1
|
Boonstra JT. The cerebellar connectome. Behav Brain Res 2025; 482:115457. [PMID: 39884319 DOI: 10.1016/j.bbr.2025.115457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
The cerebellum, once primarily associated with motor functions, has emerged as a critical component in higher cognitive processes and emotional regulation. This paradigm shift frames the cerebellum as an essential focal point for elucidating sophisticated functional brain circuitry. Network neuroscience often maintains a cortical-centric viewpoint, potentially overlooking the significant contributions of the cerebellum in connectome organization. Enhanced recognition and integration of cerebellar aspects in connectomic analyses hold significant potential for elucidating cerebellar circuitry within comprehensive brain networks and in neuropsychiatric conditions where cerebellar involvement is evident. This review explores the intricate anatomy, connectivity, and functional organization of the cerebellum within the broader context of large-scale brain networks. Cerebellar-specific networks are examined, emphasizing their role in supporting diverse cognitive functions via the cerebellum's hierarchical functional organization. The clinical significance of cerebellar connectomics is then addressed, highlighting the interplay between cerebellar circuitry and neurological and psychiatric conditions. The paper concludes by considering neurostimulation treatments and future directions in the field. This comprehensive review underscores the cerebellum's integral role in the human connectome.
Collapse
Affiliation(s)
- Jackson Tyler Boonstra
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam 1081 BT, The Netherlands; Department of Neurology, Amsterdam University Medical Centers, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
2
|
Jia H, Wang K, Zhang M, Gu G, Mai Y, Wu X, Chu C, Yin X, Zhang P, Fan L, Zhang L. Individualized cerebellar damage predicts the presence of behavioral disorders in children with brainstem tumors. COMMUNICATIONS MEDICINE 2025; 5:91. [PMID: 40133403 PMCID: PMC11937406 DOI: 10.1038/s43856-025-00810-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Brainstem tumors often cause intractable neurobehavioral issues, which can be a challenge for patients and surgeons. Research on cerebellar changes in these patients is limited, despite symptoms similar to cerebellar injuries. This study aims to investigate cerebellar damage pattern resulting from brainstem tumors and its association with behavioral disorders. METHODS This study enrolled 147 children with brainstem tumors. A U-Net-based segmentation algorithm is used to divide their cerebellums into 26 lobules. And these lobules are then used to build a normative model for assessing individual structural deviations. Furthermore, a behavior prediction model is developed using the total outlier count (tOC) index and cerebellar lobule volume as predictive features. RESULTS Over 95% of patients are found to have negative deviations in cerebellar regions, particularly in anterior lobules like Left V. Higher tOC is significantly associated with severe social problems (r = 0.31, p = 0.001) and withdrawal behavior (r = 0.28, p = 0.001). Smaller size of cerebellar regions strongly correlates with more pronounced social problems (r = 0.27, p = 0.007) and withdrawal behavior (r = 0.25, p = 0.015). Notably, lobules Right X, V, IV, VIIB, Left IX, VIII, and X influence social problems, while Left V, Right IV, Vermis VI, and VIII impact withdrawal behavior. CONCLUSIONS Our study reveals cerebellar damage patterns in patients with brainstem tumors, emphasizing the role of both anterior and posterior cerebellar lobes in social problems and withdrawal behavior. This research sheds light on the cerebro-brainstem-cerebellar underlying complex behavioral disorders in brainstem tumor patients.
