1
|
Li J, Chen Y, Yu K, Zhang M, Li Q, Tang S, Liu Y, Li H, Zhang Z. Rapid chemical characterization and pharmacological mechanism of Fining Granules in the treatment of chronic bronchitis based on UHPLC-Q-exactive orbitrap mass spectrometer and network pharmacology. Heliyon 2024; 10:e31804. [PMID: 38845898 PMCID: PMC11154603 DOI: 10.1016/j.heliyon.2024.e31804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024] Open
Abstract
Background Senecio cannabifolius Less. is a perennial herb belonging to the Compositae family that has been used in traditional medicine as an antitussive and expectorant for treating chronic bronchitis and acute respiratory infections. Traditionally, Feining Granules are prepared from water extracts of the raw plant material. However, the chemical composition and pharmacological mechanisms of Feining Granules have not been thoroughly investigated. Methods A systematic strategy for the rapid detection and identification of the constituents of Feining Granules was developed using ultrahigh-performance liquid chromatography-quadrupole-exactive orbitrap mass spectrometry (MS) with parallel reaction monitoring. Results Overall, 162 compounds, including flavonoids, alkaloids, organic acids, and others, were identified unambiguously and tentatively by comparing the retention times and MS fragmentation with reference standards and literature data. Ninety-nine of these were reported for the first time to the best of our knowledge. Network pharmacology suggests that Feining Granules can be used to treat chronic bronchitis as they contain active components associated with the ALB, VEGFA, and SRC target genes influenced by HIF-1, VEGF, and other signaling pathways. Conclusion These results provide information that can help understand the effective substances of S. cannabifolius Less. and improve quality control.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Yuqi Chen
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Kaiquan Yu
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Min Zhang
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Qing Li
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Sunv Tang
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Yanlan Liu
- Nursing School, Hunan University of Medicine, Huaihua, Hunan Province, 418000, China
| | - Hui Li
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Zaiqi Zhang
- School of Pharmaceutical Sciences, Hunan Provincial Key Laboratory of Dong Medicine, Hunan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
2
|
Pal PP, Begum SA, Basha AS, Araya H, Fujimoto Y. A New Lignan (Polonilignan) and Inhibitors of Nitric Oxide Production from Penicillium polonicum, an Endophytic Fungi of Piper nigrum. Chem Biodivers 2023; 20:e202200840. [PMID: 36662670 DOI: 10.1002/cbdv.202200840] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 01/21/2023]
Abstract
Inhibiting nitric oxide (NO) or its production is found to be of therapeutic benefit. To discover natural small molecule inhibitors of NO production, a bioassay- and LC/MS-guided chemical investigation was done on the metabolites of endophytic fungus isolated from fresh Piper nigrum fruits. The isolated pure strain was identified as Penicillium polonicum by 16S rDNA sequence comparison. The culture broth extract of P. polonicum (EEPP) exhibited a significant reduction of NO production (Griess method) in LPS-stimulated RAW 264.7 cells (P<0.0001). To understand the chemical constituents of bioactive EEPP, column chromatography and p-TLC studies were carried out, which yielded eight pure compounds. They were characterised as botryosphaeridione (1), 3-(3,5-di-tert-butyl-4-hydroxy)phenylpropionic acid (2), variabilone (3), 2,4-di-tert-butylphenol (4), indole-3-carboxylic acid (5), tyrosol (6), ethyl ferulate (7) and a new lignan (8) based on the spectral analysis. The structure elucidation of the new lignan, named polonilignan (8), was based on HR-MS, 1 H- & 13 C-NMR, H-H COSY, HSQC and HMBC spectra. Compounds 2, 4, 5 and 6 showed a significant decrease (P<0.0001) in the production of NO in LPS-induced RAW 264.7 cells. Tyrosol (6) and indole-3-carboxylic acid (5) controlled nitrite release with IC50 values of 22.84 and 55.01 μM, respectively. This is the first report of (i) P. polonicum as an endophytic fungus of pepper fruits, (ii) isolation of compounds 1-8 except 6 from P. polonicum culture broth extract and (iii) NO inhibition effect of 2, 4, 5 and 6.
