1
|
Microchip electrophoresis and electrochemical detection: A review on a growing synergistic implementation. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
2
|
Sadowski R, Gadzała-Kopciuch R, Buszewski B. Recent Developments in the Separation of Low Molecular Weight Heparin Anticoagulants. Curr Med Chem 2019; 26:166-176. [PMID: 28982317 DOI: 10.2174/0929867324666171005114150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 08/11/2016] [Accepted: 09/05/2017] [Indexed: 11/22/2022]
Abstract
The general function of anticoagulants is to prevent blood clotting and growing of the existing clots in blood vessels. In recent years, there has been a significant improvement in developing methods of prevention as well as pharmacologic and surgical treatment of thrombosis. For over the last two decades, low molecular weight heparins (LMWHs) have found their application in the antithrombotic diseases treatment. These types of drugs are widely used in clinical therapy. Despite the biological and medical importance of LMWHs, they have not been completely characterized in terms of their chemical structure. Due to both, the structural complexity of these anticoagulants and the presence of impurities, their structural characterization requires the employment of advanced analytical techniques. Since separation techniques play the key role in these endeavors, this review will focus on the presentation of recent developments in the separation of LMWH anticoagulants.
Collapse
Affiliation(s)
- Radosław Sadowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland.,Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
3
|
Ouyang Y, Han X, Xia Q, Chen J, Velagapudi S, Xia K, Zhang Z, Linhardt RJ. Negative-Ion Mode Capillary Isoelectric Focusing Mass Spectrometry for Charge-Based Separation of Acidic Oligosaccharides. Anal Chem 2018; 91:846-853. [DOI: 10.1021/acs.analchem.8b03500] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yilan Ouyang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Xiaorui Han
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Qiangwei Xia
- CMP Scientific Corporation, 760 Parkside Avenue, STE 211, Brooklyn, New York 11226, United States
| | - Jianle Chen
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Sheila Velagapudi
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Ke Xia
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| | - Zhenqing Zhang
- Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psycho-Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Robert J. Linhardt
- Departments of Chemistry and Chemical Biology, Biology, Chemical and Biological Engineering, and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, United States
| |
Collapse
|
4
|
Abstract
Capillary electrophoresis is a common technique used for glycosaminoglycan-derived disaccharide analysis because of its high resolving power, high separation efficiency, high sensitivity, short analysis time, and straightforward operation. CE coupled to laser-induced fluorescence (LIF) detection shows an approximately 100 times higher sensitivity than traditional UV detection at 232 nm. 2-Aminoacridone (AMAC) is a widely used fluorophore for labeling unsaturated disaccharides by deductive amination, which is one of the most important method of derivatization of disaccharides for CE-LIF detection. Outlined in this chapter is a protocol of analyzing glycosaminoglycan-derived disaccharides by CE-LIF with AMAC derivatization.
Collapse
|
5
|
Bao Y, Chen C, Newburg DS. Quantification of neutral human milk oligosaccharides by graphitic carbon high-performance liquid chromatography with tandem mass spectrometry. Anal Biochem 2012; 433:28-35. [PMID: 23068043 DOI: 10.1016/j.ab.2012.10.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 11/25/2022]
Abstract
Defining the biological roles of human milk oligosaccharides (HMOS) requires an efficient, simple, reliable, and robust analytical method for simultaneous quantification of oligosaccharide profiles from multiple samples. The HMOS fraction of milk is a complex mixture of polar, highly branched, isomeric structures that contain no intrinsic facile chromophore, making their resolution and quantification challenging. A liquid chromatography-mass spectrometry (LC-MS) method was devised to resolve and quantify 11 major neutral oligosaccharides of human milk simultaneously. Crude HMOS fractions are reduced, resolved by porous graphitic carbon high-performance liquid chromatography (HPLC) with a water/acetonitrile gradient, detected by mass spectrometric specific ion monitoring, and quantified. The HPLC separates isomers of identical molecular weights, allowing 11 peaks to be fully resolved and quantified by monitoring mass-to-charge (m/z) ratios of the deprotonated negative ions. The standard curves for each of the 11 oligosaccharides is linear from 0.078 or 0.156 to 20 μg/ml (R(2)>0.998). Precision (coefficient of variation) ranges from 1% to 9%. Accuracy is from 86% to 104%. This analytical technique provides sensitive, precise, and accurate quantification for each of the 11 milk oligosaccharides and allows measurement of differences in milk oligosaccharide patterns between individuals and at different stages of lactation.