Collapse
Affiliation(s)
- Heyuan Jia
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
- Institute of Large-scale Scientific Facility and Centre for Zero Magnetic Field Science, Beihang University, Hangzhou, China
| | - Kaikai Wang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Mingxin Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guocan Gu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiying Mai
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Wu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Congying Chu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Xuntao Yin
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Lingzhong Fan
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Calixto C, Dorigatti Soldatelli M, Jaimes C, Pierotich L, Warfield SK, Gholipour A, Karimi D. A detailed spatiotemporal atlas of the white matter tracts for the fetal brain. Proc Natl Acad Sci U S A 2025; 122:e2410341121. [PMID: 39793058 PMCID: PMC11725871 DOI: 10.1073/pnas.2410341121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025] Open
Abstract
This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers. We employed advanced fetal dMRI processing techniques and tractography to map and characterize the developmental trajectories of these tracts. Our findings reveal that the development of these tracts is characterized by complex patterns of fractional anisotropy (FA) and mean diffusivity (MD), coinciding with the intensity of histogenic processes such as axonal growth, involution of the radial-glial scaffolding, and synaptic pruning. This atlas can serve as a useful resource for neuroscience research and clinical practice, improving our understanding of the fetal brain and potentially aiding in the early diagnosis of neurodevelopmental disorders. By detailing the normal progression of white matter tract development, the atlas can be used as a benchmark for identifying deviations that may indicate neurological anomalies or predispositions to disorders.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Matheus Dorigatti Soldatelli
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Camilo Jaimes
- Harvard Medical School, Boston, MA02115
- Massachusetts General Hospital, Boston, MA02114
| | - Lana Pierotich
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Simon K. Warfield
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| | - Ali Gholipour
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
- Department of Radiological Sciences, University of California Irvine, Irvine, CA92868
| | - Davood Karimi
- Computational Radiology Laboratory, Boston Children’s Hospital, Boston, MA02115
- Harvard Medical School, Boston, MA02115
| |
Collapse
|
4
|
Calixto C, Soldatelli MD, Jaimes C, Warfield SK, Gholipour A, Karimi D. A detailed spatio-temporal atlas of the white matter tracts for the fetal brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.590815. [PMID: 38712296 PMCID: PMC11071632 DOI: 10.1101/2024.04.26.590815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This study presents the construction of a comprehensive spatiotemporal atlas detailing the development of white matter tracts in the fetal brain using diffusion magnetic resonance imaging (dMRI). Our research leverages data collected from fetal MRI scans conducted between 22 and 37 weeks of gestation, capturing the dynamic changes in the brain's microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers. We employed advanced fetal dMRI processing techniques and tractography to map and characterize the developmental trajectories of these tracts. Our findings reveal that the development of these tracts is characterized by complex patterns of fractional anisotropy (FA) and mean diffusivity (MD), reflecting key neurodevelopmental processes such as axonal growth, involution of the radial-glial scaffolding, and synaptic pruning. This atlas can serve as a useful resource for neuroscience research and clinical practice, improving our understanding of the fetal brain and potentially aiding in the early diagnosis of neurodevelopmental disorders. By detailing the normal progression of white matter tract development, the atlas can be used as a benchmark for identifying deviations that may indicate neurological anomalies or predispositions to disorders.
Collapse
Affiliation(s)
- Camilo Calixto
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | | | - Camilo Jaimes
- Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA
| | - Simon K Warfield
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Ali Gholipour
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| | - Davood Karimi
- Computational Radiology Laboratory (CRL), Boston Children's Hospital, Harvard Medical School
| |
Collapse
|
5
|
Zhong Y, Liu H, Tan C, Liu X, Chen L. More than grey matter: a case of spinocerebellar ataxia type 48. Acta Neurol Belg 2024; 124:653-656. [PMID: 37566366 DOI: 10.1007/s13760-023-02355-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Yuke Zhong
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Hang Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Changhong Tan
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China
| | - Xi Liu
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| | - Lifen Chen
- Department of Neurology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong District, Chongqing, 400010, China.
| |
Collapse
|
6
|
Bonney A, Kobel C, Mullan J, Metusela C, Rhee JJ, Barnett S, Batterham M. Randomised trial of general practitioner online education for prescribing and test ordering. BMJ Open Qual 2023; 12:e002351. [PMID: 37857521 PMCID: PMC10603404 DOI: 10.1136/bmjoq-2023-002351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
INTRODUCTION Potentially inappropriate medicine prescriptions and low-value diagnostic testing pose risks to patient safety and increases in health system costs. The aim of the Clinical and Healthcare Improvement through My Health Record usage and Education in General Practice study was to evaluate a scalable online quality improvement intervention, integrating online education regarding a national shared electronic health record and rational prescribing, pathology and imaging ordering by Australian general practitioners (GPs). METHODS The study was a parallel three-arm randomised trial comprising a prescribing education arm, a pathology education arm and an imaging education arm. Currently practising GPs in Australia were eligible to participate and randomised on a 1:1:1 basis to the study arms after consenting. The response to the intervention in reducing potentially unnecessary medicine prescriptions and tests in each arm was assessed using the other two arms as controls. The primary outcome was the cost per 100 consultations of predefined medication prescriptions, pathology and radiology test ordering 6 months following the intervention, compared with 6 months prior. Outcomes were assessed on intention-to-treat and post hoc per-protocol bases using multilevel regression models, with the analysts blinded to allocation. RESULTS In total, 106 GPs were enrolled and randomised (prescribing n=35, pathology n=36, imaging n=35). Data were available for 97 GPs at the end of trial (prescribing n=33, pathology n=32, imaging n=32) with 44 fully completing the intervention. In intention-to-treat analysis, there were no significant differences in the rates of change in costs across the three arms. Per protocol, there was a statistically significant difference in the rate of change in pathology costs (p=0.03). In the pathology arm, the rate of increase in pathology costs was significantly lower by $A187 (95% CI -$A340, -$A33) than the prescribing arm, and non-significantly $A9 (95% CI -$A128, $A110) lower than the imaging arm. DISCUSSION This study provides some evidence for reductions in costs for low-value pathology test ordering in those that completed the relevant online education. The study experienced slow uptake and low completion of the education intervention during the COVID-19 pandemic. Changes were not significant for the primary endpoint, which included all participants. Improving completion rates and combining real-time feedback on prescribing or test ordering may increase the overall effectiveness of the intervention. Given the purely online delivery of the education, there is scope for upscaling the intervention, which may provide cost-effectiveness benefits. TRIAL REGISTRATION NUMBER ACTRN12620000010998.
