1
|
Manich G, Pérez B, Penas C, Dantas AP, Coutinho J, Sánchez-Bernadó P, García-Aranda J, Fraile-Ramos J, Benseny-Cases N, Martín-Mur B, Esteve-Codina A, Rodríguez-Rovira I, Giménez-Llort L, Egea G, Jiménez-Altayó F. Sex- and age-dependent neurovascular abnormalities linked to neuroinflammation lead to exacerbated post-ischemic brain injury in Marfan syndrome mice. Redox Biol 2025; 83:103662. [PMID: 40349485 DOI: 10.1016/j.redox.2025.103662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/30/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025] Open
Abstract
Fibrillin 1 gene (Fbn1) mutations cause Marfan syndrome (MFS), triggering life-threatening aortic complications and multi-organ effects. MFS is increasingly linked to neurovascular complications, amplified by aortic surgery risks. However, the impact of MFS on the brain remains unclear, including the roles of sex, aging, and their contribution to cerebral injury. This study examines brain alterations and their role in cerebral ischemic injury in an MFS mouse model. RNA-seq analysis of young (3-month-old) and aged (13-month-old) male and female wild-type and MFS (Fbn1C1041G/+) mice revealed disruptions in TGF-β and extracellular matrix (ECM) pathways in MFS brains, most pronounced in young males and aged females with reduced estrogen levels. Inflammatory pathways were upregulated across all MFS mice. Consequently, changes in TGF-β signaling, ECM turnover, redox stress and inflammatory pathways were assessed through RT-qPCR, immunostaining, Western blot, lucigenin chemiluminescence, spectrophotometry, HPLC, and synchrotron radiation-based microspectroscopy, while cerebrovascular properties were assessed by pressure myography and confocal microscopy in the basilar artery. Aged MFS mice showed decreased brain TGF-β1 levels, while dysregulated collagen turnover was only observed in female MFS mice. Despite increased NADPH oxidase activity and redox damage in the corpus callosum of male MFS mice, brain redox stress levels remain largely unchanged. Young female MFS mice exhibited hypertrophic remodeling of the basilar artery. Remarkably, neuroinflammation driven by reactive gliosis increased in MFS mice, regardless of sex and age. To determine the impact on ischemic vulnerability, young mice underwent bilateral common carotid artery occlusion (5 min)/reperfusion (3 days). MFS mice showed greater post-ischemic brain damage, evidenced by worsened behavioral impairments, hippocampal neurodegeneration, and neuroinflammation. This study identifies sex- and age-dependent disruptions in TGF-β1, ECM, and cerebrovascular integrity in MFS mice. Persistent neuroinflammation and increased vulnerability to post-ischemic brain injury suggests that MFS patients, alongside well-documented aortic complications, have an intrinsic predisposition to cerebral damage.
Collapse
Affiliation(s)
- Gemma Manich
- Department of Morphological Sciences, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain
| | - Belén Pérez
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Department of Pharmacology, Therapeutics, and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain
| | - Clara Penas
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Cerdanyola Del Vallès, Spain; Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Red Española de Terapias Avanzadas (RED-TERAV), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Paula Dantas
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona, Institut D'Investigacions Biomediques August Pi I Sunyer, Hospital Clinic Cardiovascular Institute, Barcelona, Spain
| | - Joana Coutinho
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Department of Pharmacology, Therapeutics, and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain
| | - Paula Sánchez-Bernadó
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Department of Pharmacology, Therapeutics, and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain
| | - Julián García-Aranda
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Department of Pharmacology, Therapeutics, and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Instituto de Investigaciones Biomédicas de Barcelona-Consejo Superior de Investigaciones Científicas (IIBB-CSIC), Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain
| | - Juan Fraile-Ramos
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Núria Benseny-Cases
- Unitat de Biofísica. Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Beatriz Martín-Mur
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain
| | - Anna Esteve-Codina
- Centro Nacional de Análisis Genómico (CNAG), Barcelona, Spain; Universitat de Barcelona, Barcelona, Spain
| | - Isaac Rodríguez-Rovira
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona-IDIBAPS, Barcelona, Spain
| | - Lydia Giménez-Llort
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gustavo Egea
