 39195469 DOI: 10.3390/md22080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
The production of biologics in mammalian cells is hindered by some limitations including high production costs, prompting the exploration of other alternative expression systems that are cheaper and sustainable like microalgae. Successful productions of biologics such as monoclonal antibodies have already been demonstrated in the diatom Phaeodactylum tricornutum; however, limited production yields still remain compared to mammalian cells. Therefore, efforts are needed to make this microalga more competitive as a cell biofactory. Among the seventeen reported accessions of P. tricornutum, ten have been mainly studied so far. Among them, some have already been used to produce high-value-added molecules such as biologics. The use of "omics" is increasingly being described as useful for the improvement of both upstream and downstream steps in bioprocesses using mammalian cells. Therefore, in this context, we performed an RNA-Seq analysis of the ten most used P. tricornutum accessions (Pt1 to Pt10) and deciphered the differential gene expression in pathways that could affect bioproduction of biologics in P. tricornutum. Our results highlighted the benefits of certain accessions such as Pt9 or Pt4 for the production of biologics. Indeed, these accessions seem to be more advantageous. Moreover, these results contribute to a better understanding of the molecular and cellular biology of P. tricornutum.
Collapse
Affiliation(s)
- Charlotte Toustou
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
| | - Isabelle Boulogne
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
| | - Anne-Alicia Gonzalez
- MGX-Montpellier GenomiX, Univ. Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Muriel Bardor
- Laboratoire GlycoMEV UR 4358, Université de Rouen Normandie, SFR Normandie Végétal FED 4277, Innovation Chimie Carnot, 76000 Rouen, France
- ALGA BIOLOGICS, CURIB, 25 rue Tesnières, 76821 Mont-Saint-Aignan, France
| |
Collapse
|
4
|
Xin Y, Wu S, Miao C, Xu T, Lu Y. Towards Lipid from Microalgae: Products, Biosynthesis, and Genetic Engineering. Life (Basel) 2024; 14:447. [PMID: 38672718 PMCID: PMC11051065 DOI: 10.3390/life14040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Microalgae can convert carbon dioxide into organic matter through photosynthesis. Thus, they are considered as an environment-friendly and efficient cell chassis for biologically active metabolites. Microalgal lipids are a class of organic compounds that can be used as raw materials for food, feed, cosmetics, healthcare products, bioenergy, etc., with tremendous potential for commercialization. In this review, we summarized the commercial lipid products from eukaryotic microalgae, and updated the mechanisms of lipid synthesis in microalgae. Moreover, we reviewed the enhancement of lipids, triglycerides, polyunsaturated fatty acids, pigments, and terpenes in microalgae via environmental induction and/or metabolic engineering in the past five years. Collectively, we provided a comprehensive overview of the products, biosynthesis, induced strategies and genetic engineering in microalgal lipids. Meanwhile, the outlook has been presented for the development of microalgal lipids industries, emphasizing the significance of the accurate analysis of lipid bioactivity, as well as the high-throughput screening of microalgae with specific lipids.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
| | - Shan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Congcong Miao
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Tao Xu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou 570228, China; (S.W.); (C.M.); (T.X.)
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Dai JL, He YJ, Chen HH, Jiang JG. Dual Roles of Two Malic Enzymes in Lipid Biosynthesis and Salt Stress Response in Dunaliella salina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37906521 DOI: 10.1021/acs.jafc.3c04810] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Triacylglycerols (TAG) from microalgae can be used as feedstocks for biofuel production to address fuel shortages. Most of the current research has focused on the enzymes involved in TAG biosynthesis. In this study, the effects of malic enzyme (ME), which provides precursor and reducing power for TAG biosynthesis, on biomass and lipid accumulation and its response to salt stress in Dunaliella salina were investigated. The overexpression of DsME1 and DsME2 improved the lipid production, which reached 0.243 and 0.253 g/L and were 30.5 and 36.3% higher than wild type, respectively. The transcript levels of DsME1 and DsME2 increased with increasing salt concentration (0, 1, 2, 3, and 4.5 mol/L NaCl), indicating that DsMEs participated in the salt stress response in D. salina. It was found that cis-acting elements associated with the salt stress response were present on the promoters of two DsMEs. The deletion of the MYB binding site (MBS) on the DsME2 promoter confirmed that MBS drives the expression of DsME2 to participate in osmotic regulation in D. salina. In conclusion, MEs are the critical enzymes that play pivotal roles in lipid accumulation and osmotic regulation.
Collapse
Affiliation(s)
- Jv-Liang Dai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yu-Jing He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
6
|
Kassaw TK, Paton AJ, Peers G. Episome-Based Gene Expression Modulation Platform in the Model Diatom Phaeodactylum tricornutum. ACS Synth Biol 2022; 11:191-204. [PMID: 35015507 DOI: 10.1021/acssynbio.1c00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemically inducible gene expression systems have been an integral part of the advanced synthetic genetic circuit design and are employed for precise dynamic control over genetically engineered traits. However, the current systems for controlling transgene expression in most algae are limited to endogenous promoters that respond to different environmental factors. We developed a highly efficient, tunable, and reversible episome-based transcriptional control system in the model diatom alga, Phaeodactylum tricornutum. We assessed the time- and dose-response dynamics of each expression system using a reporter protein (eYFP) as a readout. Using our circuit configuration, we found two inducible expression systems with a high dynamic range and confirmed the suitability of an episome expression platform for synthetic biological applications in diatoms. These systems are controlled by the presence of β-estradiol and digoxin. Addition of either chemical to transgenic strains activates transcription with a dynamic range of up to ∼180-fold and ∼90-fold, respectively. We demonstrated that our episome-based transcriptional control systems are tunable and reversible in a dose- and time-dependent manner. Using droplet digital polymerase chain reaction (PCR), we also confirmed that inducer-dependent transcriptional activation starts within minutes of inducer application without any detectable transcript in the uninduced controls. The system described here expands the molecular and synthetic biology toolkits in algae and will facilitate future gene discovery and metabolic engineering efforts.
