1
|
Naaman RK, Alashmali S, Bakhsh MA, Muqaibil AA, Ghunaim FM, Alattas AH. Association of omega-3 polyunsaturated fatty acids intake and cognitive function in middle-aged and older adults. Nutr Neurosci 2025; 28:649-658. [PMID: 39400167 DOI: 10.1080/1028415x.2024.2404785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
OBJECTIVE Omega-3 polyunsaturated fatty acids (PUFAs) play a crucial role in maintaining and improving cognitive function and brain health. The aim of this study was to assess the association between omega-3 PUFA intake and cognitive function in middle-aged and older adults in Saudi Arabia. METHODS Cognitive function was assessed using the Montreal Cognitive Assessment (MoCA). The frequency and quantity of omega-3 PUFA intake were assessed using an omega-3 food frequency questionnaire. RESULTS A total of 175 participants were recruited for this study. Participants in the lowest omega-3 PUFA tertile group scored significantly lower in the visuospatial/executive and attention cognitive domains (p < 0.05). After adjusting for confounders, the higher intake of alpha-linolenic acid (ALA) was significantly associated with higher scores in the visuospatial/executive domain (p = 0.02) and the higher intake of docosahexaenoic acid (DHA) was significantly associated with higher scores in the attention domain (p = 0.04). The participants who did not consume walnuts showed a significant lower MoCA score than those who did (p = 0.005). No significant differences were found with other omega-3 PUFA sources. CONCLUSION Higher intake of omega-3 PUFAs was positively associated with visuospatial/executive and attention cognitive functions in middle-aged and older adults.
Collapse
Affiliation(s)
- Rouba Khalil Naaman
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shoug Alashmali
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Manar Abduljalil Bakhsh
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Women and Children's Health, King's College London, London, UK
| | - Asma Abdullah Muqaibil
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Futooun Mohammed Ghunaim
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Albatol Hussein Alattas
- Department of Clinical Nutrition, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
2
|
Chiarelli R, Caradonna F, Naselli F. Autophagy and nutrigenomics: a winning team against chronic disease and tumors. Front Nutr 2024; 11:1409142. [PMID: 39703336 PMCID: PMC11655209 DOI: 10.3389/fnut.2024.1409142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Autophagy, a vital cell process, has garnered attention for its role in various diseases and potential therapeutic interventions. Dysregulation of autophagy contributes to conditions such as metabolic diseases, neurodegenerative disorders, and cancer. In diseases such as diabetes, autophagy plays a crucial role in islet β-cell maintenance and glucose homeostasis, offering potential targets for therapeutic intervention. Nutrigenomics, which explores how dietary components interact with the genome, has emerged as a promising avenue for disease management. It sheds light on how diet influences gene expression and cellular processes, offering personalized approaches to disease prevention and management. Studies have showed the impact of specific dietary components, such as polyphenols and omega-3 fatty acids, on autophagy processes, suggesting their potential therapeutic benefits in neurodegenerative conditions and metabolic disorders. In cancer, autophagy's dual role in either suppressing tumorigenesis or promoting cancer cell survival underscores the importance of understanding its modulation through dietary interventions. Combined with conventional chemotherapy drugs, dietary compounds show synergistic effects in cancer treatment. Furthermore, phytochemicals such as indicaxanthin have been found to epigenetically regulate genes involved in autophagy, offering novel insights into personalized cancer therapies. This comprehensive review has the aim to study the autophagy in a combined view with nutrigenomics effects of some dietary molecules in maintaining cellular homeostasis and responding to pathological stimuli. Overall, the intersection of autophagy and nutrigenomics effect of bioactive compounds holds promise for developing targeted interventions for various diseases, emphasizing the significance of dietary interventions in disease prevention and management.
Collapse
Affiliation(s)
- Roberto Chiarelli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Fabio Caradonna
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Flores Naselli
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| |
Collapse
|
3
|
Hanie MH, Mohammad Reza A, Mansoureh S, Fatemeh SB, Ali S. Exploring the impact of melatonin and omega-3, individually and in combination, on cognitive function, histological changes, and oxidant-antioxidant balance in male rats with dorsal CA1 hippocampal lesions. Brain Res 2024; 1840:149046. [PMID: 38821333 DOI: 10.1016/j.brainres.2024.149046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND AND OBJECTIVE Damage to the hippocampus leads to increased anxiety, memory problems, and learning disabilities. Melatonin (MLT), a hormone secreted by the pineal gland, serves as an antioxidant and provides defense against nerve damage. Omega-3 (ω3) is known for improving brain function. This study aims to examine the impact of melatonin and omega-3, both individually and in combination, on cognitive function, histological changes, and the balance between oxidants and antioxidants in male rats with injuries to the dorsal CA1 hippocampus. MATERIAL AND METHODS Five rat groups (n = 8) were examined. The sham group was given normal saline via intraperitoneal (ip) and gavage routes. After a local lesion in the hippocampus, the lesion group underwent the same treatment. The MLT group was given melatonin (10 mg/kg, ip), the ω3 group was provided with omega-3 (0.8 g/kg, gavage), and the MLT + ω3 group received both treatments. Injections were administered every other day for 10 days. On the 11th day, behavioral assessments were conducted, and then pyramidal cells were quantified using image analysis software. Serum samples were assessed for levels of oxidants and antioxidants. RESULTS The results from the open field test indicated a significant increase in distance moved in the Lesion + MLT + ω3 group compared to the lesion group (P < 0.05). Performance in the novel object recognition test showed improvement in the ω3 and MLT + ω3 treated groups compared to the lesion group (P < 0.05). Additionally, social interaction duration notably increased in the ω3, MLT, and MLT + ω3 treated groups compared to the lesion group. The number of degenerated cells in the CA1, CA2, and CA3 areas of the lesion group significantly increased compared to the sham group, but melatonin and omega-3 notably reduced this number (P < 0.05). The serum levels of the antioxidant enzymes,include superoxide dismutase, glutathione peroxidase, and catalase in the lesion group notably changed compared to the sham group, but omega-3 effectively restored them to control levels. CONCLUSION According to increase in distance moved, memory function, learning and social interactions of the animal in the behavioral results and the reduction of degenerate cells in the histological results, it can be said that these effects may be part of the neuroprotective effects of melatonin and omega-3. The increase in levels of antioxidant enzymes, particularly omega-3, indicates their promise as therapeutic agents for reducing oxidative stress-induced damage in neurological disorders.