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of Barcelona-IDIBAPS, Barcelona, Spain; Department of Medical Genetics, University of Antwerpen, Antwerpen, Belgium
| | - Francesc Jiménez-Altayó
- Institute of Neurosciences, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Department of Pharmacology, Therapeutics, and Toxicology, School of Medicine, Universitat Autònoma de Barcelona, Cerdanyola Del Vallès, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
2
|
Muhtar A, Jian P, Muhammad T, Zhao J, Dolkun A, Zhou T, Piletsky SA. A dummy template molecularly imprinted polymer-coated fiber array extraction for simultaneous HPLC analysis of eight biogenic amines in fermented horse milk. Anal Chim Acta 2025; 1352:343901. [PMID: 40210271 DOI: 10.1016/j.aca.2025.343901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/01/2025] [Accepted: 03/04/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Biogenic amines (BAs) are low molecular weight nitrogenous compounds present in various foods. While physiologically essential in trace amounts, elevated concentrations of BAs pose health risks, including serving as precursors to carcinogens. In fermented foods such as kumiss-a traditional fermented horse milk-the quantitative assessment of BAs is critical due to their health implications. However, the wide range of logP and pKa values among BAs presents significant challenges for their simultaneous extraction and accurate analysis. RESULT This study introduces a novel approach for the simultaneous extraction of eight BAs in kumiss using dummy molecularly imprinted polymer (DMIP) coated fibers. The DMIP was synthesized using diethylamine dansyl chloride as a derivatized template, enabling selective recognition of eight BA derivatives. The fabricated coated fibers, which are reusable and cost-effective, were integrated into an array device for high-throughput solid-phase microextraction (SPME), achieving an average extraction time of less than 2 min per sample. The SPME method demonstrated high recoveries (70.06-110.92 %) when coupled with high-performance liquid chromatography (HPLC) analysis. Linear calibration curves were established between the peak area and the concentration of BAs over the range of 0.2-10 mg L-1, with high regression coefficients (>0.99) and low detection limits (0.025-0.123 mg L-1). The DMIP coated fiber array extraction device provided highly selective and efficient separation of BA derivatives from complex matrices, as successfully demonstrated using kumiss samples. SIGNIFICANCE AND NOVELTY This study presents a novel dummy molecular imprinting strategy for the fabrication of DMIP coated fiber array for SPME, addressing the limitations of traditional methods in the simultaneous recognition of structurally diverse BAs. This approach significantly enhances the efficiency and selectivity of BA analysis, which is essential for the quality control of fermented foods.
Collapse
Affiliation(s)
- Adila Muhtar
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Pengli Jian
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Turghun Muhammad
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China; Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, 352100, PR China.
| | - Jia Zhao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Almire Dolkun
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Tiantian Zhou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, PR China
| | - Sergey A Piletsky
- School of Chemistry, College of Science and Engineering, University of Leicester, George Porter Building, University Road, LE1 7RH, UK
| |
Collapse
|
3
|
Ashiq J, Hussain A, Gilani MA, Riaz S, Nawaz MH. Ultrasensitive detection of histamine in spoiled meat employing silver nanoparticles decorated Perylene: An experimental-computational conjugation. Food Chem 2025; 464:141673. [PMID: 39423538 DOI: 10.1016/j.foodchem.2024.141673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/06/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
Meat spoilage has been acquiring increasing attention recently and is directly associated with food safety and human health. Biogenic amines are the spying organic compounds fostered from the microorganism-mediated decarboxylation of amino acids during meat spoilage. Histamine, a biogenic amine acts as a model analyte and is toxic if consumed substantially. It is crucial to monitor histamine levels in meat due to its adverse effects. In this study, a simple and quick fluorescent sensor was fabricated for sensitive and selective detection of histamine. Citrate-capped silver nanoparticles (AgNP) were loaded onto Perylene (PER) to develop a sensing probe that was characterized using UV-visible, FTIR, XRD, and FESEM, and its optical behavior toward histamine was investigated. Moreover, the binding affinity between histamine and PER@AgNP was assessed using a DFT-based computer simulation. Under optimal conditions, the sensor showed linear relationships for histamine concentrations from 25 μM to 3200 μM with LOD 13.52 μM.