Collapse
Affiliation(s)
- Andrew Bonney
- Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Conrad Kobel
- Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Judy Mullan
- Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Christine Metusela
- Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Joel J Rhee
- School of Population Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen Barnett
- Graduate School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Marijka Batterham
- School of Mathematics and Applied Statistics, University of Wollongong, Wollongong, New South Wales, Australia
| |
Collapse
|
7
|
Olson IR, Hoffman LJ, Jobson KR, Popal HS, Wang Y. Little brain, little minds: The big role of the cerebellum in social development. Dev Cogn Neurosci 2023; 60:101238. [PMID: 37004475 PMCID: PMC10067769 DOI: 10.1016/j.dcn.2023.101238] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/08/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Seminal work in the 1990's found alterations in the cerebellum of individuals with social disorders including autism spectrum disorder and schizophrenia. In neurotypical populations, distinct portions of the posterior cerebellum are consistently activated in fMRI studies of social cognition and it has been hypothesized that the cerebellum plays an essential role in social cognition, particularly in theory of mind. Here we review the lesion literature and find that the effect of cerebellar damage on social cognition is strongly linked to the age of insult, with dramatic impairments observed after prenatal insult, strong deficits observed after childhood damage, and mild and inconsistent deficits observed following damage to the adult cerebellum. To explain the developmental gradient, we propose that early in life, the forward model dominates cerebellar computations. The forward model learns and uses errors to help build schemas of our interpersonal worlds. Subsequently, we argue that once these schemas have been built up, the inverse model, which is the foundation of automatic processing, becomes dominant. We provide suggestions for how to test this, and also outline directions for future research.
Collapse
Affiliation(s)
- Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA.
| | - Linda J Hoffman
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Katie R Jobson
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Haroon S Popal
- Department of Psychology and Neuroscience, Temple University, Philadephia PA, USA
| | - Yin Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
8
|
Yin H, Zong F, Deng X, Zhang D, Zhang Y, Wang S, Wang Y, Zhao J. The language-related cerebro-cerebellar pathway in humans: a diffusion imaging-based tractographic study. Quant Imaging Med Surg 2023; 13:1399-1416. [PMID: 36915351 PMCID: PMC10006158 DOI: 10.21037/qims-22-303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 11/27/2022] [Indexed: 02/25/2023]
Abstract
Background The cerebellum and cerebral cortex form the most important cortico-cerebellar system in the brain. However, diffusion magnetic resonance imaging (MRI)-based tractography of the connecting white matter between the cerebellum and cerebral cortex, which support language function, has not been extensively reported on. This work aims to serve as a guideline for facilitating the analysis of white matter tracts along the language-related cerebro-cerebellar pathway (LRCCP), which includes the corticopontine, pontocerebellar, corticorubral, rubroolivary, olivocerebellar, and dentatorubrothalamic tracts. Methods The LRCCP templates were developed via processing the high-resolution, population-averaged atlas available in the Human Connectome Project (HCP)-1065 dataset (2017 Q4, 1,200-subject release) in DSI Studio. The deterministic tracking was performed with the manually selected regions of interest (ROIs) on this atlas according to prior anatomic knowledge. Templates were then applied to the MRI datasets of 30 health participants acquired from a single hospital to verify the practicability of the tracking. The diffusion tensor and shape analysis metrics were calculated for all LRCCP tracts. Differences in the tracking metrics between the left and right hemispheres were compared, and the related white matter asymmetry was discussed. Results The LRCCP templates were successfully created and applied to healthy participants for quantitative analysis. Significantly higher mean fractional anisotropy (FA) values were discovered on the left (L) corticorubral tract [L, 0.43±0.02 vs. right (R), 0.41±0.02; P<0.01] and left dentatorubrothalamic tract (L, 0.47±0.02 vs. R, 0.46±0.02; P<0.01). Significant differences in tract volume and streamline number were observed between the corticopontine, corticorubral, and dentatorubrothalamic tracts. The size of the right corticopontine and corticorubral tracts were smaller, and both had smaller streamline numbers and innervation areas when compared with the contralateral sides. The R dentatorubrothalamic tract showed a larger volume (R, 23,582.47±4,160.71 mm3 vs. L, 19,821.27±2,983.91 mm3; P<0.01) and innervation area (R, 2,117.37±433.98 mm2 vs. L, 1,610.00±356.19 mm2; P<0.01) than did the L side. No significant differences were observed in the rubroolivary tracts. Conclusions This work suggests the feasibility of applying tractography templates of the LRCCP to quantitatively evaluate white matter properties associated with language function. Lateralized diffusion metrics were observed in preliminary experiments. LRCCP tractography-based research may provide a potential quantitative method to better understanding neuroplasticity.
