1
|
Schimek A, Ng JKM, Hubbuch J. Navigating the Purification Process: Maintaining the Integrity of Replication-Competent Enveloped Viruses. Vaccines (Basel) 2025; 13:444. [PMID: 40432057 PMCID: PMC12115361 DOI: 10.3390/vaccines13050444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 05/29/2025] Open
Abstract
Replication-competent virus particles hold significant therapeutic potential in application as oncolytic viruses or cancer vaccines. Ensuring the viral integrity of these particles is crucial for their infectivity, safety, and efficacy. Enveloped virus particles, in particular, offer large gene insert capacities and customizable target specificity. However, their sensitivity to environmental factors presents challenges in bioprocessing, potentially compromising high quality standards and cost-effective production. This review provides an in-depth analysis of the purification process steps for replication-competent enveloped virus particles, emphasizing the importance of maintaining viral integrity. It evaluates bioprocessing methods from cell culture harvest to final sterile filtration, including centrifugation, chromatographic, and filtration purification techniques. Furthermore, the manuscript delves into formulation and storage strategies necessary to preserve the functional and structural integrity of virus particles, ensuring their long-term stability and therapeutic efficacy. To assess the impact of process steps on particles and determine their quality and integrity, advanced analytical methods are required. This review evaluates commonly used methods for assessing viral integrity, such as infectious titer assays, total virus particle quantification, and structural analysis. By providing a comprehensive overview of the current state of bioprocessing for replication-competent enveloped virus particles, this review aims to guide researchers and industry professionals in developing robust and efficient purification processes. The insights gained from this analysis will contribute to the advancement of virus-based therapeutics, ultimately supporting the development of safe, effective, and economically viable treatments for various diseases.
Collapse
Affiliation(s)
- Adrian Schimek
- ViraTherapeutics GmbH, Bundesstraße 27, 6063 Rum, Austria
| | | | - Jürgen Hubbuch
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV Biomolecular Separation Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany
| |
Collapse
|
2
|
Habisch R, Neubauer P, Soza-Ried J, Puschmann E. Repeated harvest enables efficient production of VSV-GP. Front Bioeng Biotechnol 2024; 12:1505338. [PMID: 39703791 PMCID: PMC11656157 DOI: 10.3389/fbioe.2024.1505338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
Viral products keep gaining importance in multiple therapeutic fields. Considering the scale and production slot limitations, optimizing the outcome of every manufacturing batch is essential to minimize costs and make this therapeutic modality broadly available to patients. Most manufacturing processes for oncolytic viruses currently in clinical studies are based on a batch process. Here, we evaluated the benefits in terms of titer increase of a repeated harvest approach and compared it to the classical batch production process. While no effect on cell density was observed, the cumulated infectious titer following repeated harvest was over 400 times higher than the evaluated batch process yield. This shows that repeated harvests or perfusion have the potential to boost viral yields and should be considered when deciding on a process format for production.
Collapse
Affiliation(s)
- Rebecca Habisch
- Boehringer Ingelheim, Viral Therapeutics Center, Ochsenhausen, Germany
| | - Peter Neubauer
- Department of Bioprocess Engineering, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Jorge Soza-Ried
- Boehringer Ingelheim, Viral Therapeutics Center, Ochsenhausen, Germany
| | - Eva Puschmann
- Boehringer Ingelheim, Viral Therapeutics Center, Ochsenhausen, Germany
| |
Collapse
|
3
|
Pelz L, Dogra T, Marichal-Gallardo P, Hein MD, Hemissi G, Kupke SY, Genzel Y, Reichl U. Production of antiviral "OP7 chimera" defective interfering particles free of infectious virus. Appl Microbiol Biotechnol 2024; 108:97. [PMID: 38229300 PMCID: PMC10787692 DOI: 10.1007/s00253-023-12959-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/26/2023] [Accepted: 11/05/2023] [Indexed: 01/18/2024]
Abstract
Defective interfering particles (DIPs) of influenza A virus (IAV) are suggested for use as broad-spectrum antivirals. We discovered a new type of IAV DIP named "OP7" that carries point mutations in its genome segment (Seg) 7 instead of a deletion as in conventional DIPs (cDIPs). Recently, using genetic engineering tools, we generated "OP7 chimera DIPs" that carry point mutations in Seg 7 plus a deletion in Seg 1. Together with cDIPs, OP7 chimera DIPs were produced in shake flasks in the absence of infectious standard virus (STV), rendering UV inactivation unnecessary. However, only part of the virions harvested were OP7 chimera DIPs (78.7%) and total virus titers were relatively low. Here, we describe the establishment of an OP7 chimera DIP production process applicable for large-scale production. To increase total virus titers, we reduced temperature from 37 to 32 °C during virus replication. Production of almost pure OP7 chimera DIP preparations (99.7%) was achieved with a high titer of 3.24 log10(HAU/100 µL). This corresponded to an 11-fold increase relative to the initial process. Next, this process was transferred to a stirred tank bioreactor resulting in comparable yields. Moreover, DIP harvests purified and concentrated by steric exclusion chromatography displayed an increased interfering efficacy in vitro. Finally, a perfusion process with perfusion rate control was established, resulting in a 79-fold increase in total virus yields compared to the original batch process in shake flasks. Again, a very high purity of OP7 chimera DIPs was obtained. This process could thus be an excellent starting point for good manufacturing practice production of DIPs for use as antivirals. KEY POINTS: • Scalable cell culture-based process for highly effective antiviral OP7 chimera DIPs • Production of almost pure OP7 chimera DIPs in the absence of infectious virus • Perfusion mode production and purification train results in very high titers.