Collapse
Affiliation(s)
- Javaria Ashiq
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus (54000), Pakistan; Department of Chemistry, COMSATS University Islamabad, Lahore Campus (54000), Pakistan
| | - Ali Hussain
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus (54000), Pakistan
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus (54000), Pakistan.
| | - Sara Riaz
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus (54000), Pakistan
| | - Mian Hasnain Nawaz
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus (54000), Pakistan.
| |
Collapse
|
4
|
Henning N, Kellermann TA, Smith C. Effect of Chronic Dolutegravir Administration on the Trace Amine Profile in Wistar Rats. Drugs R D 2024; 24:435-445. [PMID: 39177936 PMCID: PMC11455829 DOI: 10.1007/s40268-024-00484-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Dolutegravir (DTG), an integrase strand inhibitor, is currently used as the first-line treatment for HIV. Despite relatively poor tissue penetration, the risk of adverse effects in metabolic and excretory systems should be considered. The trace aminergic system and trace amines are emerging as relevant role players in many chronic diseases that are commonly diagnosed but poorly understood. Trace amines are biogenic amines that are endogenously produced and can also be ingested by the intake of trace amine-rich food. Trace amines are known to differentially regulate inflammatory and neurological outcome. OBJECTIVE This study investigated the effects of DTG on the trace amine profile in a wistar rat model. METHODS A total of 24 healthy wistar rats were randomly divided into four experimental groups: male and female controls and male and female DTG-treated. Blood and tissue samples were collected following a 12-week DTG administration study. Liquid chromatography-tandem mass spectroscopy (LC-MS/MS) was used to determine trace amine concentrations in urine, plasma, brain, and gastrointestinal tissue. RESULTS Current data illustrate that polyamines differ significantly (p < 0.05) between males and females in various matrices. DTG significantly (p < 0.05) reduced jejunal tyramine and urinary synephrine levels. CONCLUSION Data do not raise major concerns about DTG in the context of the trace amine profile. However, given the importance of the dysregulated trace amine profile in various diseased states, including HIV, current data warrant clinical investigation to further evaluate the significance of DTG-associated effects on the trace amine profile.
Collapse
Affiliation(s)
- Natasha Henning
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Experimental Medicine Research Group, Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, Cape Town, 7505, South Africa
| | - Tracy A Kellermann
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Carine Smith
- Experimental Medicine Research Group, Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Parow, Cape Town, 7505, South Africa.
| |
Collapse
|
5
|
Ribeiro LF, Babadopulos T, de Oliveira MG, Nishimaru F, Zatz R, Elias RM, Moraes O, Moraes E, Peterson LW, De Nucci G. A LC-MS/MS method for the simultaneous determination of 6-cyanodopamine, 6-nitrodopamine, 6-nitrodopa, 6-nitroadrenaline and 6-bromodopamine in human plasma and its clinical application in patients with chronic kidney disease. Biomed Chromatogr 2024; 38:e5896. [PMID: 38797868 DOI: 10.1002/bmc.5896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/22/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
The aim of this study was to develop a high-performance liquid chromatography-tandem mass spectrometry method for the determination of 6-cyanodopamine, 6-nitrodopamine, 6-nitrodopa, 6-nitroadrenaline and 6-bromodopamine in human plasma samples. Strata-X 33 μm solid-phase extraction cartridges were used for the extraction of the catecholamines from human plasma samples. The catecholamines were separated in a 150 × 3 mm Shim-pack GIST C18-AQ column with 3 μm particle size, placed in an oven at 40°C and perfused with 82% mobile phase A (acetonitrile-H2O; 90:10, v/v) + 0.4% acetic acid and 18% mobile phase B (deionized H2O) + 0.2% formic acid at a flow rate of 340 μl/min in isocratic mode. The injected volume was 4 μl and the run lasted 4 min. The method was linear from 0.1 to 20 ng/ml and the lower limit of quantification was 0.1 ng/ml for all analytes. The method was applied to evaluate the plasma levels of catecholamines in plasma of patients with chronic kidney disease and allowed the detection for the first time of circulating levels of the novel catecholamines 6-bromodopamine and 6-cyanodopamine.