Collapse
Affiliation(s)
- Pragya Paramita Pal
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, 500078, Telangana State, India
| | - Sajeli A Begum
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad, 500078, Telangana State, India
| | - Ameer S Basha
- Department of Plant Pathology, Professor Jeyashanker Telangana State Agricultural University, Rajendra Nagar, Hyderabad, 500030, Telangana State, India
| | - Hiroshi Araya
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| | - Yoshinori Fujimoto
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, 214-8571, Japan
| |
Collapse
|
3
|
Potential Antioxidant and Anti-Inflammatory Function of Gynura procumbens Polyphenols Ligand. Int J Mol Sci 2021; 22:ijms22168716. [PMID: 34445416 PMCID: PMC8396044 DOI: 10.3390/ijms22168716] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/02/2022] Open
Abstract
The antioxidant and anti-inflammatory potentials of polyphenols contained in Gynura procumbens (GP) extract were systematically analyzed. Polyphenols in GP were analyzed for nine peaks using high-performance liquid chromatography (HPLC) combined with mass spectrometry (MS), and quantitatively determined through each standard. A total of nine polyphenolic compounds were identified in the samples and their MS data were tabulated. To determine the potential of bioactive ingredients targeting DPPH and COX-2, we analyzed them by ultrafiltration combined with LC. The results identified the major compounds exhibiting binding affinity for DPPH and COX-2. Caffeic acid, kynurenic acid, and chlorogenic acid showed excellent binding affinity to DPPH and COX-2, suggesting that they can be considered as major active compounds. Additionally, the anti-inflammatory effect of GP was confirmed in vitro. This study will not only be used to provide basic data for the application of GP to the food and pharmaceutical industries, but will also provide information on effective screening methods for other medicinal plants.
Collapse
|
4
|
Deng Y, Ye X, Chen Y, Ren H, Xia L, Liu Y, Liu M, Liu H, Zhang H, Wang K, Zhang J, Zhang Z. Chemical Characteristics of Platycodon grandiflorum and its Mechanism in Lung Cancer Treatment. Front Pharmacol 2021; 11:609825. [PMID: 33643040 PMCID: PMC7906976 DOI: 10.3389/fphar.2020.609825] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Objective: The technology, network pharmacology and molecular docking technology of the ultra performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) were used to explore the potential molecular mechanism of Platycodon grandiflorum (PG) in the treatment of lung cancer (LC). Methods: UPLC-Q-TOF-MS/MS technology was used to analyze the ingredients of PG and the potential LC targets were obtained from the Traditional Chinese Medicine Systems Pharmacology database, and the Analysis Platform (TCMSP), GeneCards and other databases. The interaction network of the drug-disease targets was constructed with the additional use of STRING 11.0. The pathway enrichment analysis was carried out using Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) in Metascape, and then the “Drug-Ingredients-Targets-Pathways-Disease” (D-I-T-P-D) network was constructed using Cytoscape v3.7.1. Finally, the Discovery Studio 2016 (DS) software was used to evaluate the molecular docking. Results: Forty-seven compounds in PG, including triterpenoid saponins, steroidal saponins and flavonoids, were identified and nine main bioactive components including platycodin D were screened. According to the method of data mining, 545 potential drug targets and 2,664 disease-related targets were collected. The results of topological analysis revealed 20 core targets including caspase 3 (CASP3) and prostaglandin-endoperoxide synthase 2 (PTGS2) suggesting that the potential signaling pathway potentially involved in the treatment of LC included MAPK signaling pathway and P13K-AKT signaling pathway. The results of molecular docking proved that the bound of the ingredients with potential key targets was excellent. Conclusion: The results in this study provided a novel insight in the exploration of the mechanism of action of PG against LC.
Collapse
Affiliation(s)
- Yaling Deng
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Xianwen Ye
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Yufan Chen
- Patient Service Center, Ganzhou People's Hospital, Ganzhou, China
| | - Hongmin Ren
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Lanting Xia
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Ying Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Minmin Liu
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Haiping Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Huangang Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Kairui Wang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Jinlian Zhang
- School of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| | - Zhongwei Zhang
- School of Pharmacy, Youjiang Medical University for Nationalities, Guangxi, China
| |
Collapse
|
5
|
Metabolite Profiling of Methanolic Extract of Gardenia jaminoides by LC-MS/MS and GC-MS and Its Anti-Diabetic, and Anti-Oxidant Activities. Pharmaceuticals (Basel) 2021; 14:ph14020102. [PMID: 33525758 PMCID: PMC7912419 DOI: 10.3390/ph14020102] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 12/18/2022] Open
Abstract
In this study, the methanolic extract from seeds of Gardenia jasminoides exhibited strong antioxidant and enzyme inhibition activities with less toxicity to NIH3T3 and HepG2 cells at the concentration of 100 µg/mL. The antioxidant activities (DPPH and ABTS), α-amylase, and α-glucosidase inhibition activities were found higher in methanolic extract (MeOH-E) than H2O extract. Besides, 9.82 ± 0.62 µg and 6.42 ± 0.26 µg of MeOH-E were equivalent to 1 µg ascorbic acid for ABTS and DPPH scavenging, respectively while 9.02 ± 0.25 µg and 6.52 ± 0.15 µg of MeOH-E were equivalent to 1 µg of acarbose for inhibition of α-amylase and α-glucosidase respectively. Moreover, the cell assay revealed that the addition of MeOH-E (12.5 µg/mL) increased about 37% of glucose uptake in insulin resistant (IR) HepG2 as compared to untreated IR HepG2 cells. The LC- MS/MS and GC-MS analysis of MeOH-E revealed a total of 54 compounds including terpenoids, glycosides, fatty acid, phenolic acid derivatives. Among the identified compounds, chlorogenic acid and jasminoside A were found promising for anti-diabetic activity revealed by molecular docking study and these molecules are deserving further purification and molecular analysis.
