1
|
Fujiwara-Tani R, Nakashima C, Ohmori H, Fujii K, Luo Y, Sasaki T, Ogata R, Kuniyasu H. Significance of Malic Enzyme 1 in Cancer: A Review. Curr Issues Mol Biol 2025; 47:83. [PMID: 39996805 PMCID: PMC11854147 DOI: 10.3390/cimb47020083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Malic enzyme 1 (ME1) plays a key role in promoting malignant phenotypes in various types of cancer. ME1 promotes epithelial-mesenchymal transition (EMT) and enhances stemness via glutaminolysis, energy metabolism reprogramming from oxidative phosphorylation to glycolysis. As a result, ME1 promotes the malignant phenotypes of cancer cells and poor patient prognosis. In particular, ME1 expression is promoted in hypoxic environments associated with hypoxia-inducible factor (HIF1) α. ME1 is overexpressed in budding cells at the cancer invasive front, promoting cancer invasion and metastasis. ME1 also generates nicotinamide adenine dinucleotide (NADPH), which, together with glucose-6-phosphate dehydrogenase (G6PD) and isocitrate dehydrogenase (IDH1), expands the NADPH pool, maintaining the redox balance in cancer cells, suppressing cell death by neutralizing mitochondrial reactive oxygen species (ROS), and promoting stemness. This review summarizes the latest research insights into the mechanisms by which ME1 contributes to cancer progression. Because ME1 is involved in various aspects of cancer and promotes many of its malignant phenotypes, it is expected that ME1 will become a novel drug target in the near future.
Collapse
Affiliation(s)
- Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara 634-8521, Japan; (C.N.); (H.O.); (K.F.); (Y.L.); (T.S.); (R.O.)
| | | | | | | | | | | | | | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara 634-8521, Japan; (C.N.); (H.O.); (K.F.); (Y.L.); (T.S.); (R.O.)
| |
Collapse
|
2
|
Fleiss B, Gressens P. Role of Microglial Modulation in Therapies for Perinatal Brain Injuries Leading to Neurodevelopmental Disorders. ADVANCES IN NEUROBIOLOGY 2024; 37:591-606. [PMID: 39207715 DOI: 10.1007/978-3-031-55529-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Neurodevelopmental disorders (NDDs) encompass various conditions stemming from changes during brain development, typically diagnosed early in life. Examples include autism spectrum disorder, intellectual disability, cerebral palsy, seizures, dyslexia, and attention deficit hyperactivity disorder. Many NDDs are linked to perinatal events like infections, oxygen disturbances, or insults in combination. This chapter outlines the causes and effects of perinatal brain injury as they relate to microglia, along with efforts to prevent or treat such damage. We primarily discuss therapies targeting microglia modulation, focusing on those either clinically used or in advanced development, often tested in large animal models such as sheep, non-human primates, and piglets-standard translational models in perinatal medicine. Additionally, it touches on experimental studies showcasing advancements in the field.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Université de Paris, NeuroDiderot, Inserm, Paris, France
| | - Pierre Gressens
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia.
- Université de Paris, NeuroDiderot, Inserm, Paris, France.
| |
Collapse
|
3
|
Victor S, Forbes B, Greenough A, Edwards AD. PPAR Gamma Receptor: A Novel Target to Improve Morbidity in Preterm Babies. Pharmaceuticals (Basel) 2023; 16:1530. [PMID: 38004396 PMCID: PMC10675178 DOI: 10.3390/ph16111530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Worldwide, three-quarters of a million babies are born extremely preterm (<28 weeks gestation) with devastating outcomes: 20% die in the newborn period, a further 35% develop bronchopulmonary dysplasia (BPD), and 10% suffer from cerebral palsy. Pioglitazone, a Peroxisome Proliferator Activated Receptor Gamma (PPARγ) agonist, may reduce the incidence of BPD and improve neurodevelopment in extreme preterm babies. Pioglitazone exerts an anti-inflammatory action mediated through Nuclear Factor-kappa B repression. PPARγ signalling is underactive in preterm babies as adiponectin remains low during the neonatal period. In newborn animal models, pioglitazone has been shown to be protective against BPD, necrotising enterocolitis, and lipopolysaccharide-induced brain injury. Single Nucleotide Polymorphisms of PPARγ are associated with inhibited preterm brain development and impaired neurodevelopment. Pioglitazone was well tolerated by the foetus in reproductive toxicology experiments. Bladder cancer, bone fractures, and macular oedema, seen rarely in adults, may be avoided with a short treatment course. The other effects of pioglitazone, including improved glycaemic control and lipid metabolism, may provide added benefit in the context of prematurity. Currently, there is no formulation of pioglitazone suitable for administration to preterm babies. A liquid formulation of pioglitazone needs to be developed before clinical trials. The potential benefits are likely to outweigh any anticipated safety concerns.
Collapse
Affiliation(s)
- Suresh Victor
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, UK;
| | - Ben Forbes
- Institute of Pharmaceutical Science, King’s College London, Franklin-Wilkins Building, Stamford Street, London SE1 9NH, UK;
| | - Anne Greenough
- Department of Women and Children’s Health, School of Life Course and Population Sciences, King’s College London, Neonatal Intensive Care Centre, Floor 4, Golden Jubilee Wing, King’s College Hospital, Denmark Hill, Brixton, London SE5 9RS, UK;
| | - A. David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King’s College London, St. Thomas’ Hospital, London SE1 7EH, UK;
| |
Collapse
|
4
|
Alex AM, Buss C, Davis EP, Campos GDL, Donald KA, Fair DA, Gaab N, Gao W, Gilmore JH, Girault JB, Grewen K, Groenewold NA, Hankin BL, Ipser J, Kapoor S, Kim P, Lin W, Luo S, Norton ES, O'Connor TG, Piven J, Qiu A, Rasmussen JM, Skeide MA, Stein DJ, Styner MA, Thompson PM, Wakschlag L, Knickmeyer R. Genetic Influences on the Developing Young Brain and Risk for Neuropsychiatric Disorders. Biol Psychiatry 2023; 93:905-920. [PMID: 36932005 PMCID: PMC10136952 DOI: 10.1016/j.biopsych.2023.01.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/30/2023]
Abstract
Imaging genetics provides an opportunity to discern associations between genetic variants and brain imaging phenotypes. Historically, the field has focused on adults and adolescents; very few imaging genetics studies have focused on brain development in infancy and early childhood (from birth to age 6 years). This is an important knowledge gap because developmental changes in the brain during the prenatal and early postnatal period are regulated by dynamic gene expression patterns that likely play an important role in establishing an individual's risk for later psychiatric illness and neurodevelopmental disabilities. In this review, we summarize findings from imaging genetics studies spanning from early infancy to early childhood, with a focus on studies examining genetic risk for neuropsychiatric disorders. We also introduce the Organization for Imaging Genomics in Infancy (ORIGINs), a working group of the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium, which was established to facilitate large-scale imaging genetics studies in infancy and early childhood.