Collapse
Affiliation(s)
- Tessema K. Kassaw
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew J. Paton
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
7
|
Jia YL, Geng SS, Du F, Xu YS, Wang LR, Sun XM, Wang QZ, Li Q. Progress of metabolic engineering for the production of eicosapentaenoic acid. Crit Rev Biotechnol 2021; 42:838-855. [PMID: 34779326 DOI: 10.1080/07388551.2021.1971621] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Eicosapentaenoic Acid (EPA) is an essential ω-3 polyunsaturated fatty acid for human health. Currently, high-quality EPA production is largely dependent on the extraction of fish oil, but this unsustainable approach cannot meet its rising market demand. Biotechnological approaches for EPA production from microorganisms have received increasing attention due to their suitability for large-scale production and independence of the seasonal or climate restrictions. This review summarizes recent research on different microorganisms capable of producing EPA, such as microalgae, bacteria, and fungi, and introduces the different EPA biosynthesis pathways. Notably, some novel engineering strategies have been applied to endow and improve the abilities of microorganisms to synthesize EPA, including the construction and optimization of the EPA biosynthesis pathway, an increase in the acetyl-CoA pool supply, the increase of NADPH and the inhibition of competing pathways. This review aims to provide an updated summary of EPA production.
Collapse
Affiliation(s)
- Yu-Lei Jia
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Shan-Shan Geng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Fei Du
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ying-Shuang Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qing-Zhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu, People's Republic of China
| |
Collapse
|
8
|
Xue J, Li T, Chen TT, Balamurugan S, Yang WD, Li HY. Regulation of malate-pyruvate pathway unifies the adequate provision of metabolic carbon precursors and NADPH in Tetradesmus obliquus. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
9
|
Kadono T, Tomaru Y, Suzuki K, Yamada K, Adachi M. The possibility of using marine diatom-infecting viral promoters for the engineering of marine diatoms. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 296:110475. [PMID: 32540005 DOI: 10.1016/j.plantsci.2020.110475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 06/11/2023]
Abstract
Marine diatoms constitute a major group of unicellular photosynthetic eukaryotes. Diatoms are widely applicable for both basic studies and applied studies. Molecular tools and techniques have been developed for diatom research. Among these tools, several endogenous gene promoters (e.g., the fucoxanthin chlorophyll a/c-binding protein gene promoter) have become available for expressing transgenes in diatoms. Gene promoters that drive transgene expression at a high level are very important for the metabolic engineering of diatoms. Various marine diatom-infecting viruses (DIVs), including both DNA viruses and RNA viruses, have recently been isolated, and their genome sequences have been characterized. Promoters from viruses that infect plants and mammals are widely used as constitutive promoters to achieve high expression of transgenes. Thus, we recently investigated the activity of promoters derived from marine DIVs in the marine diatom, Phaeodactylum tricornutum. We discuss novel viral promoters that will be useful for the future metabolic engineering of diatoms.
Collapse
Affiliation(s)
- Takashi Kadono
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Yuji Tomaru
- National Research Institute of Fisheries and Environment of Inland Sea, Japan Fisheries Research and Education Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Kengo Suzuki
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Koji Yamada
- euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor 5-29-11 Shiba Minato-ku, Tokyo, 108-0014, Japan
| | - Masao Adachi
- Laboratory of Aquatic Environmental Science, Faculty of Agriculture and Marine Science, Kochi University, Otsu-200, Monobe, Nankoku, Kochi, 783-8502, Japan.
| |
Collapse
|
10
|
Dell’Aquila G, Zauner S, Heimerl T, Kahnt J, Samel-Gondesen V, Runge S, Hempel F, Maier UG. Mobilization and Cellular Distribution of Phosphate in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2020; 11:579. [PMID: 32582227 PMCID: PMC7283521 DOI: 10.3389/fpls.2020.00579] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Unicellular organisms that live in marine environments must cope with considerable fluctuations in the availability of inorganic phosphate (Pi). Here, we investigated the extracellular Pi concentration-dependent expression, as well as the intracellular or extracellular localization, of phosphatases and phosphate transporters of the diatom Phaeodactylum tricornutum. We identified Pi-regulated plasma membrane-localized, ER-localized, and secreted phosphatases, in addition to plasma membrane-localized, vacuolar membrane-localized, and plastid-surrounding membrane-localized phosphate transporters that were also regulated in a Pi concentration-dependent manner. These studies not only add further knowledge to already existing transcriptomic data, but also highlight the capacity of the diatom to distribute Pi intracellularly and to mobilize Pi from extracellular and intracellular resources.
Collapse
Affiliation(s)
| | - Stefan Zauner
- Laboratory for Cell Biology, Philipps University of Marburg, Marburg, Germany
| | | | - Jörg Kahnt
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Vera Samel-Gondesen
- Laboratory for Cell Biology, Philipps University of Marburg, Marburg, Germany
| | - Simon Runge
- Laboratory for Cell Biology, Philipps University of Marburg, Marburg, Germany
| | | | - Uwe G. Maier
- Laboratory for Cell Biology, Philipps University of Marburg, Marburg, Germany
- SYNMIKRO Research Center, Marburg, Germany
| |
Collapse
|
11
|
Enrichment of f/2 medium hyperaccumulates biomass and bioactive compounds in the diatom Phaeodactylum tricornutum. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101872] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|