Collapse
Affiliation(s)
- Lars Pelz
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Tanya Dogra
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Pavel Marichal-Gallardo
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Marc Dominique Hein
- Otto Von Guericke University Magdeburg, Bioprocess Engineering, Magdeburg, Germany
| | - Ghada Hemissi
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
| | - Sascha Young Kupke
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Yvonne Genzel
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany.
| | - Udo Reichl
- Max Planck Institute for Dynamics of Complex Technical Systems, Bioprocess Engineering, Magdeburg, Germany
- Otto Von Guericke University Magdeburg, Bioprocess Engineering, Magdeburg, Germany
| |
Collapse
|
4
|
Göbel S, Kazemi O, Ma J, Jordan I, Sandig V, Paulissen J, Kerstens W, Thibaut HJ, Reichl U, Dallmeier K, Genzel Y. Parallel Multifactorial Process Optimization and Intensification for High-Yield Production of Live YF17D-Vectored Zika Vaccine. Vaccines (Basel) 2024; 12:755. [PMID: 39066393 PMCID: PMC11281342 DOI: 10.3390/vaccines12070755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The live-attenuated yellow fever 17D strain is a potent vaccine and viral vector. Its manufacture is based on embryonated chicken eggs or adherent Vero cells. Both processes are unsuitable for rapid and scalable supply. Here, we introduce a high-throughput workflow to identify suspension cells that are fit for the high-yield production of live YF17D-based vaccines in an intensified upstream process. The use of an automated parallel ambr15 microbioreactor system for screening and process optimization has led to the identification of two promising cell lines (AGE1.CR.pIX and HEKDyn) and the establishment of optimized production conditions, which have resulted in a >100-fold increase in virus titers compared to the current state of the art using adherent Vero cells. The process can readily be scaled up from the microbioreactor scale (15 mL) to 1 L stirred tank bioreactors. The viruses produced are genetically stable and maintain their favorable safety and immunogenicity profile, as demonstrated by the absence of neurovirulence in suckling BALB/c mice and consistent seroprotection in AG129 mice. In conclusion, the presented workflow allows for the rapid establishment of a robust, scalable, and high-yield process for the production of live-attenuated orthoflavivirus vaccines, which outperforms current standards. The approach described here can serve as a model for the development of scalable processes and the optimization of yields for other virus-based vaccines that face challenges in meeting growing demands.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany; (S.G.)
| | - Ozeir Kazemi
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery (MVVD), 3000 Leuven, Belgium; (K.D.)
| | - Ji Ma
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery (MVVD), 3000 Leuven, Belgium; (K.D.)
| | | | | | - Jasmine Paulissen
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), 3000 Leuven, Belgium
| | - Winnie Kerstens
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), 3000 Leuven, Belgium
| | - Hendrik Jan Thibaut
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Translational Platform Virology and Chemotherapy (TPVC), 3000 Leuven, Belgium
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany; (S.G.)
- Bioprocess Engineering, Otto-von-Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Kai Dallmeier
- KU Leuven Department of Microbiology, Immunology & Transplantation, Rega Institute, Molecular Vaccinology and Vaccine Discovery (MVVD), 3000 Leuven, Belgium; (K.D.)