Collapse
Affiliation(s)
- Ann M Alex
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, Michigan
| | - Claudia Buss
- Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Medical Psychology, Berlin, Germany; Department of Pediatrics, University of California Irvine, Irvine, California; Development, Health and Disease Research Program, University of California Irvine, Irvine, California
| | - Elysia Poggi Davis
- Department of Pediatrics, University of California Irvine, Irvine, California; Department of Psychology, University of Denver, Denver, Colorado
| | - Gustavo de Los Campos
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, Michigan; Departments of Epidemiology & Biostatistics, Michigan State University, East Lansing, Michigan; Department of Statistics & Probability, Michigan State University, East Lansing, Michigan
| | - Kirsten A Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School, Minneapolis, Minnesota; Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, Minnesota; Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Nadine Gaab
- Harvard Graduate School of Education, Harvard University, Cambridge, Massachusetts
| | - Wei Gao
- Cedars-Sinai Biomedical Imaging Research Institute, Los Angeles, California; Departments of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, California
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carrboro, North Carolina
| | - Karen Grewen
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina
| | - Nynke A Groenewold
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa; South African Medical Research Council Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa; Department of Paediatrics and Child Health, University of Cape Town, Faculty of Health Sciences, Cape Town, South Africa
| | - Benjamin L Hankin
- Psychology Department, University of Illinois Urbana,-Champaign, Illinois
| | - Jonathan Ipser
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Shreya Kapoor
- Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Pilyoung Kim
- Department of Psychology, University of Denver, Denver, Colorado
| | - Weili Lin
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shan Luo
- Department of Medicine, Keck School of Medicine of the University of Southern California, Los Angeles, California; Department of Psychology, University of Southern California, Los Angeles, California; Center for Endocrinology, Diabetes and Metabolism, Children's Hospital Los Angeles, Los Angeles, California
| | - Elizabeth S Norton
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois; Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Thomas G O'Connor
- Departments of Psychiatry, Psychology, Neuroscience, Obstetrics and Gynecology, University of Rochester, Rochester, New York
| | - Joseph Piven
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Carrboro, North Carolina
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore; NUS (Suzhou) Research Institute, National University of Singapore, China; the Institute for Health, National University of Singapore, Singapore; School of Computer Engineering and Science, Shanghai University, Shanghai, China; Institute of Data Science, National University of Singapore, Singapore; Department of Biomedical Engineering, the Johns Hopkins University, Baltimore, Maryland
| | - Jerod M Rasmussen
- Department of Pediatrics, University of California Irvine, Irvine, California; Development, Health and Disease Research Program, University of California Irvine, Irvine, California
| | - Michael A Skeide
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina; Research Group Learning in Early Childhood, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Dan J Stein
- South African Medical Research Council Unit on Risk and Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, Cape Town, South Africa; Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Martin A Styner
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of University of the Sunshine Coast, Marina del Rey, California
| | - Laurie Wakschlag
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Rebecca Knickmeyer
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, Michigan; Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan.
| |
Collapse
|
5
|
Victor S, Chew A, Falconer S. Pro12Ala polymorphism of peroxisome proliferator activated receptor gamma 2 may be associated with adverse neurodevelopment in European preterm babies. Brain Behav 2021; 11:e2256. [PMID: 34152086 PMCID: PMC8413715 DOI: 10.1002/brb3.2256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/28/2021] [Accepted: 06/06/2021] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Prematurity is the leading cause of death and disability in children under 5 years of age. Understanding the molecular mechanisms of the biological processes involved in preterm brain injury may help develop novel neuroprotective treatment strategies. A growing body of evidence suggest that peroxisome proliferator-activated receptor gamma (PPARγ) signaling is associated with inhibited brain development in preterm babies. The Ala allele of the Pro12Ala polymorphism of PPARγ2 decreases receptor binding affinity and consequently induces a reduction of PPARγ signaling. METHODS In this study, we carried out a preliminary analysis of existing datasets to test the hypothesis that reduced transactivation capacity of PPARγ in the presence of the Ala variant of PPARγ2 may be associated with adverse neurodevelopment in preterm babies. The association between PPAR-γ2 Pro12Ala polymorphism and neurodevelopment at 18-24 months of age was assessed in two groups of European infants, 155 born before 33 weeks' gestation and 180 born later than 36 weeks' gestation using a linear regression model. The Bayley Scales of Infant and Toddler Development-3rd edition was administered to assess neurodevelopment at 18-24 months of age. RESULTS We observed the Ala allele of the Pro12Ala polymorphism in 25% preterm infants and 20% term infants. The Ala allele of PPARγ2 was significantly associated with adverse cognitive (p = .019), language (p = .03), and motor development (p = 0.036) at 18-24 months of age after taking into consideration the duration of ventilation, gender, and index of multiple deprivation scores, but without correction for potential shared ancestry. There was no association between the PPAR-γ2 Pro12Ala polymorphism and neurodevelopment in term infants. CONCLUSIONS These preliminary data suggest that PPARγ signaling in the presence of the Ala variant of PPARγ2 may be associated with adverse neurodevelopment in preterm infants suggesting that further studies are warranted.
Collapse
Affiliation(s)
- Suresh Victor
- Department of Perinatal Imaging and HealthCentre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Andrew Chew
- Department of Perinatal Imaging and HealthCentre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Shona Falconer
- Department of Perinatal Imaging and HealthCentre for the Developing BrainSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| |
Collapse
|
6
|
Uus A, Grigorescu I, Pietsch M, Batalle D, Christiaens D, Hughes E, Hutter J, Cordero Grande L, Price AN, Tournier JD, Rutherford MA, Counsell SJ, Hajnal JV, Edwards AD, Deprez M. Multi-Channel 4D Parametrized Atlas of Macro- and Microstructural Neonatal Brain Development. Front Neurosci 2021; 15:661704. [PMID: 34220423 PMCID: PMC8248811 DOI: 10.3389/fnins.2021.661704] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/20/2021] [Indexed: 11/19/2022] Open
Abstract
Structural (also known as anatomical) and diffusion MRI provide complimentary anatomical and microstructural characterization of early brain maturation. However, the existing models of the developing brain in time include only either structural or diffusion MRI channels. Furthermore, there is a lack of tools for combined analysis of structural and diffusion MRI in the same reference space. In this work, we propose a methodology to generate a multi-channel (MC) continuous spatio-temporal parametrized atlas of the brain development that combines multiple MRI-derived parameters in the same anatomical space during 37-44 weeks of postmenstrual age range. We co-align structural and diffusion MRI of 170 normal term subjects from the developing Human Connectomme Project using MC registration driven by both T2-weighted and orientation distribution functions channels and fit the Gompertz model to the signals and spatial transformations in time. The resulting atlas consists of 14 spatio-temporal microstructural indices and two parcellation maps delineating white matter tracts and neonatal transient structures. In order to demonstrate applicability of the atlas for quantitative region-specific studies, a comparison analysis of 140 term and 40 preterm subjects scanned at the term-equivalent age is performed using different MRI-derived microstructural indices in the atlas reference space for multiple white matter regions, including the transient compartments. The atlas and software will be available after publication of the article.