Collapse
Affiliation(s)
- Luiz Fernando Ribeiro
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Tainah Babadopulos
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
| | - Mariana G de Oliveira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | | | - Roberto Zatz
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Rosilene Motta Elias
- Division of Nephrology, Department of Internal Medicine, Faculty of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Odorico Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Elisabete Moraes
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Gilberto De Nucci
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, SP, Brazil
- Clinical Pharmacology Unit, Drug Research and Development Center, Federal University of Ceará, Fortaleza, CE, Brazil
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
6
|
Omping J, Unabia R, Reazo RL, Lapening M, Lumod R, Ruda A, Rivera RB, Sayson NL, Latayada F, Capangpangan R, Dumancas G, Malaluan R, Lubguban A, Petalcorin G, Alguno A. Facile Synthesis of PEGylated Gold Nanoparticles for Enhanced Colorimetric Detection of Histamine. ACS OMEGA 2024; 9:14269-14278. [PMID: 38559990 PMCID: PMC10975633 DOI: 10.1021/acsomega.3c10050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024]
Abstract
Histamine is among the biogenic amines that are formed during the microbial decarboxylation of amino acids in various food products, posing a significant threat to both food safety and human health. Herein, we present a one-step synthesis of PEGylated gold nanoparticles (PEG-AuNPs) for rapid, simple, and cost-effective colorimetric histamine detection. PEG-AuNPs' surface plasmon resonance (SPR) range at 520-530 nm with a hydrodynamic size distribution of 20-40 nm. Fourier transform infrared (FT-IR) spectra confirmed the reduction of AuNPs at 1645 cm-1 along with the other observed peaks at 2870, 1350, and 1100 cm-1 as a strong evidence for the presence of PEG. Upon the addition of histamine to the PEG-AuNP solution, transmission electron microscopy (TEM) highlighted the aggregation of nanoparticles. In addition, red shifting and a decrease in the absorbance of the SPR peak along with the appearance of an additional peak at ∼690 nm was observed in the PEG-AuNP absorption spectra in the presence of histamine. Increasing the PEG concentration in the gold colloids leads to the formation of a protective barrier around the surface of nanoparticles, which influences the colloidal stability by impeding the aggregation of PEG-AuNPs upon histamine addition. The minimum colorimetric response of PEG-AuNPs to histamine concentration is 30 ppm, as assessed by the naked eye. The absorption ratio (A690/A526) showed a linear dynamic range from 20 to 100 ppm with a limit of detection of 9.357 μM. Additionally, the assay demonstrates a commendable selectivity toward histamine analyte.
Collapse
Affiliation(s)
- Jahor Omping
- Research
Center for Energy Efficient Materials (RCEEM), Premier Research Institute
of Science and Mathematics (PRISM), Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| | - Romnick Unabia
- Research
Center for Energy Efficient Materials (RCEEM), Premier Research Institute
of Science and Mathematics (PRISM), Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| | - Renzo Luis Reazo
- Research
Center for Energy Efficient Materials (RCEEM), Premier Research Institute
of Science and Mathematics (PRISM), Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| | - Melbagrace Lapening
- Research
Center for Energy Efficient Materials (RCEEM), Premier Research Institute
of Science and Mathematics (PRISM), Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| | - Ryan Lumod
- Research
Center for Energy Efficient Materials (RCEEM), Premier Research Institute
of Science and Mathematics (PRISM), Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
- Department
of Physics, Mindanao State University-Iligan
Institute of Technology, 9200 Iligan City, Philippines
| | - Archie Ruda
- Research
Center for Energy Efficient Materials (RCEEM), Premier Research Institute
of Science and Mathematics (PRISM), Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| | - Rolen Brian Rivera
- Research