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106 Magdeburg, Germany; (S.G.)
| |
Collapse
|
5
|
Pagallies F, Labisch JJ, Wronska M, Pflanz K, Amann R. Efficient and scalable clarification of Orf virus from HEK suspension for vaccine development. Vaccine X 2024; 18:100474. [PMID: 38523620 PMCID: PMC10958475 DOI: 10.1016/j.jvacx.2024.100474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/01/2024] [Accepted: 03/12/2024] [Indexed: 03/26/2024] Open
Abstract
The Orf virus (ORFV) is a promising vector platform for the generation of vaccines against infectious diseases and cancer, highlighted by its progression to clinical testing phases. One of the critical steps during GMP manufacturing is the clarification of crude harvest because of the enveloped nature and large size of ORFV. This study presents the first description of ORFV clarification process from a HEK suspension batch process. We examined various filter materials, membrane pore sizes, harvest timings, and nuclease treatments. Employing the Ambr® crossflow system for high-throughput, small-volume experiments, we identified polypropylene-based Sartopure® PP3 filters as ideal. These filters, used in two consecutive stages with reducing pore sizes, significantly enhanced ORFV recovery and addressed scalability challenges. Moreover, we demonstrated that the time of harvest and the use of a nuclease play a decisive role to increase ORFV yields. With these findings, we were able to establish an efficient and scalable clarification process of ORFV derived from a suspension production process, essential for advancing ORFV vaccine manufacturing.
Collapse
Affiliation(s)
- Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Jennifer J. Labisch
- Lab Essentials Applications Development, Sartorius, Otto-Brenner-Straße 20, 37079 Göttingen, Germany
| | - Malgorzata Wronska
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tübingen, Germany
| | - Karl Pflanz
- Lab Essentials Applications Development, Sartorius, Otto-Brenner-Straße 20, 37079 Göttingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tübingen, Germany
| |
Collapse
|
6
|
Guo H, Ding X, Hua D, Liu M, Yang M, Gong Y, Ye N, Chen X, He J, Zhang Y, Xu X, Li J. Enhancing Dengue Virus Production and Immunogenicity with Celcradle™ Bioreactor: A Comparative Study with Traditional Cell Culture Methods. Vaccines (Basel) 2024; 12:563. [PMID: 38932292 PMCID: PMC11209354 DOI: 10.3390/vaccines12060563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
The dengue virus, the primary cause of dengue fever, dengue hemorrhagic fever, and dengue shock syndrome, is the most widespread mosquito-borne virus worldwide. In recent decades, the prevalence of dengue fever has increased markedly, presenting substantial public health challenges. Consequently, the development of an efficacious vaccine against dengue remains a critical goal for mitigating its spread. Our research utilized Celcradle™, an innovative tidal bioreactor optimized for high-density cell cultures, to grow Vero cells for dengue virus production. By maintaining optimal pH levels (7.0 to 7.4) and glucose concentrations (1.5 g/L to 3.5 g/L) during the proliferation of cells and viruses, we achieved a peak Vero cell count of approximately 2.46 × 109, nearly ten times the initial count. The use of Celcradle™ substantially decreased the time required for cell yield and virus production compared to conventional Petri dish methods. Moreover, our evaluation of the immunogenicity of the Celcradle™-produced inactivated DENV4 through immunization of mice revealed that sera from these mice demonstrated cross-reactivity with DENV4 cultured in Petri dishes and showed elevated antibody titers compared to those from mice immunized with virus from Petri dishes. These results indicate that the dengue virus cultivated using the Celcradle™ system exhibited enhanced immunogenicity relative to that produced in traditional methods. In conclusion, our study highlights the potential of the Celcradle™ bioreactor for large-scale production of inactivated dengue virus vaccines, offering significant promise for reducing the global impact of dengue virus infections and accelerating the development of effective vaccination strategies.