Collapse
Affiliation(s)
- Alena Uus
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Irina Grigorescu
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Maximilian Pietsch
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Dafnis Batalle
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Daan Christiaens
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Emer Hughes
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Jana Hutter
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Lucilio Cordero Grande
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
- Biomedical Image Technologies, ETSI Telecomunicacion, Universidad Politécnica de Madrid, CIBER-BBN, Madrid, Spain
| | - Anthony N. Price
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Jacques-Donald Tournier
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Mary A. Rutherford
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Serena J. Counsell
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Joseph V. Hajnal
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - A. David Edwards
- Centre for the Developing Brain, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| | - Maria Deprez
- Department of Biomedical Engineering, School Biomedical Engineering and Imaging Sciences, King's College London, St. Thomas Hospital, London, United Kingdom
| |
Collapse
|
7
|
Van Steenwinckel J, Schang AL, Krishnan ML, Degos V, Delahaye-Duriez A, Bokobza C, Csaba Z, Verdonk F, Montané A, Sigaut S, Hennebert O, Lebon S, Schwendimann L, Le Charpentier T, Hassan-Abdi R, Ball G, Aljabar P, Saxena A, Holloway RK, Birchmeier W, Baud O, Rowitch D, Miron V, Chretien F, Leconte C, Besson VC, Petretto EG, Edwards AD, Hagberg H, Soussi-Yanicostas N, Fleiss B, Gressens P. Decreased microglial Wnt/β-catenin signalling drives microglial pro-inflammatory activation in the developing brain. Brain 2020; 142:3806-3833. [PMID: 31665242 DOI: 10.1093/brain/awz319] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 07/24/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Microglia of the developing brain have unique functional properties but how their activation states are regulated is poorly understood. Inflammatory activation of microglia in the still-developing brain of preterm-born infants is associated with permanent neurological sequelae in 9 million infants every year. Investigating the regulators of microglial activation in the developing brain across models of neuroinflammation-mediated injury (mouse, zebrafish) and primary human and mouse microglia we found using analysis of genes and proteins that a reduction in Wnt/β-catenin signalling is necessary and sufficient to drive a microglial phenotype causing hypomyelination. We validated in a cohort of preterm-born infants that genomic variation in the Wnt pathway is associated with the levels of connectivity found in their brains. Using a Wnt agonist delivered by a blood-brain barrier penetrant microglia-specific targeting nanocarrier we prevented in our animal model the pro-inflammatory microglial activation, white matter injury and behavioural deficits. Collectively, these data validate that the Wnt pathway regulates microglial activation, is critical in the evolution of an important form of human brain injury and is a viable therapeutic target.
Collapse
Affiliation(s)
| | - Anne-Laure Schang
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,UMR CNRS 8638-Chimie Toxicologie Analytique et Cellulaire, Université Paris Descartes, Sorbonne Paris Cité, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, F-75006 Paris, France
| | - Michelle L Krishnan
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Vincent Degos
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Department of Anesthesia and Intensive Care, Pitié Salpétrière Hospital, F-75013 Paris France
| | - Andrée Delahaye-Duriez
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France
| | - Cindy Bokobza
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Zsolt Csaba
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Franck Verdonk
- Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Paris Descartes University, Sorbonne Paris Cité, F-75006 Paris, France
| | - Amélie Montané
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Stéphanie Sigaut
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Olivier Hennebert
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Conservatoire national des arts et métiers, F-75003 Paris, France
| | - Sophie Lebon
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Leslie Schwendimann
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Tifenn Le Charpentier
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Rahma Hassan-Abdi
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Paul Aljabar
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Rebecca K Holloway
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Walter Birchmeier
- Cancer Research Program, Max Delbrueck Center for Molecular Medicine in the Helmholtz Society, Berlin-Buch, Germany
| | - Olivier Baud
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - David Rowitch
- Department of Paediatrics, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Veronique Miron
- MRC Centre for Reproductive Health, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, UK
| | - Fabrice Chretien
- UFR de Santé, Médecine et Biologie Humaine, Université Paris 13, Sorbonne Paris Cité, F-93000 Bobigny, France.,Infection and Epidemiology Department, Human Histopathology and Animal Models Unit, Institut Pasteur, F-75015 Paris, France.,Laboratoire de Neuropathologie, Centre Hospitalier Sainte Anne, F-75014 Paris, France
| | - Claire Leconte
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | - Valérie C Besson
- EA4475 - Pharmacologie de la Circulation Cérébrale, Faculté de Pharmacie de Paris, Université Paris Descartes, Sorbonne Paris Cité, F-75006 Paris, France
| | | | - A David Edwards
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Henrik Hagberg
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,Perinatal Center, Institute of Clinical Sciences and Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, 41390 Gothenburg, Sweden
| | - Nadia Soussi-Yanicostas
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France
| | - Bobbi Fleiss
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.,School of Health and Biomedical Sciences, RMIT University, Bundoora, 3083, VIC, Australia
| | - Pierre Gressens
- Université de Paris, NeuroDiderot, Inserm, F-75019 Paris, France.,PremUP, F-75006 Paris, France.,Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| |
Collapse
|
8
|
Galdi P, Blesa M, Stoye DQ, Sullivan G, Lamb GJ, Quigley AJ, Thrippleton MJ, Bastin ME, Boardman JP. Neonatal morphometric similarity mapping for predicting brain age and characterizing neuroanatomic variation associated with preterm birth. Neuroimage Clin 2020; 25:102195. [PMID: 32044713 PMCID: PMC7016043 DOI: 10.1016/j.nicl.2020.102195] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/14/2020] [Accepted: 01/21/2020] [Indexed: 01/01/2023]
Abstract
Multi-contrast MRI captures information about brain macro- and micro-structure which can be combined in an integrated model to obtain a detailed "fingerprint" of the anatomical properties of an individual's brain. Inter-regional similarities between features derived from structural and diffusion MRI, including regional volumes, diffusion tensor metrics, neurite orientation dispersion and density imaging measures, can be modelled as morphometric similarity networks (MSNs). Here, individual MSNs were derived from 105 neonates (59 preterm and 46 term) who were scanned between 38 and 45 weeks postmenstrual age (PMA). Inter-regional similarities were used as predictors in a regression model of age at the time of scanning and in a classification model to discriminate between preterm and term infant brains. When tested on unseen data, the regression model predicted PMA at scan with a mean absolute error of 0.70 ± 0.56 weeks, and the classification model achieved 92% accuracy. We conclude that MSNs predict chronological brain age accurately; and they provide a data-driven approach to identify networks that characterise typical maturation and those that contribute most to neuroanatomic variation associated with preterm birth.