Collapse
Affiliation(s)
- Hu Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Fangrong Zong
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, China
| | - Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yu Wang
- China National Clinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
9
|
Ortug A, Yuzbasioglu N, Akalan N, Levman J, Takahashi E. Preoperative and postoperative high angular resolution diffusion imaging tractography of cerebellar pathways in posterior fossa tumors. Clin Anat 2022; 35:1085-1099. [PMID: 35560729 PMCID: PMC9547814 DOI: 10.1002/ca.23914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 11/12/2022]
Abstract
This study aimed to utilize high angular resolution diffusion magnetic resonance imaging (HARDI) tractography in the mapping of the pathways of the cerebellum associated with posterior fossa tumors (infratentorial neoplasms) and to determine whether it is useful for preoperative and postoperative evaluation. Retrospective data from 30 patients (age 2-16 yr) with posterior fossa tumor (17 low grade, 13 high grade) and 30 age-sex-matched healthy controls were used. Structural and diffusion-weighted images were collected at a 3-tesla scanner. Tractography was performed using Diffusion Toolkit software, Q-ball model, FACT algorithm, and angle threshold of 45 degrees. Manually assessed regions of interest were placed to identify reconstructed fiber pathways passing through the superior, medial, and inferior cerebellar peduncles for the preoperative, postoperative, and healthy control groups. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), and track volume measures were obtained and analyzed. Statistically significant differences were found between the preop/postop, preop/control, and postop/control comparisons for the volume of the tracts in both groups. Displacement and disruption of the pathways seemed to differ in relation to the severity of the tumor. The loss of pathways after the operation was associated with selective resection during surgery due to tumor infiltration. There were no FA differences but significantly higher ADC in low-grade tumors, and no difference in both FA and ADC in high-grade tumors. The effects of posterior fossa tumors on cerebellar peduncles and reconstructed pathways were successfully evaluated by HARDI tractography. The technique appears to be useful not only for preoperative but also for postoperative evaluation.
Collapse
Affiliation(s)
- A. Ortug
- Department of Anatomy, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - N. Yuzbasioglu
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - N. Akalan
- Department of Neurosurgery, School of Medicine, Istanbul Medipol University, Istanbul, 34815, Turkey
| | - J. Levman
- Department of Computer Science, St. Francis Xavier University, Antigonish, Nova Scotia, B2G 2W5, Canada
| | - E. Takahashi
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Shiohama T, Tsujimura K. Quantitative Structural Brain Magnetic Resonance Imaging Analyses: Methodological Overview and Application to Rett Syndrome. Front Neurosci 2022; 16:835964. [PMID: 35450016 PMCID: PMC9016334 DOI: 10.3389/fnins.2022.835964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Congenital genetic disorders often present with neurological manifestations such as neurodevelopmental disorders, motor developmental retardation, epilepsy, and involuntary movement. Through qualitative morphometric evaluation of neuroimaging studies, remarkable structural abnormalities, such as lissencephaly, polymicrogyria, white matter lesions, and cortical tubers, have been identified in these disorders, while no structural abnormalities were identified in clinical settings in a large population. Recent advances in data analysis programs have led to significant progress in the quantitative analysis of anatomical structural magnetic resonance imaging (MRI) and diffusion-weighted MRI tractography, and these approaches have been used to investigate psychological and congenital genetic disorders. Evaluation of morphometric brain characteristics may contribute to the identification of neuroimaging biomarkers for early diagnosis and response evaluation in patients with congenital genetic diseases. This mini-review focuses on the methodologies and attempts employed to study Rett syndrome using quantitative structural brain MRI analyses, including voxel- and surface-based morphometry and diffusion-weighted MRI tractography. The mini-review aims to deepen our understanding of how neuroimaging studies are used to examine congenital genetic disorders.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Department of Pediatrics, Chiba University Hospital, Chiba, Japan
- *Correspondence: Tadashi Shiohama,
| | - Keita Tsujimura
- Group of Brain Function and Development, Nagoya University Neuroscience Institute of the Graduate School of Science, Nagoya, Japan
- Research Unit for Developmental Disorders, Institute for Advanced Research, Nagoya University, Nagoya, Japan
- Department of Radiology, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
11
|