Collapse
Affiliation(s)
- Hongxia Guo
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaoyan Ding
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany
| | - Dong Hua
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Minchi Liu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Maocheng Yang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yuanxin Gong
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Nan Ye
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaozhong Chen
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jiuxiang He
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Yu Zhang
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Xiaofeng Xu
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| | - Jintao Li
- Department of Biosafety, School of Basic Medicine, Army Medical University, Chongqing 400038, China; (H.G.); (X.D.); (D.H.); (M.L.); (M.Y.); (Y.G.); (N.Y.); (X.C.); (J.H.); (Y.Z.); (X.X.)
| |
Collapse
|
7
|
Göbel S, Pelz L, Silva CAT, Brühlmann B, Hill C, Altomonte J, Kamen A, Reichl U, Genzel Y. Production of recombinant vesicular stomatitis virus-based vectors by tangential flow depth filtration. Appl Microbiol Biotechnol 2024; 108:240. [PMID: 38413399 PMCID: PMC10899354 DOI: 10.1007/s00253-024-13078-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/29/2024]
Abstract
Cell culture-based production of vector-based vaccines and virotherapeutics is of increasing interest. The vectors used not only retain their ability to infect cells but also induce robust immune responses. Using two recombinant vesicular stomatitis virus (rVSV)-based constructs, we performed a proof-of-concept study regarding an integrated closed single-use perfusion system that allows continuous virus harvesting and clarification. Using suspension BHK-21 cells and a fusogenic oncolytic hybrid of vesicular stomatitis virus and Newcastle disease virus (rVSV-NDV), a modified alternating tangential flow device (mATF) or tangential flow depth filtration (TFDF) systems were used for cell retention. As the hollow fibers of the former are characterized by a large internal lumen (0.75 mm; pore size 0.65 μm), membrane blocking by the multi-nucleated syncytia formed during infection could be prevented. However, virus particles were completely retained. In contrast, the TFDF filter unit (lumen 3.15 mm, pore size 2-5 μm) allowed not only to achieve high viable cell concentrations (VCC, 16.4-20.6×106 cells/mL) but also continuous vector harvesting and clarification. Compared to an optimized batch process, 11-fold higher infectious virus titers were obtained in the clarified permeate (maximum 7.5×109 TCID50/mL). Using HEK293-SF cells and a rVSV vector expressing a green fluorescent protein, perfusion cultivations resulted in a maximum VCC of 11.3×106 cells/mL and infectious virus titers up to 7.1×1010 TCID50/mL in the permeate. Not only continuous harvesting but also clarification was possible. Although the cell-specific virus yield decreased relative to a batch process established as a control, an increased space-time yield was obtained. KEY POINTS: • Viral vector production using a TFDF perfusion system resulted in a 460% increase in space-time yield • Use of a TFDF system allowed continuous virus harvesting and clarification • TFDF perfusion system has great potential towards the establishment of an intensified vector production.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Lars Pelz
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
| | - Cristina A T Silva
- Department of Chemical Engineering, Polytechnique Montréal, Montréal, Québec, Canada
| | | | | | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Amine Kamen
- Department of Bioengineering, McGill University, Montréal, Québec, Canada
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto von Guericke University Magdeburg, Universitätsplatz 2, 39106, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, 39106, Magdeburg, Germany.
| |
Collapse
|
8
|
Göbel S, Jaén KE, Fernandes RP, Reiter M, Altomonte J, Reichl U, Genzel Y. Characterization of a quail suspension cell line for production of a fusogenic oncolytic virus. Biotechnol Bioeng 2023; 120:3335-3346. [PMID: 37584190 DOI: 10.1002/bit.28530] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
The development of efficient processes for the production of oncolytic viruses (OV) plays a crucial role regarding the clinical success of virotherapy. Although many different OV platforms are currently under investigation, manufacturing of such viruses still mainly relies on static adherent cell cultures, which bear many challenges, particularly for fusogenic OVs. Availability of GMP-compliant continuous cell lines is limited, further complicating the development of commercially viable products. BHK21, AGE1. CR and HEK293 cells were previously identified as possible cell substrates for the recombinant vesicular stomatitis virus (rVSV)-based fusogenic OV, rVSV-NDV. Now, another promising cell substrate was identified, the CCX.E10 cell line, developed by Nuvonis Technologies. This suspension cell line is considered non-GMO as no foreign genes or viral sequences were used for its development. The CCX.E10 cells were thus thoroughly investigated as a potential candidate for OV production. Cell growth in the chemically defined medium in suspension resulted in concentrations up to 8.9 × 106 cells/mL with a doubling time of 26.6 h in batch mode. Cultivation and production of rVSV-NDV, was demonstrated successfully for various cultivation systems (ambr15, shake flask, stirred tank reactor, and orbitally shaken bioreactor) at vessel scales ranging from 15 mL to 10 L. High infectious virus titers of up to 4.2 × 108 TCID50 /mL were reached in orbitally shaken bioreactors and stirred tank reactors in batch mode, respectively. Our results suggest that CCX.E10 cells are a very promising option for industrial production of OVs, particularly for fusogenic VSV-based constructs.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Karim E Jaén