Collapse
Affiliation(s)
- Paola Galdi
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK.
| | - Manuel Blesa
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - David Q Stoye
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Gillian J Lamb
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alan J Quigley
- Department of Radiology, Royal Hospital for Sick Children, Edinburgh EH9 1LF, UK
| | - Michael J Thrippleton
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK; Edinburgh Imaging, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK; Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16 4SB, UK
| |
Collapse
|
9
|
Boardman JP, Counsell SJ. Invited Review: Factors associated with atypical brain development in preterm infants: insights from magnetic resonance imaging. Neuropathol Appl Neurobiol 2019; 46:413-421. [PMID: 31747472 PMCID: PMC7496638 DOI: 10.1111/nan.12589] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022]
Abstract
Preterm birth (PTB) is a leading cause of neurodevelopmental and neurocognitive impairment in childhood and is closely associated with psychiatric disease. The biological and environmental factors that confer risk and resilience for healthy brain development and long‐term outcome after PTB are uncertain, which presents challenges for risk stratification and for the discovery and evaluation of neuroprotective strategies. Neonatal magnetic resonance imaging reveals a signature of PTB that includes dysconnectivity of neural networks and atypical development of cortical and deep grey matter structures. Here we provide a brief review of perinatal factors that are associated with the MRI signature of PTB. We consider maternal and foetal factors including chorioamnionitis, foetal growth restriction, socioeconomic deprivation and prenatal alcohol, drug and stress exposures; and neonatal factors including co‐morbidities of PTB, nutrition, pain and medication during neonatal intensive care and variation conferred by the genome/epigenome. Association studies offer the first insights into pathways to adversity and resilience after PTB. Future challenges are to analyse quantitative brain MRI data with collateral biological and environmental data in study designs that support causal inference, and ultimately to use the output of such analyses to stratify infants for clinical trials of therapies designed to improve outcome.
Collapse
Affiliation(s)
- J P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh, UK
| | - S J Counsell
- Centre for the Developing Brain, School of Imaging Sciences and Biomedical Engineering, King's College London, London, UK
| |
Collapse
|
10
|
Gao W, Grewen K, Knickmeyer RC, Qiu A, Salzwedel A, Lin W, Gilmore JH. A review on neuroimaging studies of genetic and environmental influences on early brain development. Neuroimage 2019; 185:802-812. [PMID: 29673965 PMCID: PMC6191379 DOI: 10.1016/j.neuroimage.2018.04.032] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 12/11/2022] Open
Abstract
The past decades witnessed a surge of interest in neuroimaging study of normal and abnormal early brain development. Structural and functional studies of normal early brain development revealed massive structural maturation as well as sequential, coordinated, and hierarchical emergence of functional networks during the infancy period, providing a great foundation for the investigation of abnormal early brain development mechanisms. Indeed, studies of altered brain development associated with either genetic or environmental risks emerged and thrived. In this paper, we will review selected studies of genetic and environmental risks that have been relatively more extensively investigated-familial risks, candidate risk genes, and genome-wide association studies (GWAS) on the genetic side; maternal mood disorders and prenatal drug exposures on the environmental side. Emerging studies on environment-gene interactions will also be reviewed. Our goal was not to perform an exhaustive review of all studies in the field but to leverage some representative ones to summarize the current state, point out potential limitations, and elicit discussions on important future directions.
Collapse
Affiliation(s)
- Wei Gao
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, CA, United States; Department of Medicine, University of California, Los Angeles, CA, United States.
| | - Karen Grewen
- Department of Psychiatry, Neurobiology, and Psychology, University of North Carolina Chapel Hill, Chapel Hill, NC, United States
| | - Rebecca C Knickmeyer
- Department of Psychiatry, University of North Carolina at Chapel Hill, N.C, United States
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore
| | - Andrew Salzwedel
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, CA, United States
| | - Weili Lin
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, United States
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, N.C, United States
| |
Collapse
|
11
|
Abstract
Despite notable advances in the care and survival of preterm infants, a significant proportion of preterm neonates will have life-long cognitive, behavioral, and motor deficits, and robustly effective neuroprotective strategies are still missing. These therapies must target the pathophysiologic mechanisms observed in contemporaneous infants and rely on modern epidemiology, imaging, and experimental models and assessment techniques. Two drugs, magnesium sulfate and caffeine, are already in use in several units, and although their targets are apnea of prematurity and myometrial contractility (respectively), they do offer improved odds of positive outcomes. Nevertheless, these drugs have limited efficacy, and NICU-to-NICU administration varies greatly. As such, there is an obvious need for additional specific neurotherapeutic strategies to further enhance the outcome of this very fragile population of neonates. The chapter reviews these issues, highlights bottlenecks that need to be solved for meaningful progress in the field, and proposes future innovative avenues for intervention, including delayed interventions.
Collapse
Affiliation(s)
- Bobbi Fleiss
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, United Kingdom
| | - Pierre Gressens
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France; Division of Imaging Sciences and Biomedical Engineering, Centre for the Developing Brain, King's College London, London, United Kingdom.
| |
Collapse
|
12
|
Fleiss B, Wong F, Brownfoot F, Shearer IK, Baud O, Walker DW, Gressens P, Tolcos M. Knowledge Gaps and Emerging Research Areas in Intrauterine Growth Restriction-Associated Brain Injury. Front Endocrinol (Lausanne) 2019; 10:188. [PMID: 30984110 PMCID: PMC6449431 DOI: 10.3389/fendo.2019.00188] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/06/2019] [Indexed: 12/16/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a complex global healthcare issue. Concerted research and clinical efforts have improved our knowledge of the neurodevelopmental sequelae of IUGR which has raised the profile of this complex problem. Nevertheless, there is still a lack of therapies to prevent the substantial rates of fetal demise or the constellation of permanent neurological deficits that arise from IUGR. The purpose of this article is to highlight the clinical and translational gaps in our knowledge that hamper our collective efforts to improve the neurological sequelae of IUGR. Also, we draw attention to cutting-edge tools and techniques that can provide novel insights into this disorder, and technologies that offer the potential for better drug design and delivery. We cover topics including: how we can improve our use of crib-side monitoring options, what we still need to know about inflammation in IUGR, the necessity for more human post-mortem studies, lessons from improved integrated histology-imaging analyses regarding the cell-specific nature of magnetic resonance imaging (MRI) signals, options to improve risk stratification with genomic analysis, and treatments mediated by nanoparticle delivery which are designed to modify specific cell functions.