Collapse
Affiliation(s)
- Yuanwu Bao
- Department of Biology, Program in Glycobiology, Boston College, Chestnut Hill, MA 02467, USA
| | | | | |
Collapse
|
6
|
Chang Y, Yang B, Zhao X, Linhardt RJ. Analysis of glycosaminoglycan-derived disaccharides by capillary electrophoresis using laser-induced fluorescence detection. Anal Biochem 2012; 427:91-8. [PMID: 22609076 DOI: 10.1016/j.ab.2012.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 05/05/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
A quantitative and highly sensitive method for the analysis of glycosaminoglycan (GAG)-derived disaccharides that relies on capillary electrophoresis (CE) with laser-induced fluorescence detection is presented. This method enables complete separation of 17 GAG-derived disaccharides in a single run. Unsaturated disaccharides were derivatized with 2-aminoacridone to improve sensitivity. The limit of detection was at the attomole level and approximately 100-fold more sensitive than traditional CE-ultraviolet detection. A CE separation timetable was developed to achieve complete resolution and shorten analysis time. The relative standard deviations of migration time and peak areas at both low and high concentrations of unsaturated disaccharides are all less than 2.7 and 3.2%, respectively, demonstrating that this is a reproducible method. This analysis was successfully applied to cultured Chinese hamster ovary cell samples for determination of GAG disaccharides. The current method simplifies GAG extraction steps and reduces inaccuracy in calculating ratios of heparin/heparan sulfate to chondroitin sulfate/dermatan sulfate resulting from the separate analyses of a single sample.
Collapse
Affiliation(s)
- Yuqing Chang
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | |
Collapse
|
7
|
Guerrini M, Bisio A. Low-molecular-weight heparins: differential characterization/physical characterization. Handb Exp Pharmacol 2012:127-57. [PMID: 22566224 DOI: 10.1007/978-3-642-23056-1_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Low-molecular-weight heparins (LMWHs), derived from unfractionated heparin (UFH) through different depolymerization processes, have advantages with respect to the parent heparin in terms of pharmacokinetics, convenience of administration, and reduced side effects. Each LMWH can be considered as an independent drug with its own activity profile, placing significance on their biophysical characterization, which will also enable a better understanding of their structure-function relationship. Several chemical and physical methods, some involving sample modification, are now available and are reviewed.
Collapse
Affiliation(s)
- Marco Guerrini
- Istituto di Ricerche Chimiche e Biochimiche G. Ronzoni, Milan, Italy.
| | | |
Collapse
|
8
|
Abstract
More than half of all human proteins are glycosylated. Glycosylation defines the adhesive properties of glycoconjugates and it is largely through glycan-protein interactions that cell-cell and cell-pathogen contacts occur. Not surprisingly, considering the central role they play in molecular encounters, glycoprotein and carbohydrate-based drugs and therapeutics represent a greater than $20 billion market. Glycomics, the study of glycan expression in biological systems, relies on effective analytical techniques for correlation of glycan structure with function. This overview summarizes techniques developed historically for glycan characterization as well as recent trends. Derivatization methods key to both traditional and modern approaches for glycoanalysis are described. Monosaccharide compositional analysis is fundamental to any effort to understand glycan structure-function relationships. Chromatographic and electrophoretic separations are key parts of any glycoanalytical workflow. Mass spectrometry and nuclear magnetic resonance are complementary instrumental techniques for glycan analysis. Finally, microarrays are emerging as powerful new tools for dynamic analysis of glycan expression.
Collapse
Affiliation(s)
- Alicia M Bielik
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
| | | |
Collapse
|
9
|
Guimond SE, Puvirajesinghe TM, Skidmore MA, Kalus I, Dierks T, Yates EA, Turnbull JE. Rapid purification and high sensitivity analysis of heparan sulfate from cells and tissues: toward glycomics profiling. J Biol Chem 2009; 284:25714-22. [PMID: 19596853 PMCID: PMC2757973 DOI: 10.1074/jbc.m109.032755] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 07/06/2009] [Indexed: 11/24/2022] Open
Abstract
Studies on glycosaminoglycans and proteoglycans (PGs) have been hampered by difficulties in isolation and analysis by traditional methods that are laborious and lack sensitivity and throughput. Here we demonstrate a simple method for rapid isolation of proteoglycans (RIP) employing phenol/guanidine/chloroform reagent to purify heparan sulfate (HS) PGs quantitatively from various tissues and cells. We further show that this generic purification methodology, when applied in concert with a BODIPY fluorescent label, permits structural analyses on RIP-purified HS at approximately 1,000-fold higher sensitivity than standard UV detection methods and approximately 10-100-fold higher sensitivity than previous fluorescence detection methods. The utility of RIP-BODIPY methodology was demonstrated by rapid profiling of HS structural composition from small tissue samples, multiple mouse organs, and as little as a few thousand cultured cells. It was also used to generate novel insights into in vivo structural changes in HS from Sulf1 knock-out mice for the first time that differed significantly from previous observations limited to tissue culture experiments. RIP was also applied to purify HS for bioassay testing, exemplified by cell assays of fibroblast growth factor signaling activation; this generated data from 2-O-sulfotransferase knock-out mice and revealed an unexpected deficiency in fibroblast growth factor activation by HS from heterozygous mice. These data demonstrate that RIP will underpin emerging efforts to develop glycomics profiling strategies for HS and other glycosaminoglycans to explore their structure-function relationships in complex biological systems.