Collapse
Affiliation(s)
- Mahmoudi Hashemi Hanie
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Afarinesh Mohammad Reza
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sabzalizadeh Mansoureh
- Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran; Cognitive Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | - Sheikh Bahaei Fatemeh
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Shamsara Ali
- Department of Anatomy, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
4
|
Prodromou SI, Chatzopoulou F, Saiti A, Giannopoulos-Dimitriou A, Koudoura LA, Pantazaki AA, Chatzidimitriou D, Vasiliou V, Vizirianakis IS. Hepatotoxicity assessment of innovative nutritional supplements based on olive-oil formulations enriched with natural antioxidants. Front Nutr 2024; 11:1388492. [PMID: 38812942 PMCID: PMC11133736 DOI: 10.3389/fnut.2024.1388492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/31/2024] Open
Abstract
Introduction This study focuses on the assessment of extra virgin olive-oil and olive fruit-based formulations enriched with natural antioxidants as potential nutritional supplements for alleviating symptoms and long-term consequences of illnesses whose molecular pathophysiology is affected by oxidative stress and inflammation, such as Alzheimer's disease (AD). Methods Besides evaluating cell viability and proliferation capacity of human hepatocellular carcinoma HepG2 cells exposed to formulations in culture, hepatotoxicity was also considered as an additional safety measure using quantitative real-time PCR on RNA samples isolated from the cell cultures and applying approaches of targeted molecular analysis to uncover potential pathway effects through gene expression profiling. Furthermore, the formulations investigated in this work contrast the addition of natural extract with chemical forms and evaluate the antioxidant delivery mode on cell toxicity. Results The results indicate minimal cellular toxicity and a significant beneficial impact on metabolic molecular pathways in HepG2 cell cultures, thus paving the way for innovative therapeutic strategies using olive-oil and antioxidants in dietary supplements to minimize the long-term effects of oxidative stress and inflammatory signals in individuals being suffered by disorders like AD. Discussion Overall, the experimental design and the data obtained support the notion of applying innovative molecular methodologies and research techniques to evidently advance the delivery, as well as the scientific impact and validation of nutritional supplements and dietary products to improve public health and healthcare outcomes.
Collapse
Affiliation(s)
- Sofia I. Prodromou
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Fani Chatzopoulou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Labnet Laboratories, Department of Molecular Biology and Genetics, Thessaloniki, Greece
| | - Aikaterini Saiti
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Loukia A. Koudoura
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia A. Pantazaki
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Chatzidimitriou
- Laboratory of Microbiology, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, United States
| | - Ioannis S. Vizirianakis
- Laboratory of Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Department of Health Sciences, School of Health and Life Sciences, University of Nicosia, Nicosia, Cyprus
| |
Collapse
|
5
|
Faccinetto-Beltrán P, Reza-Zaldivar EE, Curiel-Pedraza DA, Canales-Aguirre AA, Jacobo-Velázquez DA. Docosahexaenoic Acid (DHA), Vitamin D3, and Probiotics Supplementation Improve Memory, Glial Reactivity, and Oxidative Stress Biomarkers in an Aluminum-Induced Cognitive Impairment Rat Model. ACS OMEGA 2024; 9:21221-21233. [PMID: 38764689 PMCID: PMC11097360 DOI: 10.1021/acsomega.4c01198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Globally, the rise in neurodegenerative issues in tandem with shifts in lifestyle and aging population has prompted a search for effective interventions. Nutraceutical compounds have emerged as promising agents for addressing these challenges. This 60-day study on an aluminum-induced cognitive impairment rat model assessed three compounds and their combinations: probiotics (Prob, Lactobacillus plantarum [5 × 1010 CFU/day], and Lactobacillus acidophilus [5 × 1010 CFU/day]), docosahexaenoic acid (DHA, 23.8 mg/day), and vitamin D3 (VD3, 150 IU/day). Behavioral outcomes were evaluated by using the Morris water maze and novel object recognition tests. Glial activation was assessed through immunofluorescence analysis of GFAP/Iba1, and oxidative stress markers in brain tissue were determined by measuring the levels of Malondialdehyde (MDA) and Superoxide dismutase (SOD). The results demonstrated a progressive improvement in the learning and memory capacity. The aluminum group exhibited the poorest performance in the behavioral test, enhanced GFAP/Iba1 activation, and elevated levels of oxidative stress markers. Conversely, the DHA + Prob + VD3 treatment demonstrated the best performance in the Morris water maze. The combination of DHA + Prob + VD3 exhibited superior performance in the Morris water maze, accompanied by reduced levels of GFAP/Iba1 activation in DG/CA1 brain regions. Furthermore, DHA + Prob supplementation showed lower GFAP/Iba1 activation in the CA3 region and enhanced antioxidant activity. In summary, supplementing various nutraceutical combinations, including DHA, VD3, and Prob, displayed notable benefits against aluminum-induced cognitive impairment. These benefits encompassed memory enhancement, diminished MDA concentration, increased SOD activity, and reduced glial activation, as indicated by GFAP/Iba1 markers.