Collapse
Affiliation(s)
- Bobbi Fleiss
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
- *Correspondence: Bobbi Fleiss
| | - Flora Wong
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Paediatrics, Monash University, Clayton, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Clayton, VIC, Australia
| | - Fiona Brownfoot
- Translational Obstetrics Group, Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, VIC, Australia
| | - Isabelle K. Shearer
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Olivier Baud
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Division of Neonatal Intensive Care, University Hospitals of Geneva, Children's Hospital, University of Geneva, Geneva, Switzerland
| | - David W. Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| | - Pierre Gressens
- NeuroDiderot, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Centre for the Developing Brain, School of Biomedical Engineering and Imaging Sciences, King's College London, St Thomas' Hospital, London, United Kingdom
- PremUP, Paris, France
| | - Mary Tolcos
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
13
|
Fitzgerald E, Boardman JP, Drake AJ. Preterm Birth and the Risk of Neurodevelopmental Disorders - Is There a Role for Epigenetic Dysregulation? Curr Genomics 2018; 19:507-521. [PMID: 30386170 PMCID: PMC6158617 DOI: 10.2174/1389202919666171229144807] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/06/2017] [Accepted: 12/17/2017] [Indexed: 12/29/2022] Open
Abstract
Preterm Birth (PTB) accounts for approximately 11% of all births worldwide each year and is a profound physiological stressor in early life. The burden of neuropsychiatric and developmental impairment is high, with severity and prevalence correlated with gestational age at delivery. PTB is a major risk factor for the development of cerebral palsy, lower educational attainment and deficits in cognitive functioning, and individuals born preterm have higher rates of schizophrenia, autistic spectrum disorder and attention deficit/hyperactivity disorder. Factors such as gestational age at birth, systemic inflammation, respiratory morbidity, sub-optimal nutrition, and genetic vulnerability are associated with poor outcome after preterm birth, but the mechanisms linking these factors to adverse long term outcome are poorly understood. One potential mechanism linking PTB with neurodevelopmental effects is changes in the epigenome. Epigenetic processes can be defined as those leading to altered gene expression in the absence of a change in the underlying DNA sequence and include DNA methylation/hydroxymethylation and histone modifications. Such epigenetic modifications may be susceptible to environmental stimuli, and changes may persist long after the stimulus has ceased, providing a mechanism to explain the long-term consequences of acute exposures in early life. Many factors such as inflammation, fluctuating oxygenation and excitotoxicity which are known factors in PTB related brain injury, have also been implicated in epigenetic dysfunction. In this review, we will discuss the potential role of epigenetic dysregulation in mediating the effects of PTB on neurodevelopmental outcome, with specific emphasis on DNA methylation and the α-ketoglutarate dependent dioxygenase family of enzymes.
Collapse
Affiliation(s)
| | | | - Amanda J. Drake
- Address correspondence to this author at the University/BHF Centre for Cardiovascular Science, University of Edinburgh, The Queen’s Medical Research Institute, Edinburgh EH16 4TJ, UK; Tel: 44 131 2426748; Fax: 44 131 2426779; E-mail:
| |
Collapse
|
14
|
Rodrigues DM, Manfro GG, Levitan RD, Steiner M, Meaney MJ, Silveira PP. Moderating effect of PLIN4 genetic variant on impulsivity traits in 5-year-old-children born small for gestational age. Prostaglandins Leukot Essent Fatty Acids 2018; 137:19-25. [PMID: 30293593 DOI: 10.1016/j.plefa.2018.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 07/17/2018] [Indexed: 01/08/2023]
Abstract
Poor fetal growth is associated with long-term behavioral, metabolic and psychiatric alterations, including impulsivity, insulin resistance, and mood disorders. However, the consumption of omega-3 polyunsaturated fatty acid (n-3 PUFA) seems to be protective for this population, improving inhibitory control and behavioral reactivity. We investigated whether the presence of the A allele of rs8887 SNP (PLIN4 gene), known to be associated with increased sensitivity to the consumption of n-3 PUFAs, interacts with fetal growth influencing inhibitory control. 152 five-year-old children were genotyped and performed the Stop Signal Task (SSRT). There was a significant interaction between birth weight and the presence of the A allele on SSRT performance, in which lower birth weight associated with poorer inhibitory control only in non-carriers. These results suggest that a higher responsiveness to n-3 PUFAS protects small for gestational age children from developing poor response inhibition, highlighting that optimizing n-3 PUFA intake may benefit this population.
Collapse
Affiliation(s)
- Danitsa Marcos Rodrigues
- Postgraduate Program in Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gisele Gus Manfro
- Postgraduate Program in Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Robert Daniel Levitan
- Department of Psychiatry, University of Toronto and Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Meir Steiner
- Department of Psychiatry and Behavioural Neurosciences, McMaster University. Hamilton, ON, Canada
| | - Michael Joseph Meaney
- Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Sackler Program for Epigenetics & Psychobiology, McGill University, Canada
| | - Patrícia Pelufo Silveira
- Postgraduate Program in Neurosciences, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, QC, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Sackler Program for Epigenetics & Psychobiology, McGill University, Canada.