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Rita P Fernandes
- Instituto de Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| | | | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
9
|
Hein MD, Kazenmaier D, van Heuvel Y, Dogra T, Cattaneo M, Kupke SY, Stitz J, Genzel Y, Reichl U. Production of retroviral vectors in continuous high cell density culture. Appl Microbiol Biotechnol 2023; 107:5947-5961. [PMID: 37542575 PMCID: PMC10485120 DOI: 10.1007/s00253-023-12689-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 08/07/2023]
Abstract
Retroviral vectors derived from murine leukemia virus (MLV) are used in somatic gene therapy applications e.g. for genetic modification of hematopoietic stem cells. Recently, we reported on the establishment of a suspension viral packaging cell line (VPC) for the production of MLV vectors. Human embryonic kidney 293-F (HEK293-F) cells were genetically modified for this purpose using transposon vector technology. Here, we demonstrate the establishment of a continuous high cell density (HCD) process using this cell line. First, we compared different media regarding the maximum achievable viable cell concentration (VCC) in small scale. Next, we transferred this process to a stirred tank bioreactor before we applied intensification strategies. Specifically, we established a perfusion process using an alternating tangential flow filtration system. Here, VCCs up to 27.4E + 06 cells/mL and MLV vector titers up to 8.6E + 06 transducing units/mL were achieved. Finally, we established a continuous HCD process using a tubular membrane for cell retention and continuous viral vector harvesting. Here, the space-time yield was 18-fold higher compared to the respective batch cultivations. Overall, our results clearly demonstrate the feasibility of HCD cultivations for high yield production of viral vectors, especially when combined with continuous viral vector harvesting. KEY POINTS: • A continuous high cell density process for MLV vector production was established • The tubular cell retention membrane allowed for continuous vector harvesting • The established process had a 18-fold higher space time yield compared to a batch.
Collapse
Affiliation(s)
- Marc D Hein
- Chair of Bioprocess Engineering, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Daniel Kazenmaier
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Faculty of Biotechnology, University of Applied Sciences Mannheim, Mannheim, Germany
| | - Yasemin van Heuvel
- Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Leverkusen, Germany
- Institute of Technical Chemistry, Leibniz University Hannover, Hannover, Germany
| | - Tanya Dogra
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | | | - Sascha Y Kupke
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Jörn Stitz
- Faculty of Applied Natural Sciences, University of Applied Sciences Cologne, Leverkusen, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Udo Reichl
- Chair of Bioprocess Engineering, Otto-Von-Guericke-University Magdeburg, Magdeburg, Germany
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
10
|
Göbel S, Jaén KE, Dorn M, Neumeyer V, Jordan I, Sandig V, Reichl U, Altomonte J, Genzel Y. Process intensification strategies toward cell culture-based high-yield production of a fusogenic oncolytic virus. Biotechnol Bioeng 2023; 120:2639-2657. [PMID: 36779302 DOI: 10.1002/bit.28353] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/14/2023]
Abstract
We present a proof-of-concept study for production of a recombinant vesicular stomatitis virus (rVSV)-based fusogenic oncolytic virus (OV), rVSV-Newcastle disease virus (NDV), at high cell densities (HCD). Based on comprehensive experiments in 1 L stirred tank reactors (STRs) in batch mode, first optimization studies at HCD were carried out in semi-perfusion in small-scale cultivations using shake flasks. Further, a perfusion process was established using an acoustic settler for cell retention. Growth, production yields, and process-related impurities were evaluated for three candidate cell lines (AGE1.CR, BHK-21, HEK293SF)infected at densities ranging from 15 to 30 × 106 cells/mL. The acoustic settler allowed continuous harvesting of rVSV-NDV with high cell retention efficiencies (above 97%) and infectious virus titers (up to 2.4 × 109 TCID50 /mL), more than 4-100 times higher than for optimized batch processes. No decrease in cell-specific virus yield (CSVY) was observed at HCD, regardless of the cell substrate. Taking into account the accumulated number of virions both from the harvest and bioreactor, a 15-30 fold increased volumetric virus productivity for AGE1.CR and HEK293SF was obtained compared to batch processes performed at the same scale. In contrast to all previous findings, formation of syncytia was observed at HCD for the suspension cells BHK 21 and HEK293SF. Oncolytic potency was not affected compared to production in batch mode. Overall, our study describes promising options for the establishment of perfusion processes for efficient large-scale manufacturing of fusogenic rVSV-NDV at HCD for all three candidate cell lines.