Collapse
Affiliation(s)
- Paulinna Faccinetto-Beltrán
- Escuela
de Ingeniería y Ciencias, Campus Guadalajara, Tecnologico de Monterrey, Av. General Ramon Corona 2514, C.P.
45201 Zapopan, Jalisco, Mexico
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico
| | - Edwin E. Reza-Zaldivar
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico
| | - David Alejandro Curiel-Pedraza
- Preclinical
Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico
| | - Alejandro A. Canales-Aguirre
- Preclinical
Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Av. Normalistas 800, Colinas de la Normal, Guadalajara 44270, Mexico
| | - Daniel A. Jacobo-Velázquez
- Escuela
de Ingeniería y Ciencias, Campus Guadalajara, Tecnologico de Monterrey, Av. General Ramon Corona 2514, C.P.
45201 Zapopan, Jalisco, Mexico
- Tecnologico
de Monterrey, Institute for Obesity Research, Av. Eugenio Garza Sada 2501 Sur, 64849 Monterrey, Nuevo León, Mexico
| |
Collapse
|
6
|
Rao AS, Nair A, Nivetha K, Ayesha B, Hardi K, Divya V, Veena SM, Anantharaju KS, More SS. Impacts of Omega-3 Fatty Acids, Natural Elixirs for Neuronal Health, on Brain Development and Functions. Methods Mol Biol 2024; 2761:209-229. [PMID: 38427239 DOI: 10.1007/978-1-0716-3662-6_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Omega-3 fatty acids play a seminal role in maintaining the structural and functional integrity of the nervous system. These specialized molecules function as precursors for many lipid-based biological messengers. Also, studies suggest the role of these fatty acids in regulating healthy sleep cycles, cognitive ability, brain development, etc. Dietary intake of essential poly unsaturated fatty acids (PUFA) such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are foundational to the optimal working of the nervous system. Besides regulating health, these biomolecules have great therapeutic value in treating several diseases, particularly nervous system diseases and disorders. Many recent studies conclusively demonstrated the beneficial effects of Omega-3 fatty acids in treating depression, neuropsychiatric disorders, neurodegenerative disorders, neurochemical disorders, and many other illnesses associated with the nervous system. This chapter summates the multifaceted role of poly unsaturated fatty acids, especially Omega-3 fatty acids (EPA and DHA), in the neuronal health and functioning. The importance of dietary intake of these essential fatty acids, their recommended dosages, bioavailability, the mechanism of their action, and therapeutic values are extensively discussed.
Collapse
Affiliation(s)
- Archana S Rao
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Ajay Nair
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - K Nivetha
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Bibi Ayesha
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Kapadia Hardi
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Vora Divya
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - S M Veena
- Department of Biotechnology, Sapthagiri College of Engineering, Bangalore, India
| | - K S Anantharaju
- Department of Chemistry, Dayananda Sagar College of Engineering, Bangalore, India
| | - Sunil S More
- School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| |
Collapse
|
7
|
Lakshimi VI, Kavitha M. New Insights into Prospective Health Potential of ω-3 PUFAs. Curr Nutr Rep 2023; 12:813-829. [PMID: 37996669 DOI: 10.1007/s13668-023-00508-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 11/25/2023]
Abstract
PURPOSE OF REVIEW Docosahexaenoic acid and eicosapentaenoic acid are the two essential long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFAs) promoting human health which are obtained from diet or supplementation. The eicosanoids derived from ω-6 and ω-3 PUFAs have opposite characteristics of pro- and anti-inflammatory activities. The proinflammatory effects of ω-6 PUFAs are behind the pathology of the adverse health conditions of PUFA metabolism like cardiovascular diseases, neurological disorders, and inflammatory diseases. A balanced ω-6 to ω-3 ratio of 1-4:1 is critical to prevent the associated disorders. But due to modern agricultural practices, there is a disastrous shift in this ratio to 10-20:1. This review primarily aims to discuss the myriad health potentials of ω-3 PUFAs uncovered through recent research. It further manifests the importance of maintaining a balanced ω-6 to ω-3 PUFA ratio. RECENT FINDINGS ω-3 PUFAs exhibit protective effects against diabetes mellitus-associated complications including diabetic retinopathy, diabetic nephropathy, and proteinuria. COVID-19 is also not an exception to the health benefits of ω-3 PUFAs. Supplementation of ω-3 PUFAs improved the respiratory and clinical symptoms in COVID-19 patients. ω-3 PUFAs exhibit a variety of health benefits including anti-inflammatory property and antimicrobial property and are effective in protecting against various health conditions like atherosclerosis, cardiovascular diseases, diabetes mellitus, COVID-19, and neurological disorders. In the present review, various health potentials of ω-3 PUFAs are extensively reviewed and summarized. Further, the importance of a balanced ω-6 to ω-3 PUFA ratio has been emphasized besides stating the diverse sources of ω-3 PUFA.