Radwan AM, Sunaert S, Schilling K, Descoteaux M, Landman BA, Vandenbulcke M, Theys T, Dupont P, Emsell L. An atlas of white matter anatomy, its variability, and reproducibility based on constrained spherical deconvolution of diffusion MRI. Neuroimage 2022; 254:119029. [PMID: 35231632 DOI: 10.1016/j.neuroimage.2022.119029] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/19/2022] [Accepted: 02/21/2022] [Indexed: 11/17/2022] Open
Abstract
Virtual dissection of white matter (WM) using diffusion MRI tractography is confounded by its poor reproducibility. Despite the increased adoption of advanced reconstruction models, early region-of-interest driven protocols based on diffusion tensor imaging (DTI) remain the dominant reference for virtual dissection protocols. Here we bridge this gap by providing a comprehensive description of typical WM anatomy reconstructed using a reproducible automated subject-specific parcellation-based approach based on probabilistic constrained-spherical deconvolution (CSD) tractography. We complement this with a WM template in MNI space comprising 68 bundles, including all associated anatomical tract selection labels and associated automated workflows. Additionally, we demonstrate bundle inter- and intra-subject variability using 40 (20 test-retest) datasets from the human connectome project (HCP) and 5 sessions with varying b-values and number of b-shells from the single-subject Multiple Acquisitions for Standardization of Structural Imaging Validation and Evaluation (MASSIVE) dataset. The most reliably reconstructed bundles were the whole pyramidal tracts, primary corticospinal tracts, whole superior longitudinal fasciculi, frontal, parietal and occipital segments of the corpus callosum and middle cerebellar peduncles. More variability was found in less dense bundles, e.g., the fornix, dentato-rubro-thalamic tract (DRTT), and premotor pyramidal tract. Using the DRTT as an example, we show that this variability can be reduced by using a higher number of seeding attempts. Overall inter-session similarity was high for HCP test-retest data (median weighted-dice = 0.963, stdev = 0.201 and IQR = 0.099). Compared to the HCP-template bundles there was a high level of agreement for the HCP test-retest data (median weighted-dice = 0.747, stdev = 0.220 and IQR = 0.277) and for the MASSIVE data (median weighted-dice = 0.767, stdev = 0.255 and IQR = 0.338). In summary, this WM atlas provides an overview of the capabilities and limitations of automated subject-specific probabilistic CSD tractography for mapping white matter fasciculi in healthy adults. It will be most useful in applications requiring a reproducible parcellation-based dissection protocol, and as an educational resource for applied neuroimaging and clinical professionals.
Collapse
Affiliation(s)
- Ahmed M Radwan
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium.
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; UZ Leuven, Department of Radiology, Leuven, Belgium
| | - Kurt Schilling
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, TN, USA
| | | | - Bennett A Landman
- Vanderbilt University, Department of Electrical Engineering and Computer Engineering, Nashville, TN, USA
| | - Mathieu Vandenbulcke
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; KU Leuven, Department of Geriatric Psychiatry, University Psychiatric Center (UPC), Leuven, Belgium
| | - Tom Theys
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, Leuven, Belgium; UZ Leuven, Department of Neurosurgery, Leuven, Belgium
| | - Patrick Dupont
- KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Laboratory for Cognitive Neurology, Department of Neurosciences, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Department of Imaging and pathology, Translational MRI, Leuven, Belgium; KU Leuven, Leuven Brain Institute (LBI), Department of Neurosciences, Leuven, Belgium; KU Leuven, Department of Neurosciences, Neuropsychiatry, Leuven, Belgium; KU Leuven, Department of Geriatric Psychiatry, University Psychiatric Center (UPC), Leuven, Belgium
| |
Collapse
|
12
|
Beez T, Munoz-Bendix C, Steiger HJ, Hänggi D. Functional tracts of the cerebellum-essentials for the neurosurgeon. Neurosurg Rev 2021; 44:273-278. [PMID: 32056026 PMCID: PMC7851031 DOI: 10.1007/s10143-020-01242-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/01/2020] [Accepted: 01/09/2020] [Indexed: 02/07/2023]
Abstract
The cerebellum is historically implicated in motor coordination, but accumulating modern evidence indicates involvement in non-motor domains, including cognition, emotion, and language. This correlates with the symptoms observed in postoperative cerebellar mutism syndrome (CMS). Profound knowledge of cerebellar functional topography and tractography is important when approaching cerebellar tumors, as surgical trauma to relevant structures of cerebellar pathways plays a role in the pathogenesis of CMS. The aim of this systematic review is to provide a concise overview of relevant modern neuroimaging data and cerebellar functional tracts with regard to neurosurgical procedures.