Collapse
Affiliation(s)
- Sven Göbel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Karim E Jaén
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Marie Dorn
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Faculty of Process and Systems Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Victoria Neumeyer
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | | | | | - Udo Reichl
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
- Chair for Bioprocess Engineering, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Jennifer Altomonte
- Department of Internal Medicine II, Klinikum Rechts der Isar, Technische Universität München, Munchen, Germany
| | - Yvonne Genzel
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
11
|
Matanguihan C, Wu P. Upstream continuous processing: recent advances in production of biopharmaceuticals and challenges in manufacturing. Curr Opin Biotechnol 2022; 78:102828. [PMID: 36332340 DOI: 10.1016/j.copbio.2022.102828] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/12/2022] [Accepted: 09/27/2022] [Indexed: 12/14/2022]
Abstract
Upstream continuous processing, or most commonly perfusion processing, for biopharmaceutical production, is emerging as a feasible and viable manufacturing approach. Development in production of recombinant therapeutic proteins as well as viral vectors, vaccines, and cell therapy products, has numerous research publications that came out in previous years. Recent research areas are in perfusion-operation strategies maximizing and controlling bioreactor cell density, adding feed solution designed to supplement basal medium feed stream, combining cell line engineering with bioreactor conditions such as hypoxia, and implementing online process monitoring of cell density by capacitance sensor and metabolites by Raman spectroscopy. Perfusion applications are not limited to production process alone but include other upstream areas where high cell density process is essential such as in cell bank preparation, N-1 seed bioreactor, and combination with intensified fed-batch production process. This review covers recent advances in continuous processing over the last two years for biopharmaceutical production.
Collapse
Affiliation(s)
- Cary Matanguihan
- Bayer U.S. LLC, Pharmaceuticals, Biologics Development, 800 Dwight Way, Berkeley, CA 94701, USA.
| | - Paul Wu
- Bayer U.S. LLC, Pharmaceuticals, Biologics Development, 800 Dwight Way, Berkeley, CA 94701, USA
| |
Collapse
|
12
|
Bergin A, Carvell J, Butler M. Applications of bio-capacitance to cell culture manufacturing. Biotechnol Adv 2022; 61:108048. [DOI: 10.1016/j.biotechadv.2022.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/05/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022]
|
13
|
Eilts F, Lothert K, Orbay S, Pagallies F, Amann R, Wolff MW. A Summary of Practical Considerations for the Application of the Steric Exclusion Chromatography for the Purification of the Orf Viral Vector. MEMBRANES 2022; 12:1070. [PMID: 36363625 PMCID: PMC9696199 DOI: 10.3390/membranes12111070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Steric exclusion chromatography (SXC) is a promising purification method for biological macromolecules such as the Orf virus (ORFV) vector. The method's principle is closely related to conventional polyethylene glycol (PEG) precipitation, repeatedly implementing membranes as porous chromatographic media. In the past decade, several purification tasks with SXC showed exceptionally high yields and a high impurity removal. However, the effect of varying process parameters, on the precipitation success and its limitations to SXC, is not yet well understood. For this reason, the precipitation behavior and SXC adaptation for ORFV were investigated for the PEG/ORFV contact time, the membranes pore size, and the type and concentration of ions. All three parameters influenced the ORFV recoveries significantly. A small pore size and a long contact time induced filtration effects and inhibited a full virus recovery. The application of salts had complex concentration-dependent effects on precipitation and SXC yields, and ranged from a complete prevention of precipitation in the presence of kosmotropic substances to increased efficiencies with Mg2+ ions. The latter finding might be useful to reduce PEG concentrations while maintaining high yields. With this knowledge, we hope to clarify several limitations of SXC operations and improve the tool-set for a successful process adaptation.
Collapse
Affiliation(s)
- Friederike Eilts
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Keven Lothert
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Sabri Orbay
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
| | - Felix Pagallies
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
| | - Ralf Amann
- Department of Immunology, University of Tuebingen, Auf der Morgenstelle 15, 72076 Tuebingen, Germany
- PRiME Vector Technologies, Herrenberger Straße 24, 72070 Tuebingen, Germany
| | - Michael W. Wolff
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen (THM), Wiesenstr.14, 35390 Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| |
Collapse
|