Center for Energy Efficient Materials (RCEEM), Premier Research Institute
of Science and Mathematics (PRISM), Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
- Department
of Physics, Mindanao State University-Iligan
Institute of Technology, 9200 Iligan City, Philippines
| | - Noel Lito Sayson
- Research
Center for Energy Efficient Materials (RCEEM), Premier Research Institute
of Science and Mathematics (PRISM), Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
- Department
of Physics, Mindanao State University-Iligan
Institute of Technology, 9200 Iligan City, Philippines
| | - Felmer Latayada
- Department
of Chemistry, Caraga State University, Butuan City 8600, Philippines
| | - Rey Capangpangan
- Department
of Physical Sciences and Mathematics, College of Marine and Allied
Sciences, Mindanao State University at Naawan, Naawan 9023, Misamis Oriental, Philippines
| | - Gerard Dumancas
- Department
of Chemistry, Loyola Science Center, The
University of Scranton, Scranton, Pennsylvania 18510, United States
| | - Roberto Malaluan
- Research
Center for Energy Efficient Materials (RCEEM), Premier Research Institute
of Science and Mathematics (PRISM), Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
- Center for
Sustainable Polymers, MSU-Iligan Institute
of Technology, Iligan City 9200, Philippines
| | - Arnold Lubguban
- Research
Center for Energy Efficient Materials (RCEEM), Premier Research Institute
of Science and Mathematics (PRISM), Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
- Center for
Sustainable Polymers, MSU-Iligan Institute
of Technology, Iligan City 9200, Philippines
| | - Gaudencio Petalcorin
- Department
of Mathematics and Statistics, Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
| | - Arnold Alguno
- Research
Center for Energy Efficient Materials (RCEEM), Premier Research Institute
of Science and Mathematics (PRISM), Mindanao
State University-Iligan Institute of Technology, 9200 Iligan City, Philippines
- Department
of Physics, Mindanao State University-Iligan
Institute of Technology, 9200 Iligan City, Philippines
| |
Collapse
|
7
|
Sun Y, Ai Y, Yao F, Mao F, Wang X, Zhang Y, Guo F, He Y, Liu J, Zhang N. Characterization of Biogenic Amines in Seven Kinds of Traditional Chinese Animal Medicines by High Performance Liquid Chromatography with Precolumn Derivatization. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Cao L, Wu L, Zhong H, Wu H, Zhang S, Meng J, Li F. Analysis of neurotransmitter catecholamines and related amines in human urine and serum by chromatography and capillary electrophoresis with 1, 3, 5, 7-tetramethyl-8-(N-hydroxysuccinimidyl propionic ester)-difluoro-boradiaza-s-indacene. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2021.00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractTwo sensitive and effective methods were developed for the detection of catecholamines and related biogenic amines (dopamine, epinephrine, norepinephrine, serotonin, levodopa and tyramine) using high performance liquid chromatography with fluorescence detection and capillary electrophoresis with laser-induced fluorescence detection. A BODIPY fluorescent dye, 1, 3, 5, 7-tetramethyl-8-(N-hydroxysuccinimidyl propionic ester)-difluoroboradiaza- s-indacene was used as pre-column derivatization reagent. The separation and derivatization conditions were optimized in detail. In high performance liquid chromatography with fluorescence detection method, the derivatization reaction was completed at 35 °C for 20 min. At the wavelength of λex/λem = 493 nm/513 nm, dopamine, epinephrine, norepinephrine, and levodopa derivatives achieved baseline separation within 15 min. The limits of detection (S/N = 3) were 1.0, 2.0, 5.0, and 0.5 nmol/L, respectively. In capillary electrophoresis with laser-induced fluorescence detection method, the derivatization reaction was completed at 25 °C for 20 min. Serotonin, tyramine and dopamine derivatives reached baseline separation within 10 min at the wavelength of λex = 473 nm. The limits of detection (S/N = 3) for serotonin, tyramine, and dopamine were 0.3, 0.02, and 0.2 nmol/L, respectively. The amino compounds in human serum and urine samples were detected successfully, and the recoveries were 93.3%–106.7% and 91.0%–103.1%, respectively.