| |
Collapse
|
15
|
Blesa M, Sullivan G, Anblagan D, Telford EJ, Quigley AJ, Sparrow SA, Serag A, Semple SI, Bastin ME, Boardman JP. Early breast milk exposure modifies brain connectivity in preterm infants. Neuroimage 2018; 184:431-439. [PMID: 30240903 DOI: 10.1016/j.neuroimage.2018.09.045] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 08/30/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
Preterm infants are at increased risk of alterations in brain structure and connectivity, and subsequent neurocognitive impairment. Breast milk may be more advantageous than formula feed for promoting brain development in infants born at term, but uncertainties remain about its effect on preterm brain development and the optimal nutritional regimen for preterm infants. We test the hypothesis that breast milk exposure is associated with improved markers of brain development and connectivity in preterm infants at term equivalent age. We collected information about neonatal breast milk exposure and brain MRI at term equivalent age from 47 preterm infants (mean postmenstrual age [PMA] 29.43 weeks, range 23.28-33.0). Network-Based Statistics (NBS), Tract-based Spatial Statistics (TBSS) and volumetric analysis were used to investigate the effect of breast milk exposure on white matter water diffusion parameters, tissue volumes, and the structural connectome. Twenty-seven infants received exclusive breast milk feeds for ≥75% of days of in-patient care and this was associated with higher connectivity in the fractional anisotropy (FA)-weighted connectome compared with the group who had < 75% of days receiving exclusive breast milk feeds (NBS, p = 0.04). Within the TBSS white matter skeleton, the group that received ≥75% exclusive breast milk days exhibited higher FA within the corpus callosum, cingulum cingulate gyri, centrum semiovale, corticospinal tracts, arcuate fasciculi and posterior limbs of the internal capsule compared with the low exposure group after adjustment for PMA at birth, PMA at image acquisition, bronchopulmonary dysplasia, and chorioamnionitis (p < 0.05). The effect on structural connectivity and tract water diffusion parameters was greater with ≥90% exposure, suggesting a dose effect. There were no significant groupwise differences in brain volumes. Breast milk feeding in the weeks after preterm birth is associated with improved structural connectivity of developing networks and greater FA in major white matter fasciculi.
Collapse
Affiliation(s)
- Manuel Blesa
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK
| | - Gemma Sullivan
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK
| | - Devasuda Anblagan
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK; Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Emma J Telford
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK
| | - Alan J Quigley
- Department of Radiology, Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh EH9 1LF, UK
| | - Sarah A Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK
| | - Ahmed Serag
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK
| | - Scott I Semple
- University / BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, EH16 4TJ, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, EH16 4TJ, UK; Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, University of Edinburgh, Edinburgh EH16 4SB, UK.
| |
Collapse
|
16
|
Nakashima C, Yamamoto K, Fujiwara‐Tani R, Luo Y, Matsushima S, Fujii K, Ohmori H, Sasahira T, Sasaki T, Kitadai Y, Kirita T, Kuniyasu H. Expression of cytosolic malic enzyme (ME1) is associated with disease progression in human oral squamous cell carcinoma. Cancer Sci 2018; 109:2036-2045. [PMID: 29601126 PMCID: PMC5989842 DOI: 10.1111/cas.13594] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 03/13/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Malic enzyme 1 (ME1) is a multifunctional protein involved in glycolysis, the citric acid cycle, NADPH production, glutamine metabolism, and lipogenesis. It is overexpressed in various cancers. We examined the expression of ME1 in 119 oral squamous cell carcinomas (OSCCs) using immunohistochemistry. Malic enzyme 1 expression was moderate to strong in 57 (48%) OSCCs and correlated with pT, pN, clinical stage, and histological grade. In 37 cases with prognostic evaluation, moderate to strong ME1 expression indicated a worse prognosis than did weak ME1 expression. Malic enzyme 1 knockdown or inactivation by lanthanide inhibited cell proliferation and motility and suppressed the epithelial-mesenchymal transition in HSC3 human OSCC cells. Knockdown of ME1 also shifted energy metabolism from aerobic glycolysis and lactate fermentation to mitochondrial oxidative phosphorylation, and the redox status from reductive to oxidative. In a mouse tumor model, lanthanide suppressed tumor growth and increased survival time. These findings reveal that ME1 is a valid target for molecular therapy in OSCC.
Collapse
Affiliation(s)
- Chie Nakashima
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
- Department of Oral and Maxillofacial SurgeryNara Medical UniversityKashiharaJapan
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial SurgeryNara Medical UniversityKashiharaJapan
| | | | - Yi Luo
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
- Jiangsu Province Key Laboratory of NeuroregenerationNantong UniversityNantongChina
| | - Sayako Matsushima
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| | - Kiyomu Fujii
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| | - Hitoshi Ohmori
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| | - Tomonori Sasahira
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| | - Takamitsu Sasaki
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| | - Yasuhiko Kitadai
- Department of Health and SciencePrefectural University of HiroshimaHiroshimaJapan
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial SurgeryNara Medical UniversityKashiharaJapan
| | - Hiroki Kuniyasu
- Department of Molecular PathologyNara Medical UniversityKashiharaJapan
| |
Collapse
|
17
|
Tica J, Bradbury EJ, Didangelos A. Combined Transcriptomics, Proteomics and Bioinformatics Identify Drug Targets in Spinal Cord Injury. Int J Mol Sci 2018; 19:E1461. [PMID: 29758010 PMCID: PMC5983596 DOI: 10.3390/ijms19051461] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) causes irreversible tissue damage and severe loss of neurological function. Currently, there are no approved treatments and very few therapeutic targets are under investigation. Here, we combined 4 high-throughput transcriptomics and proteomics datasets, 7 days and 8 weeks following clinically-relevant rat SCI to identify proteins with persistent differential expression post-injury. Out of thousands of differentially regulated entities our combined analysis identified 40 significantly upregulated versus 48 significantly downregulated molecules, which were persistently altered at the mRNA and protein level, 7 days and 8 weeks post-SCI. Bioinformatics analysis was then utilized to identify currently available drugs with activity against the filtered molecules and to isolate proteins with known or unknown function in SCI. Our findings revealed multiple overlooked therapeutic candidates with important bioactivity and established druggability but with unknown expression and function in SCI including the upregulated purine nucleoside phosphorylase (PNP), cathepsins A, H, Z (CTSA, CTSH, CTSZ) and proteasome protease PSMB10, as well as the downregulated ATP citrate lyase (ACLY), malic enzyme (ME1) and sodium-potassium ATPase (ATP1A3), amongst others. This work reveals previously unappreciated therapeutic candidates for SCI and available drugs, thus providing a valuable resource for further studies and potential repurposing of existing therapeutics for SCI.
Collapse
Affiliation(s)
- Jure Tica
- Imperial College London, Alexander Fleming Building, London SW7 2AZ, UK.
| | - Elizabeth J Bradbury
- King's College London, Wolfson CARD, Institute of Psychiatry, Psychology & Neuroscience, London SE1 1UL, UK.
| | - Athanasios Didangelos
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
18
|
Gilmore JH, Knickmeyer RC, Gao W. Imaging structural and functional brain development in early childhood. Nat Rev Neurosci 2018; 19:123-137. [PMID: 29449712 PMCID: PMC5987539 DOI: 10.1038/nrn.2018.1] [Citation(s) in RCA: 574] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In humans, the period from term birth to ∼2 years of age is characterized by rapid and dynamic brain development and plays an important role in cognitive development and risk of disorders such as autism and schizophrenia. Recent imaging studies have begun to delineate the growth trajectories of brain structure and function in the first years after birth and their relationship to cognition and risk of neuropsychiatric disorders. This Review discusses the development of grey and white matter and structural and functional networks, as well as genetic and environmental influences on early-childhood brain development. We also discuss initial evidence regarding the usefulness of early imaging biomarkers for predicting cognitive outcomes and risk of neuropsychiatric disorders.