Collapse
Affiliation(s)
- V Iswareya Lakshimi
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - M Kavitha
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
8
|
Protective Roles of Xijiao Dihuang Tang on Coronary Artery Injury in Kawasaki Disease. Cardiovasc Drugs Ther 2023; 37:257-270. [PMID: 34665368 DOI: 10.1007/s10557-021-07277-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Xijiao Dihuang Tang (XJDHT) is a classical formula of traditional Chinese medicine constituted of Cornu Bubali, Rehmannia glutinosa (Gaertn.) DC., Paeonia lactiflora Pall., and Paeonia suffruticosa Andrews. It was first mentioned in the medical classic "Beiji Qianjin Yaofang" written by Simiao Sun in Tang Dynasty. It shows very strong antipyretic and anticoagulant effects and has been clinically applied to treat various type of blood loss, purple and black spots, heat stroke, and glossitis. Kawasaki disease (KD) is considered as a kind of acute febrile illness in children with systemic vasculitis as the main lesions. The aim of this research is to clarify whether XJDHT can play a protective role in KD. METHODS A mouse model of Candida albicans water-soluble fraction (CAWS)-induced coronary arteritis and a KD cell model with tumor necrosis factor (TNF)-α induction were employed to investigate the potential effect and mechanism of XJDHT on coronary artery injury in KD. RESULTS Data showed that XJDHT remarkably alleviated the coronary artery injury of KD mice, as evidenced by reduced inflammation and downregulated expression of pro-inflammatory cytokines interleukin (IL)-1β and TNF-α. In vitro investigation showed that XJDHT could promote cell proliferation, inhibit cell apoptosis, and improve mitochondrial functions. Subsequent studies demonstrated that XJDHT rescued endothelial cell injury by PI3K/Akt-NFκB signaling pathway. Component analysis of XJDHT detected thirty-eight chemically active ingredients, including paeoniflorin, albiflorin, and paeoniflorigenone, which in in vitro experiments exhibited significant rescue effects on TNF-α-mediated endothelial cell injury. CONCLUSION Our findings demonstrated that XJDHT mitigated coronary artery injury of KD through suppressing endothelial cell damage via PI3K/Akt-NFκB signaling.
Collapse
|
9
|
Babazadeh A, Vahed FM, Liu Q, Siddiqui SA, Kharazmi MS, Jafari SM. Natural Bioactive Molecules as Neuromedicines for the Treatment/Prevention of Neurodegenerative Diseases. ACS OMEGA 2023; 8:3667-3683. [PMID: 36743024 PMCID: PMC9893457 DOI: 10.1021/acsomega.2c06098] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
The brain is vulnerable to different types of stresses, particularly oxidative stress as a result of oxygen requirements/utilization in the body. Large amounts of unsaturated fatty acids present in the brain increase this vulnerability. Neurodegenerative diseases (NDDs) are brain disorders that are characterized by the gradual loss of specific neurons and are attributed to broad evidence of cell-level oxidative stress. The accurate characterization of neurological disorders relies on several parameters along with genetics and environmental risk factors, making therapies less efficient to fight NDDs. On the way to tackle oxidative damage and discover efficient and safe therapies, bioactives are at the edge of NDD science. Naturally occurring bioactive compounds such as polyphenols, carotenoids, essential fatty acids, phytosterols, essential oils, etc. are particularly of interest owing to their potent antioxidant and anti-inflammatory activities, and they offer lots of brain-health-promoting features. This Review focuses on probing the neuroefficacy and bioefficacy of bioactives and their role in supporting relatively low antioxidative and low regenerative capacities of the brain, neurogenesis, neuroprotection, and ameliorating/treating NDDs.
Collapse
Affiliation(s)
- Afshin Babazadeh
- Center
for Motor Neuron Disease Research, Macquarie Medical School, Faculty
of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Fereshteh Mohammadi Vahed
- Center
for Motor Neuron Disease Research, Macquarie Medical School, Faculty
of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Qi Liu
- Institute
of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China
- Jiangsu
Key Laboratory of Integrated Traditional Chinese and Western Medicine
for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Shahida Anusha Siddiqui
- Technical
University of Munich Campus Straubing for Biotechnology and Sustainability, Essigberg 3, 94315 Straubing, Germany
- German
Institute of Food Technologies (DIL e.V.), Prof.-von-Klitzing-Straße 7, 49610 D Quakenbrück, Germany
| | | | - Seid Mahdi Jafari
- Department
of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 4913815739, Iran
- Nutrition
and Bromatology Group, Department of Analytical Chemistry and Food
Science, Faculty of Science, Universidade
de Vigo, E-32004 Ourense, Spain
- College
of Food Science and Technology, Hebei Agricultural
University, Baoding 071001, China
| |
Collapse
|
10
|
Dighriri IM, Alsubaie AM, Hakami FM, Hamithi DM, Alshekh MM, Khobrani FA, Dalak FE, Hakami AA, Alsueaadi EH, Alsaawi LS, Alshammari SF, Alqahtani AS, Alawi IA, Aljuaid AA, Tawhari MQ. Effects of Omega-3 Polyunsaturated Fatty Acids on Brain Functions: A Systematic Review. Cureus 2022; 14:e30091. [DOI: 10.7759/cureus.30091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2022] [Indexed: 11/07/2022] Open
|
11
|
Glucosinolates and Omega-3 Fatty Acids from Mustard Seeds: Phytochemistry and Pharmacology. PLANTS 2022; 11:plants11172290. [PMID: 36079672 PMCID: PMC9459965 DOI: 10.3390/plants11172290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022]
Abstract
Seeds from mustard (genera Brassica spp. and Sinapsis spp.), are known as a rich source of glucosinolates and omega-3 fatty acids. These compounds are widely known for their health benefits that include reducing inflammation and lowering the risk of cardiovascular diseases and cancer. This review presented a synthesis of published literature from Google Scholar, PubMed, Scopus, Sci Finder, and Web of Science regarding the different glucosinolates and omega-3 fatty acids isolated from mustard seeds. We presented an overview of extraction, isolation, purification, and structure elucidation of glucosinolates from the seeds of mustard plants. Moreover, we presented a compilation of in vitro, in vivo, and clinical studies showing the potential health benefits of glucosinolates and omega-3 fatty acids. Previous studies showed that glucosinolates have antimicrobial, antipain, and anticancer properties while omega-3 fatty acids are useful for their pharmacologic effects against sleep disorders, anxiety, cerebrovascular disease, neurodegenerative disease, hypercholesterolemia, and diabetes. Further studies are needed to investigate other naturally occurring glucosinolates and omega-3 fatty acids, improve and standardize the extraction and isolation methods from mustard seeds, and obtain more clinical evidence on the pharmacological applications of glucosinolates and omega-3 fatty acids from mustard seeds.