Collapse
Affiliation(s)
- Liwei Cao
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Lizhen Wu
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Hailan Zhong
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Hao Wu
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Siyun Zhang
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Jianxin Meng
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| | - Fengyu Li
- Department of Chemistry, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
9
|
Qin ZN, Yu QW, Zhou P, Feng YQ. C 60-based chemical labeling strategy for the determination of polyamines in biological samples using matrix-assisted laser desorption/ionization mass spectrometry. Talanta 2021; 224:121790. [PMID: 33379019 DOI: 10.1016/j.talanta.2020.121790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 10/23/2022]
Abstract
Bioactive polyamines play important roles in many biological processes such as gene expression, cell growth, protein synthesis, and signal transduction. Accurate determination of polyamines is helpful for studying their biological functions. Herein, a C60-based chemical labeling strategy was proposed for the determination of polyamines (putrescine, cadaverine, spermidine, and spermine) in biological samples using matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). An N-hydroxysuccinimide ester functionalized C60 (NHS-C60) was used as a labeling reagent and the m/z of the labeled polyamines reached up to more than 900 Da, which avoided matrix interferences in the low m/z region. In addition, as NHS-C60 derivatives, mono- and bis-substituted polyamines were produced simultaneously, which benefited the qualitative analysis of polyamines. The analytical method was validated using NHS-C60 labeled polyamines in cells and mice feces samples. Good linearities were obtained with correlation coefficients ranging from 0.9786 to 0.9982. The limits of quantification were in the range of 0.68-1.48 pmol. Good reproducibility and reliability of our proposed method were confirmed by intra- and inter-day precisions ranged from 2.8 to 16.6%, and the recoveries ranged between 81.8 and 119.9%. Finally, the proposed method was applied to determine polyamines in cells and mice feces. Three polyamines were detected in the cells, and the contents of cadaverine and spermidine in the feces of high-fat diet mice were found to be significantly lower than those in the normal diet mice. The results show that the proposed NHS-C60 labeling coupled with MALDI MS strategy is suitable for the determination of polyamines in biological samples.
Collapse
Affiliation(s)
- Zhang-Na Qin
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Qiong-Wei Yu
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Ping Zhou
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China
| | - Yu-Qi Feng
- Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
10
|
Determination of Biogenic Amines in Different Parts of Lycium barbarum L. by HPLC with Precolumn Dansylation. Molecules 2021; 26:molecules26041046. [PMID: 33671270 PMCID: PMC7922342 DOI: 10.3390/molecules26041046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/14/2021] [Accepted: 02/14/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to characterize biogenic amines (BAs) in different parts of Lycium barbarum L. using HPLC with dansyl chloride derivatization, and jointly, to provide referential data for further exploration and utilization of Lycium barbarum L. The linear correlation coefficients for all BAs were above 0.9989. The limits of detection and quantification were 0.015-0.075 and 0.05-0.25 μg/mL, respectively. The relative standard deviations for the intra-day and inter-day precision were 0.66-2.69% and 0.91-4.38%. The described method has good repeatability and intermediate precision for the quantitative determination of BAs in different parts of Lycium barbarum L. Satisfactory recovery for all amines was obtained (79.3-110.3%). The result showed that there were four kinds of BAs. The highest putrescine content (20.9 ± 3.2 mg/kg) was found in the flower. The highest histamine content (102.7 ± 5.8 mg/kg) was detected in the bark, and the highest spermidine (13.3 ± 1.6 mg/kg) and spermine (23.7 ± 2.0 mg/kg) contents were detected in the young leaves. The high histamine (HIS) content in the bark may be one of the reasons why all of the parts of Lycium barbarum L., except the bark, are used for medicine or food in China. Meanwhile, the issue of the high concentration of HIS should be considered when exploiting or utilizing the bark of Lycium barbarum L.
Collapse
|
11
|
|
12
|
Abrantes Dias AS, Amaral Pinto JC, Magalhães M, Mendes VM, Manadas B. Analytical methods to monitor dopamine metabolism in plasma: Moving forward with improved diagnosis and treatment of neurological disorders. J Pharm Biomed Anal 2020; 187:113323. [DOI: 10.1016/j.jpba.2020.113323] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/16/2022]
|
13
|
Fan M, Ai Y, Zhao W, Sun Y, Liu J, Zhang N. Characterization of 10 Biogenic Amines in Male Silkworm Moth by HPLC with Precolumn Derivatization. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190522090831] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Biogenic Amines (BAs) are biologically active nitrogenous organic compounds
of low molecular weight, which are frequently found in a wide variety of foods, beverages
and herbs due to their toxic potential in humans. Male Silkworm Moth (MSM), a Traditional Chinese
Medicine (TCM), has been exploited and utilized as nutritious liquor based on its traditional
effects in the Chinese community.