Collapse
Affiliation(s)
- John H Gilmore
- Department of Psychiatry, CB# 7160, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Rebecca C Knickmeyer
- Department of Psychiatry, CB# 7160, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Wei Gao
- Biomedical Imaging Research Institute, Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
19
|
Machine learning shows association between genetic variability in PPARG and cerebral connectivity in preterm infants. Proc Natl Acad Sci U S A 2017; 114:13744-13749. [PMID: 29229843 PMCID: PMC5748164 DOI: 10.1073/pnas.1704907114] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Preterm birth affects 11% of births globally; 35% of infants develop long-term neurocognitive problems, and prematurity leads to the loss of 75 million disability adjusted life years per annum worldwide. Imaging studies have shown that these infants have extensive alterations in brain development, but little is known about the molecular or cellular mechanisms involved. This imaging genetics study found a strong association between abnormal cerebral connectivity and variability in the PPARG gene, implicating PPARG signaling in abnormal white-matter development in preterm infants and suggesting a tractable new target for therapeutic research. Preterm infants show abnormal structural and functional brain development, and have a high risk of long-term neurocognitive problems. The molecular and cellular mechanisms involved are poorly understood, but novel methods now make it possible to address them by examining the relationship between common genetic variability and brain endophenotype. We addressed the hypothesis that variability in the Peroxisome Proliferator Activated Receptor (PPAR) pathway would be related to brain development. We employed machine learning in an unsupervised, unbiased, combined analysis of whole-brain diffusion tractography together with genomewide, single-nucleotide polymorphism (SNP)-based genotypes from a cohort of 272 preterm infants, using Sparse Reduced Rank Regression (sRRR) and correcting for ethnicity and age at birth and imaging. Empirical selection frequencies for SNPs associated with cerebral connectivity ranged from 0.663 to zero, with multiple highly selected SNPs mapping to genes for PPARG (six SNPs), ITGA6 (four SNPs), and FXR1 (two SNPs). SNPs in PPARG were significantly overrepresented (ranked 7–11 and 67 of 556,000 SNPs; P < 2.2 × 10−7), and were mostly in introns or regulatory regions with predicted effects including protein coding and nonsense-mediated decay. Edge-centric graph-theoretic analysis showed that highly selected white-matter tracts were consistent across the group and important for information transfer (P < 2.2 × 10−17); they most often connected to the insula (P < 6 × 10−17). These results suggest that the inhibited brain development seen in humans exposed to the stress of a premature extrauterine environment is modulated by genetic factors, and that PPARG signaling has a previously unrecognized role in cerebral development.
Collapse
|
20
|
Telford EJ, Cox SR, Fletcher-Watson S, Anblagan D, Sparrow S, Pataky R, Quigley A, Semple SI, Bastin ME, Boardman JP. A latent measure explains substantial variance in white matter microstructure across the newborn human brain. Brain Struct Funct 2017; 222:4023-4033. [PMID: 28589258 PMCID: PMC5686254 DOI: 10.1007/s00429-017-1455-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 05/24/2017] [Indexed: 01/12/2023]
Abstract
A latent measure of white matter microstructure (g WM) provides a neural basis for information processing speed and intelligence in adults, but the temporal emergence of g WM during human development is unknown. We provide evidence that substantial variance in white matter microstructure is shared across a range of major tracts in the newborn brain. Based on diffusion MRI scans from 145 neonates [gestational age (GA) at birth range 23+2-41+5 weeks], the microstructural properties of eight major white matter tracts were calculated using probabilistic neighborhood tractography. Principal component analyses (PCAs) were carried out on the correlations between the eight tracts, separately for four tract-averaged water diffusion parameters: fractional anisotropy, and mean, radial and axial diffusivities. For all four parameters, PCAs revealed a single latent variable that explained around half of the variance across all eight tracts, and all tracts showed positive loadings. We considered the impact of early environment on general microstructural properties, by comparing term-born infants with preterm infants at term equivalent age. We found significant associations between GA at birth and the latent measure for each water diffusion measure; this effect was most apparent in projection and commissural fibers. These data show that a latent measure of white matter microstructure is present in very early life, well before myelination is widespread. Early exposure to extra-uterine life is associated with altered general properties of white matter microstructure, which could explain the high prevalence of cognitive impairment experienced by children born preterm.
Collapse
Affiliation(s)
- Emma J Telford
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Simon R Cox
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Sue Fletcher-Watson
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Devasuda Anblagan
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Sarah Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Rozalia Pataky
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Alan Quigley
- Department of Radiology, Royal Hospital for Sick Children, 9 Sciennes Road, Edinburgh, EH9 1LF, UK
| | - Scott I Semple
- University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, EH16 4TJ, UK
- Clinical Research Imaging Centre, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Department of Psychology, Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - James P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
- Centre for Clinical Brain Sciences, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
21
|
Krishnan ML, Van Steenwinckel J, Schang AL, Yan J, Arnadottir J, Le Charpentier T, Csaba Z, Dournaud P, Cipriani S, Auvynet C, Titomanlio L, Pansiot J, Ball G, Boardman JP, Walley AJ, Saxena A, Mirza G, Fleiss B, Edwards AD, Petretto E, Gressens P. Integrative genomics of microglia implicates DLG4 (PSD95) in the white matter development of preterm infants. Nat Commun 2017; 8:428. [PMID: 28874660 PMCID: PMC5585205 DOI: 10.1038/s41467-017-00422-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
Preterm birth places infants in an adverse environment that leads to abnormal brain development and cerebral injury through a poorly understood mechanism known to involve neuroinflammation. In this study, we integrate human and mouse molecular and neuroimaging data to investigate the role of microglia in preterm white matter damage. Using a mouse model where encephalopathy of prematurity is induced by systemic interleukin-1β administration, we undertake gene network analysis of the microglial transcriptomic response to injury, extend this by analysis of protein-protein interactions, transcription factors and human brain gene expression, and translate findings to living infants using imaging genomics. We show that DLG4 (PSD95) protein is synthesised by microglia in immature mouse and human, developmentally regulated, and modulated by inflammation; DLG4 is a hub protein in the microglial inflammatory response; and genetic variation in DLG4 is associated with structural differences in the preterm infant brain. DLG4 is thus apparently involved in brain development and impacts inter-individual susceptibility to injury after preterm birth.Inflammation mediated by microglia plays a key role in brain injury associated with preterm birth, but little is known about the microglial response in preterm infants. Here, the authors integrate molecular and imaging data from animal models and preterm infants, and find that microglial expression of DLG4 plays a role.