Collapse
Affiliation(s)
- Thomas Beez
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| | - Christopher Munoz-Bendix
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| |
Collapse
|
13
|
Machado-Rivas F, Afacan O, Khan S, Marami B, Rollins CK, Ortinau C, Velasco-Annis C, Warfield SK, Gholipour A, Jaimes C. Tractography of the Cerebellar Peduncles in Second- and Third-Trimester Fetuses. AJNR Am J Neuroradiol 2021; 42:194-200. [PMID: 33431505 PMCID: PMC7814802 DOI: 10.3174/ajnr.a6869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/24/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND PURPOSE Little is known about microstructural development of cerebellar white matter in vivo. This study aimed to investigate developmental changes of the cerebellar peduncles in second- and third-trimester healthy fetuses using motion-corrected DTI and tractography. MATERIALS AND METHODS 3T data of 81 healthy fetuses were reviewed. Structural imaging consisted of multiplanar T2-single-shot sequences; DTI consisted of a series of 12-direction diffusion. A robust motion-tracked section-to-volume registration algorithm reconstructed images. ROI-based deterministic tractography was performed using anatomic landmarks described in postnatal tractography. Asymmetry was evaluated qualitatively with a perceived difference of >25% between sides. Linear regression evaluated gestational age as a predictor of tract volume, ADC, and fractional anisotropy. RESULTS Twenty-four cases were excluded due to low-quality reconstructions. Fifty-eight fetuses with a median gestational age of 30.6 weeks (interquartile range, 7 weeks) were analyzed. The superior cerebellar peduncle was identified in 39 subjects (69%), and it was symmetric in 15 (38%). The middle cerebellar peduncle was identified in all subjects and appeared symmetric; in 13 subjects (22%), two distinct subcomponents were identified. The inferior cerebellar peduncle was not found in any subject. There was a significant increase in volume for the superior cerebellar peduncle and middle cerebellar peduncle (both, P < .05), an increase in fractional anisotropy (both, P < .001), and a decrease in ADC (both, P < .001) with gestational age. The middle cerebellar peduncle had higher volume (P < .001) and fractional anisotropy (P = .002) and lower ADC (P < .001) than the superior cerebellar peduncle after controlling for gestational age. CONCLUSIONS A robust motion-tracked section-to-volume registration algorithm enabled deterministic tractography of the superior cerebellar peduncle and middle cerebellar peduncle in vivo and allowed characterization of developmental changes.
Collapse
Affiliation(s)
- F Machado-Rivas
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - O Afacan
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - S Khan
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - B Marami
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C K Rollins
- Department of Radiology, Department of Neurology (C.K.R.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C Ortinau
- Department of Pediatrics (C.O.), Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - C Velasco-Annis
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
| | - S K Warfield
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - A Gholipour
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| | - C Jaimes
- Computational Radiology Laboratory (F.M.-R., O.A., S.K., B.M., C.V.-A., S.K.W., A.G., C.J.)