Objective:
The objective of this study was to develop an HPLC with Dns-Cl derivatization method
for characterizing overall BAs in MSM and providing data for further evaluating its activities and
safety profiles.
Methods:
The method has acceptable sensitivity, precision, accuracy, selectivity and recovery, and was
successfully applied to the determination of the BAs contents in MSM for the first time.
Results:
In the analysis of 10 batches of MSM samples, serotonin and dopamine were not found in
detectable concentrations in any samples, and the most abundant amine found was putrescine. The
mean values of tryptamine, phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine,
and spermine determined in the samples were found to be 34.7 mg/ kg, 16.1 mg/ kg, 218.3
mg/ kg, 37.9 mg/ kg, 12.1 mg/ kg, 18.2 mg/ kg, 4.5mg/ kg, and 0.9 mg/ kg, respectively.
Conclusion:
The contents of BAs in 10 batches of MSM were below the maximum recommended
limits, and MSM can be used safely.
Collapse
Affiliation(s)
- Mingqin Fan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, 229 Taibaibei Road, Xi’an 710069, China
| | - Yun Ai
- Xi’an Institute for Food and Drug Control, Xi’an 710054, China
| | - Wenjie Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, 229 Taibaibei Road, Xi’an 710069, China
| | - Yanni Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, 229 Taibaibei Road, Xi’an 710069, China
| | - Jianli Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, 229 Taibaibei Road, Xi’an 710069, China
| | - Ning Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University, 229 Taibaibei Road, Xi’an 710069, China
| |
Collapse
|
14
|
Detection of Histamine Based on Gold Nanoparticles with Dual Sensor System of Colorimetric and Fluorescence. Foods 2020; 9:foods9030316. [PMID: 32182887 PMCID: PMC7143402 DOI: 10.3390/foods9030316] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/05/2020] [Accepted: 03/05/2020] [Indexed: 11/17/2022] Open
Abstract
Gold nanoparticles (Au-NPs), with the dual sensor system of colorimetric and fluorescence responses, were developed for the determination of histamine as a spoilage monitor for distinguishing lifetime and freshness of aquatic products. Upon addition of histamine, the absorption coefficient orders of magnitude via the interaction of free electrons and photons were affected, and the characteristic absorption peak of Au-NPs was red-shifted from 520 nm to 664 nm. Meanwhile, the large amino groups in the networks of histamine-Au-NPs with high molecular orbital exhibited excellent fluorescence behavior at 415 nm. Au-NPs offered a range of 0.001-10.0 μM and 0.01-1.0 μM with a limit of detection of 0.87 nM and 2.04 nM by UV-vis and fluorescence spectrum assay, respectively. Moreover, Au-NPs could be used to semiquantitatively analyze histamine with the naked eye, since the significant colorimetric and fluorescence reaction of Au-NPs solution that coincided with different concentrations of histamine can be observed as the histamine concentration was 0.1-1.0 μM. Both of the dual-sensor systems of Au-NPs were successfully applied to the quantitative analysis of histamine in fresh salmon muscle, suggesting the simplicity and rapidity in the dual detection approaches of Au-NPs might be suitable for spoilage assay of aquatic food to ensure food safety.