Collapse
Affiliation(s)
- Michelle L Krishnan
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - Juliette Van Steenwinckel
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Anne-Laure Schang
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Jun Yan
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Johanna Arnadottir
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Tifenn Le Charpentier
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Zsolt Csaba
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Pascal Dournaud
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Sara Cipriani
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Constance Auvynet
- Pierre and Marie Curie University, UMRS-1135, Sorbonne Paris Cité, F-75006, Paris, France
| | - Luigi Titomanlio
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
| | - Julien Pansiot
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - Gareth Ball
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
| | - James P Boardman
- Medical Research Council/University of Edinburgh Centre for Reproductive Health, Edinburgh, EH16 4TJ, UK
| | - Andrew J Walley
- Cell Biology and Genetics Research Centre, St. George's University of London, London, SW17 0RE, UK
| | - Alka Saxena
- Genomics Core Facility, NIHR Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, SE1 9RT, UK
| | - Ghazala Mirza
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, WC1N 3BG, UK
- Epilepsy Society, Chalfont-St-Peter, Bucks, SL9 0RJ, UK
| | - Bobbi Fleiss
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France
- PremUP, F-75006, Paris, France
| | - A David Edwards
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - Enrico Petretto
- Duke-NUS Medical School, 8 College Road, Singapore, 169857, Singapore.
| | - Pierre Gressens
- Centre for the Developing Brain, Department of Perinatal Imaging and Health, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St. Thomas' Hospital, London, SE1 7EH, UK.
- PROTECT, INSERM, Université Paris Diderot, Sorbonne Paris Cité, Paris, 75014, France.
- PremUP, F-75006, Paris, France.
| |
Collapse
|
22
|
Partridge EA, Davey MG, Hornick MA, McGovern PE, Mejaddam AY, Vrecenak JD, Mesas-Burgos C, Olive A, Caskey RC, Weiland TR, Han J, Schupper AJ, Connelly JT, Dysart KC, Rychik J, Hedrick HL, Peranteau WH, Flake AW. An extra-uterine system to physiologically support the extreme premature lamb. Nat Commun 2017; 8:15112. [PMID: 28440792 PMCID: PMC5414058 DOI: 10.1038/ncomms15112] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 03/02/2017] [Indexed: 12/18/2022] Open
Abstract
In the developed world, extreme prematurity is the leading cause of neonatal mortality and morbidity due to a combination of organ immaturity and iatrogenic injury. Until now, efforts to extend gestation using extracorporeal systems have achieved limited success. Here we report the development of a system that incorporates a pumpless oxygenator circuit connected to the fetus of a lamb via an umbilical cord interface that is maintained within a closed 'amniotic fluid' circuit that closely reproduces the environment of the womb. We show that fetal lambs that are developmentally equivalent to the extreme premature human infant can be physiologically supported in this extra-uterine device for up to 4 weeks. Lambs on support maintain stable haemodynamics, have normal blood gas and oxygenation parameters and maintain patency of the fetal circulation. With appropriate nutritional support, lambs on the system demonstrate normal somatic growth, lung maturation and brain growth and myelination.
Collapse
Affiliation(s)
- Emily A Partridge
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Marcus G Davey
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Matthew A Hornick
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Patrick E McGovern
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Ali Y Mejaddam
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Jesse D Vrecenak
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Carmen Mesas-Burgos
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Aliza Olive
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Robert C Caskey
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Theodore R Weiland
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Jiancheng Han
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Alexander J Schupper
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - James T Connelly
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Kevin C Dysart
- Division of Neonatology, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Jack Rychik
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Holly L Hedrick
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - William H Peranteau
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| | - Alan W Flake
- Center for Fetal Research, Department of Surgery, The Children's Hospital of Philadelphia Research Institute, Room 1116B, 3615 Civic Center Boulevard, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
23
|
Krishnan ML, Wang Z, Silver M, Boardman JP, Ball G, Counsell SJ, Walley AJ, Montana G, Edwards AD. Possible relationship between common genetic variation and white matter development in a pilot study of preterm infants. Brain Behav 2016; 6:e00434. [PMID: 27110435 PMCID: PMC4821839 DOI: 10.1002/brb3.434] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/16/2015] [Accepted: 12/19/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The consequences of preterm birth are a major public health concern with high rates of ensuing multisystem morbidity, and uncertain biological mechanisms. Common genetic variation may mediate vulnerability to the insult of prematurity and provide opportunities to predict and modify risk. OBJECTIVE To gain novel biological and therapeutic insights from the integrated analysis of magnetic resonance imaging and genetic data, informed by prior knowledge. METHODS We apply our previously validated pathway-based statistical method and a novel network-based method to discover sources of common genetic variation associated with imaging features indicative of structural brain damage. RESULTS Lipid pathways were highly ranked by Pathways Sparse Reduced Rank Regression in a model examining the effect of prematurity, and PPAR (peroxisome proliferator-activated receptor) signaling was the highest ranked pathway once degree of prematurity was accounted for. Within the PPAR pathway, five genes were found by Graph Guided Group Lasso to be highly associated with the phenotype: aquaporin 7 (AQP7), malic enzyme 1, NADP(+)-dependent, cytosolic (ME1), perilipin 1 (PLIN1), solute carrier family 27 (fatty acid transporter), member 1 (SLC27A1), and acetyl-CoA acyltransferase 1 (ACAA1). Expression of four of these (ACAA1, AQP7, ME1, and SLC27A1) is controlled by a common transcription factor, early growth response 4 (EGR-4). CONCLUSIONS This suggests an important role for lipid pathways in influencing development of white matter in preterm infants, and in particular a significant role for interindividual genetic variation in PPAR signaling.
Collapse
Affiliation(s)
- Michelle L Krishnan
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| | - Zi Wang
- Department of Biomedical Engineering King's College London St Thomas' Hospital London SE1 7EH UK
| | - Matt Silver
- Department of Population Health London School of Hygiene and Tropical Medicine London WC1E 7HT UK
| | - James P Boardman
- MRC Centre for Reproductive Health University of Edinburgh Edinburgh EH16 4TJ UK
| | - Gareth Ball
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| | - Serena J Counsell
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| | - Andrew J Walley
- School of Public Health Faculty of Medicine Imperial College London Norfolk Place London W2 1PG UK
| | - Giovanni Montana
- Department of Biomedical Engineering King's College London St Thomas' Hospital London SE1 7EH UK
| | - Anthony David Edwards
- Centre for the Developing Brain King's College London St Thomas' Hospital London SE1 7EH UK
| |
Collapse
|