Collapse
|
12
|
Krümmel B, von Hanstein AS, Plötz T, Lenzen S, Mehmeti I. Differential effects of saturated and unsaturated free fatty acids on ferroptosis in rat β-cells. J Nutr Biochem 2022; 106:109013. [PMID: 35447320 DOI: 10.1016/j.jnutbio.2022.109013] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/21/2021] [Accepted: 03/03/2022] [Indexed: 12/15/2022]
Abstract
Elevated plasma concentrations of saturated free fatty acids (SFAs) are involved in pancreatic β-cell dysfunction and apoptosis, referred to as lipotoxicity. However, in contrast to apoptosis, the involvement of ferroptosis, as a distinct type of oxidative regulated cell death in β-cell lipotoxicity remains elusive. Therefore, the aim of this study was to determine the effects of various free fatty acids on ferroptosis induction in rat insulin-producing β-cells. Herein, rat insulin-producing β-cells underwent lipid peroxidation in the presence of long-chain SFAs and ω-6-polyunsaturated fatty acids (PUFAs), but only the latter induced ferroptosis. On the other hand, ω-3-polyunsaturated fatty acid α-linolenate did not induce ferroptosis but sensitized insulin-producing β-cells to SFA-mediated lipid peroxidation. While the monounsaturated fatty acid oleate, overexpression of glutathione peroxidase 4 (GPx4), and the specific ferroptosis inhibitor ferrostatin-1 significantly abrogated lipid peroxidation, neither GPx4 nor ferrostatin-1 affected palmitate-mediated toxicity. Site-specific expression of catalase in cytosol, mitochondria, and ER attenuated lipid peroxidation, indicating the contribution of metabolically generated H2O2 from all three subcellular compartments. These observations suggest that only ω-6-PUFAs reach the thresholds of lipid peroxidation required for ferroptosis, whereas SFAs favour apoptosis in β-cells. Hence, avoiding an excessive dietary intake of ω-6-PUFAs might be a crucial prerequisite for prevention of reactive oxygen species-mediated ferroptosis in insulin-producing cells.
Collapse
Affiliation(s)
- Bastian Krümmel
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Anna-Sophie von Hanstein
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Thomas Plötz
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Sigurd Lenzen
- Institute of Experimental Diabetes Research, Hannover Medical School, Hannover, Germany; Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany
| | - Ilir Mehmeti
- Institute of Clinical Biochemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
13
|
Velasco‐Rodríguez LDC, Rascón MP, Calvo MV, Montalvo RM, Fontecha J, García HS. Krill Lecithin as Surfactant for Preparation of Oil/Water Nanoemulsions as Curcumin Carriers. EUR J LIPID SCI TECH 2021. [DOI: 10.1002/ejlt.202000238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luz del C. Velasco‐Rodríguez
- UNIDA Tecnológico Nacional de México/IT de Veracruz M.A. de Quevedo 2779, Col. Formando Hogar Veracruz Ver. 91897 Mexico
| | - Martha P. Rascón
- Facultad de Ciencias Químicas Universidad Veracruzana Prolongación Oriente 6 Orizaba Ver. 94340 Mexico
| | - Maria V. Calvo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC‐UAM) Universidad Autónoma de Madrid Calle Nicolás Cabrera 9 Madrid 28049 Spain
| | - Rita M. Montalvo
- UNIDA Tecnológico Nacional de México/IT de Veracruz M.A. de Quevedo 2779, Col. Formando Hogar Veracruz Ver. 91897 Mexico
| | - Javier Fontecha
- Instituto de Investigación en Ciencias de la Alimentación (CIAL, CSIC‐UAM) Universidad Autónoma de Madrid Calle Nicolás Cabrera 9 Madrid 28049 Spain
| | - Hugo S. García
- UNIDA Tecnológico Nacional de México/IT de Veracruz M.A. de Quevedo 2779, Col. Formando Hogar Veracruz Ver. 91897 Mexico
| |
Collapse
|
14
|
Plascencia-Villa G, Perry G. Preventive and Therapeutic Strategies in Alzheimer's Disease: Focus on Oxidative Stress, Redox Metals, and Ferroptosis. Antioxid Redox Signal 2021; 34:591-610. [PMID: 32486897 PMCID: PMC8098758 DOI: 10.1089/ars.2020.8134] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022]
Abstract
Significance: Alzheimer's disease (AD) is the most common cause of dementia in the elderly. AD is currently ranked as the sixth leading cause of death, but some sources put it as third, after heart disease and cancer. Currently, there are no effective therapeutic approaches to treat or slow the progression of chronic neurodegeneration. In addition to the accumulation of amyloid-β (Aβ) and tau, AD patients show progressive neuronal loss and neuronal death, also high oxidative stress that correlates with abnormal levels or overload of brain metals. Recent Advances: Several promising compounds targeting oxidative stress, redox metals, and neuronal death are under preclinical or clinical evaluation as an alternative or complementary therapeutic strategy in mild cognitive impairment and AD. Here, we present a general analysis and overview, discuss limitations, and suggest potential directions for these treatments for AD and related dementia. Critical Issues: Most of the disease-modifying therapeutic strategies for AD under evaluation in clinical trials have focused on components of the amyloid cascade, including antibodies to reduce levels of Aβ and tau, as well as inhibitors of secretases. Unfortunately, several of the amyloid-focused therapeutics have failed the clinical outcomes or presented side effects, and numerous clinical trials of compounds have been halted, reducing realistic options for the development of effective AD treatments. Future Directions: The focus of research on AD and related dementias is shifting to alternative or innovative areas, such as ApoE, lipids, synapses, oxidative stress, cell death mechanisms, neuroimmunology, and neuroinflammation, as well as brain metabolism and bioenergetics.