Collapse
|
6
|
Guo S, Ouyang H, Du W, Li J, Liu M, Yang S, He M, Feng Y. Exploring the protective effect of Gynura procumbens against type 2 diabetes mellitus by network pharmacology and validation in C57BL/KsJ db/db mice. Food Funct 2021; 12:1732-1744. [DOI: 10.1039/d0fo01188f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Flowchart of the experimental procedures.
Collapse
Affiliation(s)
- Sa Guo
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330002
- PR China
| | - Hui Ouyang
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330002
- PR China
| | - Wendi Du
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330002
- PR China
| | - Junmao Li
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330002
- PR China
| | - Mi Liu
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330002
- PR China
| | - Shilin Yang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment
- Nanchang 330006
- PR China
| | - Mingzhen He
- Jiangxi University of Traditional Chinese Medicine
- Nanchang 330002
- PR China
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment
- Nanchang 330006
- PR China
| |
Collapse
|
7
|
Tan JN, Mohd Saffian S, Buang F, Jubri Z, Jantan I, Husain K, Mohd Fauzi N. Antioxidant and Anti-Inflammatory Effects of Genus Gynura: A Systematic Review. Front Pharmacol 2020; 11:504624. [PMID: 33328981 PMCID: PMC7734347 DOI: 10.3389/fphar.2020.504624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/13/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Gynura species have been used traditionally to treat various ailments, such as fever, pain, and to control blood glucose level. This systematic review critically discusses studies regarding Gynura species that exhibited antioxidant and anti-inflammatory effects, thus providing perspectives and instructions for future research of the plants as a potential source of new dietary supplements or medicinal agents. Methods: A literature search from internet databases of PubMed, Scopus, Science Direct, e-theses Online Service, and ProQuest was carried out using a combination of keywords such as "Gynura," "antioxidant," "anti-inflammatory," or other related words. Research articles were included in this study if they were experimental (in vitro and in vivo) or clinical studies on the antioxidant or anti-inflammatory effects of Gynura species and if they were articles published in English. Results: Altogether, 27 studies on antioxidant and anti-inflammatory effects of Gynura species were selected. The antioxidant effects of Gynura species were manifested by inhibition of reactive oxygen species production and lipid peroxidation, modulation of glutathione-related parameters, and enzymatic antioxidant production or activities. The anti-inflammatory effects of Gynura species were through the modulation of inflammatory cytokine production, inhibition of prostaglandin E2 and nitric oxide production, cellular inflammatory-related parameters, and inflammation in animal models. The potential anti-inflammatory signaling pathways modulated by Gynura species are glycogen synthase kinase-3, nuclear factor erythroid 2-related factor 2, PPARγ, MAPK, NF-κB, and PI3K/Akt. However, most reports on antioxidant and anti-inflammatory effects of the plants were on crude extracts, and the chemical constituents contributing to bioactivities were not clearly understood. There is a variation in quality of studies in terms of design, conduct, and interpretation, and in-depth studies on the underlying mechanisms involved in antioxidant and anti-inflammatory effects of the plants are in demand. Moreover, there is limited clinical study on antioxidant and anti-inflammatory effects of Gynura species. Conclusion: This review highlighted antioxidant and anti-inflammatory effects of genus Gynura and supported their traditional uses to treat oxidative stress and inflammatory-related diseases. This review is expected to catalyze further studies on genus Gynura. However, extensive preclinical data need to be generated from toxicity and pharmacokinetic studies before clinical studies can be pursued for their development into clinical medicines to treat oxidative stress and inflammatory conditions.