- Fetal-Neonatal Neuroimaging and Developmental Science Center (C.J.), Boston Children's Hospital, Boston, Massachusetts
- Harvard Medical School (F.M.-R., O.A., S.K., B.M., C.K.R., S.K.W., A.G., C.J.), Boston, Massachusetts
| |
Collapse
|
14
|
Shiohama T, Chew B, Levman J, Takahashi E. Quantitative analyses of high-angular resolution diffusion imaging (HARDI)-derived long association fibers in children with sensorineural hearing loss. Int J Dev Neurosci 2020; 80:717-729. [PMID: 33067827 DOI: 10.1002/jdn.10071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 11/08/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is the most common developmental sensory disorder due to a loss of function within the inner ear or its connections to the brain. While successful intervention for auditory deprivation with hearing amplification and cochlear implants during a sensitive early developmental period can improve spoken-language outcomes, SNHL patients can suffer several cognitive dysfunctions including executive function deficits, visual cognitive impairment, and abnormal visual dominance in speaking perception even after successful intervention. To evaluate whether long association fibers are involved in the pathogenesis of impairment on the extra-auditory cognitive process in SNHL participants, we quantitatively analyzed high-angular resolution diffusion imaging (HARDI) tractography-derived fibers in participants with SNHL. After excluding cases with congenital disorders, perinatal brain damage, or premature birth, we enrolled 17 participants with SNHL aged under 10 years old. Callosal pathways (CP) and six types of cortico-cortical association fibers (arcuate fasciculus [AF], inferior longitudinal fasciculus [ILF], inferior fronto-occipital fasciculus [IFOF], uncinate fasciculus [UF], cingulum fasciculus [CF], and fornix [Fx]) in both hemispheres were identified and visualized. The ILF and IFOF were partly undetected in three profound SNHL participants. Compared to age- and gender-matched neurotypical controls (NC), decreased volumes, increased lengths, and high apparent diffusion coefficient (ADC) values without difference in fractional anisotropy (FA) values were identified in multiple types of fibers in the SNHL group. The impairment of long association fibers in SNHL may partly be related to the association of cognitive dysfunction with SNHL.
Collapse
Affiliation(s)
- Tadashi Shiohama
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Pediatrics, Chiba University Hospital, Chiba, Japan
| | - Brianna Chew
- College of Science, Northeastern University, Boston, MA, USA
| | - Jacob Levman
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Emi Takahashi
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Visual and brainstem auditory evoked potentials in HCV-infected patients before and after interferon-free therapy - A pilot study. Int J Infect Dis 2019; 80:122-128. [PMID: 30641198 DOI: 10.1016/j.ijid.2019.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/02/2019] [Accepted: 01/04/2019] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION The aim of this study was to investigate brain bioelectrical activity disturbances in HCV-positive patients before and 24 weeks after interferon-free therapy (DAA), using visual (VEP) and brainstem (BAEP) evoked potentials and advanced magnetic resonance techniques. MATERIALS AND METHODS 11 HCV-infected patients (6 women, 5 men, mean age 51 years old) and 30 healthy controls, sex and age-matched, were studied. Clinical neurological examinations, VEP, BAEP, diffusion tensor imaging (DTI) and perfusion weighted imaging (PWI) were performed. RESULTS 11 patients achieved a sustained viral response, and liver fibrosis regression in APRI and in elastography were observed. The mean P100 latency was significantly shorter in HCV-patients after therapy compared to the values before treatment (p<0.05). The mean wave BAEP V latency and I-V interpeak latency were significantly longer in the HCV-infected patients before therapy compared to HCV-patients after therapy. CONCLUSIONS This study confirms that treatment with DAA in patients with chronic HCV infection positively affects the bioelectrical activity of the brain. An increase in the amplitude of EP after treatment indicates an improvement in the activity of the cerebral cortex. EP examination may be a useful method of assessing the function of the nervous system before and after antiviral treatment.
Collapse
|
16
|
Kipping JA, Xie Y, Qiu A. Cerebellar development and its mediation role in cognitive planning in childhood. Hum Brain Mapp 2018; 39:5074-5084. [PMID: 30133063 DOI: 10.1002/hbm.24346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/27/2018] [Accepted: 07/29/2018] [Indexed: 12/30/2022] Open
Abstract
Recent evidence suggests that the cerebellum contributes not only to the planning and execution of movement but also to the high-order cognitive planning. Childhood is a critical period for development of the cerebellum and cognitive planning. This study aimed (a) to examine the development of cerebellar morphology and microstructure and (b) to examine the cerebellar mediation roles in the relationship between age and cognitive planning in 6- to 10-year-old children (n = 126). We used an anatomical parcellation to quantify cerebellar regional gray matter (GM) and white matter (WM) volumes, and WM microstructure, including fractional anisotropy (FA) and mean diffusivity (MD). We assessed planning ability using the Stockings of Cambridge (SOC) task in all children. We revealed (a) a measure-specific anterior-to-posterior gradient of the cerebellar development in childhood, that is, smaller GM volumes and greater WM FA of the anterior segment of the cerebellum but larger GM volumes and lower WM FA in the posterior segment of the cerebellum in older children; (b) an age-related improvement of the SOC performance at the most demanding level of five-move problems; and (c) a mediation role of the lateral cerebellar WM volumes in age-related improvement in the SOC performance in childhood. These results highlight the differential development of the cerebellum during childhood and provide evidence that brain adaptation to the acquisition of planning ability during childhood could partially be achieved through the engagement of the lateral cerebellum.