Collapse
Affiliation(s)
- Germán Plascencia-Villa
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| | - George Perry
- Department of Biology, The University of Texas at San Antonio (UTSA), San Antonio, Texas, USA
| |
Collapse
|
15
|
Daoud S, Bou-Maroun E, Waschatko G, Cayot P. Lipid oxidation in oil-in-water emulsions: Iron complexation by buffer ions and transfer on the interface as a possible mechanism. Food Chem 2020; 342:128273. [PMID: 33158679 DOI: 10.1016/j.foodchem.2020.128273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 09/26/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022]
Abstract
Lipid oxidation is the main hurdle for omega-3 fatty acid enrichment in food and beverages. Fat oxidation reduces the quality and safety of supplemented products. A tuna oil-in-water emulsion (20%v/v) was exposed to iron-induced oxidation. Emulsions with changing emulsifiers and buffers were analyzed under different storage conditions (argon purging, pH variation) using Conjugated Dienes and Thiobarbituric acid reactive substances assays. The results showed that free iron ions cannot interact with oxygen. However, buffers (Citrate and phosphate) chelate iron ions (Fe (II)). Depending on the pH value and the type of buffer-Fe (II) complex, its prooxidant activity and spatial distribution are influenced. The complex charge defines the interactions with the oil-water interface, i.e., positively charged interfaces repel positively charged complexes which keeps the prooxidant away. The mechanistic understanding of this work will help formulators and product developers to choose the right buffer and emulsifier combination for oxidation sensitive emulsions.
Collapse
Affiliation(s)
- Samar Daoud
- Unité mixte "Procédés alimentaires et microbiologiques", Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France.
| | - Elias Bou-Maroun
- Unité mixte "Procédés alimentaires et microbiologiques", Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| | - Gustav Waschatko
- Cargill R&D Centre Europe BVBA, Havenstraat 84, B-1800 Vilvoorde, Belgium
| | - Philippe Cayot
- Unité mixte "Procédés alimentaires et microbiologiques", Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
16
|
Parolini C. Marine n-3 polyunsaturated fatty acids: Efficacy on inflammatory-based disorders. Life Sci 2020; 263:118591. [PMID: 33069735 DOI: 10.1016/j.lfs.2020.118591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a physiological response to injury, stimulating tissue repair and regeneration. However, the presence of peculiar individual conditions can negatively perturb the resolution phase eventually leading to a state of low-grade systemic chronic inflammation, characterized by tissue and organ damages and increased susceptibility to non-communicable disease. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are able to influence many aspects of this process. Experiments performed in various animal models of obesity, Alzheimer's disease and multiple sclerosis have demonstrated that n-3 PUFAs can modulate the basic mechanisms as well as the disease progression. This review describes the available data from experimental studies to the clinical trials.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
17
|
Al-Okbi SY, Mohammed SE, Al-Siedy ESK, Ali NA. Fish Oil and Primrose Oil Suppress the Progression of Alzheimer's Like Disease Induced by Aluminum in Rats. J Oleo Sci 2020; 69:771-782. [PMID: 32522946 DOI: 10.5650/jos.ess20015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The role of fish oil, primrose oil and their mixture in ameliorating the changes in Alzheimer's like model was evaluated in rats. Primrose oil and primrose/fish oil mixture fatty acids composition was assessed by gas chromatography. The rat experiment consisted of 5 groups; the first fed on balanced diet as control normal (CN); the other four groups treated with intraperitoneal aluminum lactate and consumed dyslipidemic diet; one group served as control Alzheimer's like disease (CA) while the other three groups (test groups) received daily oral dose from primrose oil, fish oil and primrose/fish oil mixture separately for 5 weeks. Results showed primrose oil and primrose/ fish oil mixture to contain gamma linolenic acid as 9.15 and 4.3% of total fatty acids, respectively. Eicosapentaenoic and docosahexaenoic were present as 10.9 and 6.5 %, respectively in the oil mixture. Dyslipidemia and increased erythrocyte sedimentation rate (ESR), plasma butyrylcholinesterase (BChE), brain malondialdehyde (MDA) and NO with decrease in plasma magnesium, brain catalase, reduced glutathione, body weight gain and brain weight were demonstrated in CA compared to CN. Brain histopathology and immuno-histochemistry showed neuronal degeneration and neurofibrillary tangles with elevated myeloperoxidase and nuclear factor-kappa B in CA compared to CN. The tested oils demonstrated neuro-protection reflected in the variable significant improvement of biochemical parameters, immuno-histochemistry and brain histopathology. Primrose/fish oil mixture was superior in reducing ESR, brain MDA, plasma activity of BChE and brain histopathological changes along with elevating plasma magnesium. Primrose/fish oil mixture and fish oil were more promising in improving plasma high density lipoprotein cholesterol (HDL-C) than primrose. Fish oil was the most efficient in improving plasma total cholesterol (T-C), low density lipoprotein cholesterol and T-C /HDL-C. Primrose/fish oil mixture and primrose oil were superior in elevating brain catalase compared to fish oil. Other parameters were equally improved by the different oil treatments. Primrose oil, fish oil and their mixture reduced the progression of Alzheimer's disease in rats with superiority to primrose/fish oil mixture.