Collapse
Affiliation(s)
- Scott E. Guimond
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Tania M. Puvirajesinghe
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Mark A. Skidmore
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Ina Kalus
- the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany
| | - Thomas Dierks
- the Department of Chemistry, Biochemistry I, Bielefeld University, 33615 Bielefeld, Germany
| | - Edwin A. Yates
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| | - Jeremy E. Turnbull
- From the Centre for Glycobiology, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom and
| |
Collapse
|
10
|
Hitchcock AM, Bowman MJ, Staples GO, Zaia J. Improved workup for glycosaminoglycan disaccharide analysis using CE with LIF detection. Electrophoresis 2008; 29:4538-48. [PMID: 19035406 PMCID: PMC2810710 DOI: 10.1002/elps.200800335] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This work describes improved workup and instrumental conditions to enable robust, sensitive glycosaminoglycan (GAG) disaccharide analysis from complex biological samples. In the process of applying CE with LIF to GAG disaccharide analysis in biological samples, we have made improvements to existing methods. These include (i) optimization of reductive amination conditions, (ii) improvement in sensitivity through the use of a cellulose cleanup procedure for the derivatization, and (iii) optimization of separation conditions for robustness and reproducibility. The improved method enables analysis of disaccharide quantities as low as 1 pmol prior to derivatization. Biological GAG samples were exhaustively digested using lyase enzymes, the disaccharide products and standards were derivatized with the fluorophore 2-aminoacridone and subjected to reversed polarity CE-LIF detection. These conditions resolved all known chondroitin sulfate (CS) disaccharides or 11 of 12 standard heparin/heparan sulfate disaccharides, using 50 mM phosphate buffer, pH 3.5, and reversed polarity at 30 kV with 0.3 psi pressure. Relative standard deviation in migration times of CS ranged from 0.1 to 2.0% over 60 days, and the relative standard deviations of peak areas were less than 3.2%, suggesting that the method is reproducible and precise. The CS disaccharide compositions are similar to those obtained by our group using tandem MS. The reversed polarity CE-LIF disaccharide analysis protocol yields baseline resolution and quantification of heparin/heparan sulfate and CS/dermatan sulfate disaccharides from both standard preparations and biologically relevant proteoglycan samples. The improved CE-LIF method enables disaccharide quantification of biologically relevant proteoglycans from small samples of intact tissue.
Collapse
Affiliation(s)
- Alicia M. Hitchcock
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St., Boston, Massachusetts 02118
| | - Michael J. Bowman
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St., Boston, Massachusetts 02118
| | - Gregory O. Staples
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St., Boston, Massachusetts 02118
| | - Joseph Zaia
- Department of Biochemistry, Boston University School of Medicine, 670 Albany St., Boston, Massachusetts 02118
| |
Collapse
|
11
|
Bao Y, Newburg DS. Capillary electrophoresis of acidic oligosaccharides from human milk. Electrophoresis 2008; 29:2508-15. [PMID: 18512675 DOI: 10.1002/elps.200700873] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interest in defining the array of oligosaccharides of human milk has been increasing. Pathogens that bind glycans on their host mucosal surfaces may be inhibited by human milk oligosaccharides. It has been postulated that acidic oligosaccharides in human milk may inhibit binding by pathogens that bind acidic glycans in the gut, but testing this hypothesis requires their reliable quantification in milk. Sialyloligosaccharides of human milk have been quantified by HPLC and CE. A recent CE technique uses the MEKC mode with direct detection at 205 nm to resolve and quantify, in the native form, the 12 most dominant sialyloligosaccharides of human milk in a single 35-min run. The method gives a linear response from 39 to 2500 microg/mL with a coefficient of variation between 2 to 9% and accuracy from 93 to 109%. This was used to detect variation in expression of specific sialyloligosaccharides in milk. Individual sialyloligosaccharide concentrations in milk differ among individual donors and between less and more mature milk. Thus, CE can be used to measure variation in sialyloligosaccharide expression in milk, and thereby test the relationship of this variation-to-variation in risk of specific diseases in breastfed infants.