Collapse
Affiliation(s)
- Judy A Kipping
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Yingyao Xie
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore.,Singapore Institute for Clinical Sciences, Singapore, Singapore.,Clinical Imaging Research Center, National University of Singapore, Singapore, Singapore
| |
Collapse
|
17
|
Abstract
Accumulating evidence points to a critical role for the human cerebellum in both motor and nonmotor behaviors. A core tenet of this new understanding of cerebellar function is the existence of functional subregions within the cerebellum that differentially support motor, cognitive, and affective behaviors. This cerebellar functional topography - based on converging evidence from neuroanatomic, neuroimaging, and clinical studies - is evident in both adult and pediatric populations. The sensorimotor homunculi in the anterior lobe and lobule VIII established in early tract tracing and electrophysiologic studies are evident in both task-based and resting-state human functional imaging studies. In patients, damage to the anterior cerebellum, extending into medial lobule VI, is associated with the cerebellar motor syndrome. The cerebellar posterior lobe, including vermal and hemispheric regions of lobules VI and VII, is reciprocally interconnected with cerebral association and paralimbic cortices. Resting-state and task-based neuroimaging studies show functional activation patterns in these regions during higher-level cognitive tasks, and lesions of the posterior cerebellum lead to the cerebellar cognitive affective/Schmahmann syndrome with its characteristic intellectual and emotional impairments. The existence of cerebellar connectional and functional topography provides the critical anatomic substrate for a cerebellar role in both motor and nonmotor functions. It also establishes a framework for interpreting cerebellar activation patterns, cognitive and behavioral outcomes following cerebellar damage, and the cerebellar structural and functional differences reported in a range of neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Catherine J Stoodley
- Department of Psychology and Center for Behavioral Neuroscience, American University, Washington, DC, United States
| | - Jeremy D Schmahmann
- Ataxia Unit, Cognitive Behavioral Neurology Unit and Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital, Boston, MA, United States.
| |
Collapse
|
18
|
Re TJ, Levman J, Lim AR, Righini A, Grant PE, Takahashi E. High-angular resolution diffusion imaging tractography of cerebellar pathways from newborns to young adults. Brain Behav 2017; 7:e00589. [PMID: 28127511 PMCID: PMC5256176 DOI: 10.1002/brb3.589] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 08/22/2016] [Accepted: 08/23/2016] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Many neurologic and psychiatric disorders are thought to be due to, or result in, developmental errors in neuronal cerebellar connectivity. In this connectivity analysis, we studied the developmental time-course of cerebellar peduncle pathways in pediatric and young adult subjects. METHODS A cohort of 80 subjects, newborns to young adults, was studied on a 3T MR system with 30 diffusion-weighted measurements with high-angular resolution diffusion imaging (HARDI) tractography. RESULTS Qualitative and quantitative results were analyzed for age-based variation. In subjects of all ages, the superior cerebellar peduncle pathway (SCP) and two distinct subpathways of the middle cerebellar peduncle (MCP), as described in previous ex vivo studies, were identified in vivo with this technique: pathways between the rostral pons and inferior-lateral cerebellum (MCP cog), associated predominantly with higher cognitive function, and pathways between the caudal pons and superior-medial cerebellum (MCP mot), associated predominantly with motor function. DISCUSSION Our findings showed that the inferior cerebellar peduncle pathway (ICP), involved primarily in proprioception and balance appears to have a later onset followed by more rapid development than that exhibited in other tracts. We hope that this study may provide an initial point of reference for future studies of normal and pathologic development of cerebellar connectivity.
Collapse
Affiliation(s)
- Thomas J. Re
- Department of RadiologyBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
- Fetal‐Neonatal Brain Imaging and Developmental Science CenterBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
- Department of RadiologyUniversity of MilanMilanItaly
| | - Jacob Levman
- Fetal‐Neonatal Brain Imaging and Developmental Science CenterBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
- Division of Newborn MedicineDepartment of MedicineBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Ashley R. Lim
- Division of Newborn MedicineDepartment of MedicineBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
- Department of Behavioral NeuroscienceNortheastern UniversityBostonMAUSA
| | - Andrea Righini
- Department of Pediatric Radiology and NeuroradiologyChildren's Hospital V. BuzziMilanItaly
| | - Patricia Ellen Grant
- Department of RadiologyBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
- Fetal‐Neonatal Brain Imaging and Developmental Science CenterBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
- Division of Newborn MedicineDepartment of MedicineBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
| | - Emi Takahashi
- Fetal‐Neonatal Brain Imaging and Developmental Science CenterBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
- Division of Newborn MedicineDepartment of MedicineBoston Children's HospitalHarvard Medical SchoolBostonMAUSA
| |
Collapse
|