Collapse
Affiliation(s)
- Sahar Y Al-Okbi
- Nutrition and Food Sciences Department, National Research Centre
| | | | | | - Naglaa A Ali
- Hormones Department, Medical Research Division, National Research Centre
| |
Collapse
|
18
|
El-Seedi HR, Khalifa SA, El-Wahed AA, Gao R, Guo Z, Tahir HE, Zhao C, Du M, Farag MA, Musharraf SG, Abbas G. Honeybee products: An updated review of neurological actions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.04.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
19
|
Akel H, Ismail R, Csóka I. Progress and perspectives of brain-targeting lipid-based nanosystems via the nasal route in Alzheimer's disease. Eur J Pharm Biopharm 2020; 148:38-53. [PMID: 31926222 DOI: 10.1016/j.ejpb.2019.12.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/28/2019] [Accepted: 12/31/2019] [Indexed: 12/17/2022]
Abstract
Since health care systems dedicate substantial resources to Alzheimer's disease (AD), it poses an increasing challenge to scientists and health care providers worldwide, especially that many decades of research in the medical field revealed no optimal effective treatment for this disease. The intranasal administration route seems to be a preferable route of anti-AD drug delivery over the oral one as it demonstrates an ability to overcome the related obstacles reflected in low bioavailability, limited brain exposure and undesired pharmacokinetics or side effects. This delivery route can bypass the systemic circulation through the intraneuronal and extraneuronal pathways, providing truly needleless and direct brain drug delivery of the therapeutics due to its large surface area, porous endothelial membrane, the avoidance of the first-pass metabolism, and ready accessibility. Among the different nano-carrier systems developed, lipid-based nanosystems have become increasingly popular and have proven to be effective in managing the common symptoms of AD when administered via the nose-to-brain delivery route, which provides an answer to circumventing the BBB. The design of such lipid-based nanocarriers could be challenging since many factors can contribute to the quality of the final product. Hence, according to the authors, it is recommended to follow the quality by design methodology from the early stage of development to ensure high product quality while saving efforts and costs. This review article aims to draw attention to the up-to-date findings in the field of lipid-based nanosystems and the potential role of developing such forms in the management of AD by means of the nose-to-brain delivery route, in addition to highlighting the significant role of applying QbD methodology in this development.
Collapse
Affiliation(s)
- Hussein Akel
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary
| | - Ruba Ismail
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös utca 6, H-6720 Szeged, Hungary; Institute of Pharmaceutical Technology and Regulatory Affairs, Interdisciplinary Centre of Excellence, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary.
| |
Collapse
|
20
|
Mitochondrial Bioenergetics in Brain Following Ozone Exposure in Rats Maintained on Coconut, Fish and Olive Oil-Rich Diets. Int J Mol Sci 2019; 20:ijms20246303. [PMID: 31847143 PMCID: PMC6941048 DOI: 10.3390/ijms20246303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/13/2022] Open
Abstract
Dietary supplementation with omega-3 and omega-6 fatty acids offer cardioprotection against air pollution, but these protections have not been established in the brain. We tested whether diets rich in omega-3 or -6 fatty acids offered neuroprotective benefits, by measuring mitochondrial complex enzyme I, II and IV activities and oxidative stress measures in the frontal cortex, cerebellum, hypothalamus, and hippocampus of male rats that were fed either a normal diet, or a diet enriched with fish oil olive oil, or coconut oil followed by exposure to either filtered air or ozone (0.8 ppm) for 4 h/day for 2 days. Results show that mitochondrial complex I enzyme activity was significantly decreased in the cerebellum, hypothalamus and hippocampus by diets. Complex II enzyme activity was significantly lower in frontal cortex and cerebellum of rats maintained on all test diets. Complex IV enzyme activity was significantly lower in the frontal cortex, hypothalamus and hippocampus of animals maintained on fish oil. Ozone exposure decreased complex I and II activity in the cerebellum of rats maintained on the normal diet, an effect blocked by diet treatments. While diet and ozone have no apparent influence on endogenous reactive oxygen species production, they do affect antioxidant levels in the brain. Fish oil was the only diet that ozone exposure did not alter. Microglial morphology and GFAP immunoreactivity were assessed across diet groups; results indicated that fish oil consistently decreased reactive microglia in the hypothalamus and hippocampus. These results indicate that acute ozone exposure alters mitochondrial bioenergetics in brain and co-treatment with omega-6 and omega-3 fatty acids alleviate some adverse effects within the brain.
Collapse
|
21
|
Neuroprotective effects of increasing levels of HSP70 against neuroinflammation in Parkinson's disease model by inhibition of NF-κB and STAT3. Life Sci 2019; 234:116747. [DOI: 10.1016/j.lfs.2019.116747] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 11/20/2022]
|
22
|
The role of APOE4 in Alzheimer's disease: strategies for future therapeutic interventions. Neuronal Signal 2019; 3:NS20180203. [PMID: 32269835 PMCID: PMC7104324 DOI: 10.1042/ns20180203] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/25/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia affecting almost 50 million people worldwide. The ε4 allele of Apolipoprotein E (APOE) is the strongest known genetic risk factor for late-onset AD cases, with homozygous APOE4 carriers being approximately 15-times more likely to develop the disease. With 25% of the population being APOE4 carriers, understanding the role of this allele in AD pathogenesis and pathophysiology is crucial. Though the exact mechanism by which ε4 allele increases the risk for AD is unknown, the processes mediated by APOE, including cholesterol transport, synapse formation, modulation of neurite outgrowth, synaptic plasticity, destabilization of microtubules, and β-amyloid clearance, suggest potential therapeutic targets. This review will summarize the impact of APOE on neurons and neuronal signaling, the interactions between APOE and AD pathology, and the association with memory decline. We will then describe current treatments targeting APOE4, complications associated with the current therapies, and suggestions for future areas of research and treatment.