Collapse
Affiliation(s)
- Jiah Ning Tan
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Shamin Mohd Saffian
- Centre for Quality Management of Medicines, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Fhataheya Buang
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Zakiah Jubri
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Khairana Husain
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Norsyahida Mohd Fauzi
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Yang L, Fang Y, Liu R, He J. Phytochemical Analysis, Anti-inflammatory, and Antioxidant Activities of Dendropanax dentiger Roots. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5084057. [PMID: 33294445 PMCID: PMC7700040 DOI: 10.1155/2020/5084057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023]
Abstract
Dendropanax dentiger root is a traditional medicinal plant in China and used to treat inflammatory diseases for centuries, but its phytochemical profiling and biological functions are still unknown. Thus, a rapid, efficient, and precise method based on ultra high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) was applied to rapidly analyse the phytochemical profiling of D. dentiger with anti-inflammatory and antioxidant activities in vitro. As a result, a total of 78 chemical compositions, including 15 phenylpropanoids, 15 alkaloids, 14 flavonoids, 14 fatty acids, 7 phenols, 4 steroids, 4 cyclic peptides, 3 terpenoids, and 2 others, were identified or tentatively characterized in the roots of D. dentiger. Moreover, alkaloid and cyclic peptide were reported from D. dentiger for the first time. In addition, the ethanol crude extract of D. dentiger roots exhibited remarkable anti-inflammatory activity against cyclooxygenase- (COX-) 2 inhibitory and antioxidant activities in vitro. This study is the first to explore the phytochemical analysis and COX-2 inhibitory activity of D. dentiger. This study can provide important phytochemical profiles and biological functions for the application of D. dentiger roots as a new source of natural COX-2 inhibitors and antioxidants in pharmaceutical industry.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yiwei Fang
- First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Ronghua Liu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
9
|
Dou XX, Lin S, Tian XH, Zhang YH, Guo X, Ye J, Zhang WD. Systematic characterization of the chemical constituents in vitro and prototypes in vivo of Dingkun Dan using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with the UNIFI™ software. Biomed Chromatogr 2020; 34:e4914. [PMID: 32515056 DOI: 10.1002/bmc.4914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 01/20/2023]
Abstract
Dingkun Dan (DKD), a famous traditional Chinese medicine, has been widely used in the treatment of irregular menstruation, leucorrhea abnormality, and postpartum gynecological diseases since Qing dynasty (1739). It comprises 30 flavors of Chinese medicinal materials, which results in its complex chemical composition. In this study, an integrative method was developed to rapidly characterize the chemical components of DKD using ultra-high-performance liquid chromatography quadrupole time-of-flight mass spectrometry combined with the UNIFI™ software. A total of 234 compounds, including 47 triterpenoid saponins, 55 flavonoids, and 38 alkaloids, were identified. Of them, 170 compounds were characterized initially and 61 compounds were identified unambiguously using reference standards. Under the same analysis conditions, 43 prototypical components, which were tentatively assigned as triterpenoid saponins, flavonoids, alkaloids, terpenoids, phenylpropanoids, and others, were absorbed in rat by serum pharmacochemistry analysis. DKD exhibited diverse pharmacological activities through the combined effect of these components. This study was the first systematic study of chemical components in vitro originating from 30 medicinal materials and prototypes in vivo of DKD, which could provide scientific evidence for explaining its therapeutic effect.
Collapse
Affiliation(s)
- Xiu-Xiu Dou
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shan Lin
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai, Shanghai, China
| | - Xin-Hui Tian
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Hao Zhang
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin Guo
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji Ye
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Wei-Dong Zhang
- Interdisciplinary Science Research Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai, Shanghai, China.,Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Yang L, Liu RH, He JW. Rapid Analysis of the Chemical Compositions in Semiliquidambar cathayensis Roots by Ultra High-Performance Liquid Chromatography and Quadrupole Time-of-Flight Tandem Mass Spectrometry. Molecules 2019; 24:E4098. [PMID: 31766221 PMCID: PMC6891699 DOI: 10.3390/molecules24224098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/03/2019] [Accepted: 11/07/2019] [Indexed: 12/23/2022] Open
Abstract
Semiliquidambar cathayensis Chang was a traditional medicinal plant and used to treat rheumatism arthritis and rheumatic arthritis for centuries in China with no scientific validation, while only 15 components were reported. Thus, a rapid, efficient, and precise method based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) was applied in both positive- and negative-ion modes to rapidly analysis the main chemical compositions in S. cathayensis for the first time. Finally, a total of 85 chemical compositions, including 35 alkaloids, 12 flavonoids, 7 terpenoids, 5 phenylpropanoids, 9 fatty acids, 7 cyclic peptides, and 10 others were identified or tentatively characterized in the roots of S. cathayensis based on the accurate mass within 5 ppm error. Moreover, alkaloid, flavonoid, phenylpropanoid, and cyclic peptide were reported from S. cathayensis for the first time. This rapid and sensitive method was highly useful to comprehend the chemical compositions and will provide scientific basis for further study on the material basis, mechanism and clinical application of S. cathayensis roots.
Collapse
Affiliation(s)
- Li Yang
- Key Laboratory of Modern Preparation of TCM, Jiangxi University of Traditional Chinese Medicine, Ministry of Education, Nanchang 330004, China;
| | - Rong-Hua Liu
- College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jun-Wei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|