Collapse
|
15
|
Gender-Related Differences on Polyamine Metabolome in Liquid Biopsies by a Simple and Sensitive Two-Step Liquid-Liquid Extraction and LC-MS/MS. Biomolecules 2019; 9:biom9120779. [PMID: 31779105 PMCID: PMC6995533 DOI: 10.3390/biom9120779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 01/15/2023] Open
Abstract
Polyamines are involved in the regulation of many cellular functions and are promising biomarkers of numerous physiological conditions. Since the concentrations of these compounds in biological fluids are low, sample extraction is one of the most critical steps of their analysis. Here, we developed a comprehensive, sensitive, robust, and high-throughput LC-MS/MS stable-isotope dilution method for the simultaneous determination of 19 metabolites related to polyamine metabolism, including polyamines, acetylated and diacetylated polyamines, precursors, and catabolites from liquid biopsies. The sample extraction was optimized to remove interfering compounds and to reduce matrix effects, thus being useful for large clinical studies. The method consists of two-step liquid-liquid extraction with a Folch extraction and ethyl acetate partitioning combined with dansyl chloride derivatization. The developed method was applied to a small gender-related trial concerning human serum and urine samples from 40 obese subjects. Sex differences were found for cadaverine, putrescine, 1,3-diaminopropane, γ-aminobutyric acid, N8-acetylspermidine, and N-acetylcadaverine in urine; N1-acetylspermine in serum; and spermine in both serum and urine. The results demonstrate that the developed method can be used to analyze biological samples for the study of polyamine metabolism and its association with human diseases.
Collapse
|
16
|
Ahmad W, Mohammed GI, Al-Eryani DA, Saigl ZM, Alyoubi AO, Alwael H, Bashammakh AS, O'Sullivan CK, El-Shahawi MS. Biogenic Amines Formation Mechanism and Determination Strategies: Future Challenges and Limitations. Crit Rev Anal Chem 2019; 50:485-500. [PMID: 31486337 DOI: 10.1080/10408347.2019.1657793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The evolution in foodstuff-monitoring processes has increased the number of studies on biogenic amines (BAs), in recent years. This trend with future perspective needs to be assembled to address the associated health risks. Thus, this study aims to cover three main aspects of BAs: (i) occurrence, physiology, and toxicological effects, most probable formation mechanisms and factors controlling their growth; (ii) recent advances, strategies for determination, preconcentration steps, model technique, and nature of the matrix; and (iii) milestone, limitations with existing methodologies, future trends, and detailed expected developments for clinical use and on-site ultra-trace determination. The core of the ongoing review will discuss recent trends in pre-concentration toward miniaturization, automation, and possible coupling with electrochemical techniques, surface-enhanced Raman scattering, spectrofluorimetry, and lateral flow protocols to be exploited for the development of rapid, facile, and sensitive on-site determination strategies for BAs.
Collapse
Affiliation(s)
- Waqas Ahmad
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - G I Mohammed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Chemistry, Faculty of Applied Sciences, Umm Al Qura University, Makka, Saudi Arabia
| | - D A Al-Eryani
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Z M Saigl
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A O Alyoubi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - H Alwael
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - A S Bashammakh
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - C K O'Sullivan
- Nanobiotechnology & Bioanalysis Group, Department d Enginyeria Quimica, Universitat i Virgili, Tarragona, Spain
| | - M S El-Shahawi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Gagic M, Jamroz E, Krizkova S, Milosavljevic V, Kopel P, Adam V. Current Trends in Detection of Histamine in Food and Beverages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:773-783. [PMID: 30585064 DOI: 10.1021/acs.jafc.8b05515] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Histamine is a heterocyclic amine formed by decarboxylation of the amino acid l-histidine. It is involved in the local regulation of physiological processes but also can occur exogenously in the food supply. Histamine is toxic at high intakes; therefore, determination of the histamine level in food is an important aspect of food safety. This article will review the current understanding of physiological functions of endogenous and ingested histamine with a particular focus placed on existing and emerging technologies for histamine quantification in food. Methods reported in this article are sequentially arranged and provide a brief overview of analytical methods reported, including those based on nanotechnologies.
Collapse
Affiliation(s)
- Milica Gagic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Ewelina Jamroz
- Institute of Chemistry , University of Agriculture in Cracow , Balicka Street 122 , PL-30-149 Cracow , Poland
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences , Mendel University in Brno , Zemedelska 1 , CZ-613 00 Brno , Czech Republic
- Central European Institute of Technology , Brno University of Technology , Purkynova 123 , CZ-612 00 Brno , Czech Republic
| |
Collapse
|
18
|
An electrochemical biosensor for sensitive detection of nicotine-induced dopamine secreted by PC12 cells. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|