Collapse
|
23
|
Habtemariam S. Natural Products in Alzheimer's Disease Therapy: Would Old Therapeutic Approaches Fix the Broken Promise of Modern Medicines? Molecules 2019; 24:molecules24081519. [PMID: 30999702 PMCID: PMC6514598 DOI: 10.3390/molecules24081519] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/30/2022] Open
Abstract
Despite extensive progress in understanding the pathology of Alzheimer's disease (AD) over the last 50 years, clinical trials based on the amyloid-beta (Aβ) hypothesis have kept failing in late stage human trials. As a result, just four old drugs of limited clinical outcomes and numerous side effects are currently used for AD therapy. This article assesses the common pharmacological targets and therapeutic principles for current and future drugs. It also underlines the merits of natural products acting through a polytherapeutic approach over a monotherapy option of AD therapy. Multi-targeting approaches through general antioxidant and anti-inflammatory mechanisms coupled with specific receptor and/or enzyme-mediated effects in neuroprotection, neuroregeneration, and other rational perspectives of novel drug discovery are emphasized.
Collapse
Affiliation(s)
- Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK.
| |
Collapse
|
24
|
Chitre NM, Moniri NH, Murnane KS. Omega-3 Fatty Acids as Druggable Therapeutics for Neurodegenerative Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:735-749. [PMID: 31724519 PMCID: PMC7204890 DOI: 10.2174/1871527318666191114093749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/07/2019] [Accepted: 10/22/2019] [Indexed: 12/19/2022]
Abstract
Neurodegenerative disorders are commonly associated with a complex pattern of pathophysiological hallmarks, including increased oxidative stress and neuroinflammation, which makes their treatment challenging. Omega-3 Fatty Acids (O3FA) are natural products with reported neuroprotective, anti-inflammatory, and antioxidant effects. These effects have been attributed to their incorporation into neuronal membranes or through the activation of intracellular or recently discovered cell-surface receptors (i.e., Free-Fatty Acid Receptors; FFAR). Molecular docking studies have investigated the roles of O3FA as agonists of FFAR and have led to the development of receptor-specific targeted agonists for therapeutic purposes. Moreover, novel formulation strategies for targeted delivery of O3FA to the brain have supported their development as therapeutics for neurodegenerative disorders. Despite the compelling evidence of the beneficial effects of O3FA for several neuroprotective functions, they are currently only available as unregulated dietary supplements, with only a single FDA-approved prescription product, indicated for triglyceride reduction. This review highlights the relative safety and efficacy of O3FA, their drug-like properties, and their capacity to be formulated in clinically viable drug delivery systems. Interestingly, the presence of cardiac conditions such as hypertriglyceridemia is associated with brain pathophysiological hallmarks of neurodegeneration, such as neuroinflammation, thereby further suggesting potential therapeutic roles of O3FA for neurodegenerative disorders. Taken together, this review article summarizes and integrates the compelling evidence regarding the feasibility of developing O3FA and their synthetic derivatives as potential drugs for neurodegenerative disorders.
Collapse
Affiliation(s)
- Neha M. Chitre
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Nader H. Moniri
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| | - Kevin S. Murnane
- Department of Pharmaceutical Sciences, College of Pharmacy, Mercer University Health Sciences Center, Mercer University, Atlanta, GA USA
| |
Collapse
|
25
|
Wang L, Fan H, He J, Wang L, Tian Z, Wang C. Protective effects of omega-3 fatty acids against Alzheimer's disease in rat brain endothelial cells. Brain Behav 2018; 8:e01037. [PMID: 30298620 PMCID: PMC6236236 DOI: 10.1002/brb3.1037] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 05/18/2018] [Accepted: 06/04/2018] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Omega-3 fatty acids are well-known unsaturated fatty acids that are essential for growth and development in animals. They primarily participate in the development of intelligence, the nervous system, and vision, and the metabolism of neurotransmitters. Omega-3 fatty acids have been widely studied in the treatment of Alzheimer's disease (AD). Omega-3 fatty acids are known to have neuroprotective effects due to their antioxidant capacity. Rotenone has been shown to induce neurotoxicity in vitro. METHODS We investigated the protective effects of omega-3 fatty acids against AD in rat brain microvascular endothelial cells (RBMVECs) in vitro. Lipid peroxidation, reactive oxygen species (ROS), glutathione peroxidase (Gpx), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase levels were evaluated in RBMVECs. Flow cytometry was performed to assess apoptosis. RESULTS Lipid peroxidation and ROS were reduced in RBMVECs following incubation with omega-3 fatty acids. Catalase, Gpx, and SOD were increased in RBMVECs following incubation with omega-3 fatty acids. Flow cytometry showed that incubation with omega-3 fatty acids reduced the amount of apoptotic RBMVECs. CONCLUSION Our results suggest that omega-3 fatty acids show potential as a therapeutic agent against AD.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin, China.,Department of Neurology, Nankai University Fourth Center Hospital Neurology Center, Tianjin, China
| | - Hongguang Fan
- Department of Neurology, Nankai University Fourth Center Hospital Neurology Center, Tianjin, China
| | - Jingchun He
- Department of Respiratory Medicine, Fourth Central Hospital Affiliated to Nankai University, Tianjin, China
| | - Lifang Wang
- Department of Neurology, Nankai University Fourth Center Hospital Neurology Center, Tianjin, China
| | - Zelong Tian
- Department of Neurology, Nankai University Fourth Center Hospital Neurology Center, Tianjin, China
| | - Chaoran Wang
- Department of Neurology, Nankai University Fourth Center Hospital Neurology Center, Tianjin, China
| |
Collapse
|