Collapse
Affiliation(s)
- Yuanwu Bao
- Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | |
Collapse
|
12
|
A capillary electrophoretic method for fingerprinting low molecular weight heparins. Anal Biochem 2008; 380:229-34. [DOI: 10.1016/j.ab.2008.05.046] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 05/27/2008] [Accepted: 05/29/2008] [Indexed: 11/20/2022]
|
13
|
Korir AK, Almeida VK, Malkin DS, Larive CK. Separation and analysis of nanomole quantities of heparin oligosaccharides using on-line capillary isotachophoresis coupled with NMR detection. Anal Chem 2007; 77:5998-6003. [PMID: 16159133 DOI: 10.1021/ac050669u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Glycosaminoglycans (GAGs) are important in a number of biological processes and are structurally altered in many pathological conditions. The complete determination of GAG primary structures has been hampered by the lack of sensitive and specific analytical techniques. Nuclear magnetic resonance spectroscopy (NMR) is a powerful tool for GAG structure elucidation despite its relatively poor limits of detection. Solenoidal microcoils have greatly enhanced the mass limits of detection of NMR, enabling the on-line coupling of microseparation and concentration techniques such as capillary isotachophoresis (cITP), which can separate and concentrate analytes by 2-3 orders of magnitude. We have successfully used cITP coupled with on-line NMR detection to separate and concentrate nanomole quantities of heparin oligosaccharides. This sensitive on-line measurement approach has the potential to provide new insights into the relationships between biological function and GAG microstructures.
Collapse
Affiliation(s)
- Albert K Korir
- Department of Chemistry, University of Kansas, 1251 Wescoe Hall Drive, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
14
|
Casado-Terrones S, Cortacero-Ramírez S, Carrasco-Pancorbo A, Segura-Carretero A, Fernández-Gutiérrez A. Comparative study between a commercial and a homemade capillary electrophoresis instrument for the simultaneous determination of aminated compounds by induced fluorescence detection. Anal Bioanal Chem 2006; 386:1835-47. [PMID: 16964474 DOI: 10.1007/s00216-006-0731-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 07/25/2006] [Accepted: 08/03/2006] [Indexed: 10/24/2022]
Abstract
The performance of two capillary electrophoresis (CE) instruments, one commercial and one homemade device, were compared for the determination of derivatised aminated compounds with fluorescein isothiocyanate (FITC). The commercial CE system first uses an argon ion laser as excitation source; the homemade CE device uses an inexpensive blue-light-emitting diode (LED) as the light source and a charge-coupled device (CCD) as the detection system. After fine optimisation of several separation parameters in both devices, a co-electroosmotic flow CE methodology was achieved in coated capillary tubing with 0.001% hexadimetrine bromide (HDB), and 50 mmol L-1 sodium borate at pH 9.3 with 20% 2-propanol for the determination of several amines and aminoacids. Analytical performances, applicability in beer samples and other aspects such as cost or potential for miniaturization have been compared for both devices.
Collapse
Affiliation(s)
- Silvia Casado-Terrones
- Department of Analytical Chemistry, Faculty of Sciences, University of Granada, Avda. Fuentenueva s/n, 18071, Granada, Spain
| | | | | | | | | |
Collapse
|
15
|
Sasisekharan R, Raman R, Prabhakar V. GLYCOMICS APPROACH TO STRUCTURE-FUNCTION RELATIONSHIPS OF GLYCOSAMINOGLYCANS. Annu Rev Biomed Eng 2006; 8:181-231. [PMID: 16834555 DOI: 10.1146/annurev.bioeng.8.061505.095745] [Citation(s) in RCA: 219] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extracellular modulation of phenotype is an emerging paradigm in this current postgenomics age of molecular and cell biology. Glycosaminoglycans (GAGs) are primary components of the cell surface and the cell-extracellular matrix (ECM) interface. Advances in the technology to analyze GAGs and in whole-organism genetics have led to a dramatic increase in the known important biological role of these complex polysaccharides. Owing to their ubiquitous distribution at the cell-ECM interface, GAGs interact with numerous proteins and modulate their activity, thus impinging on fundamental biological processes such as cell growth and development. Many recent reviews have captured important aspects of GAG structure and biosynthesis, GAG-protein interactions, and GAG biology. GAG research is currently at a stage where there is a need for an integrated systems or glycomics approach, which involves an integration of all of the above concepts to define their structure-function relationships. Focusing on heparin/heparan (HSGAGs) and chondroitin/dermatan sulfate (CSGAGs), this review highlights the important aspects of GAGs and summarizes these aspects in the context of taking a glycomics approach that integrates the different technologies to define structure-function relationships of GAGs.
Collapse
Affiliation(s)
- Ram Sasisekharan
- Biological Engineering Division, Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|